Lecture 10

Quantum Codes

Scribe: Alexandra Golay
Reviewer: Simon Deconihout

10.1 No Low-Energy Trivial State (NLTS)

The NLTS conjecture is a consequence of the PCP conjecture.

NLTSy : 3y > 0 and a family of Local Hamiltonians H = 1Y H; on n qubits with |H| < 1
such that any state |¢) with (¢|H|¢) < Ay (H) + 7 has a circuit depth > k.

The aim is to show NLTS for k = Q(logn).

10.2 Classical Linear Codes

Definition 10.1. [1,k, d], Linear Code
A binary linear code of length 7, dimension k = dim(C), and distance d = min{ |x|y: x € C\ {0}},
with C = ker H and H € FJ"*", is defined as [n, k, d]>.

Definition 10.2. A code C = ker H is called (¢, #) —expanding if Vy € {0,1}", |H,| < dm implies that
either |[y| > a - nor |y| < cén.

10.3 Quantum Error-Correcting Codes (QEC)

Definition 10.3. An [1,k,d] QEC is a subspace C € (C?)®" such that dim(C) = 2F and d should be such
that, informally, if t is of the form 2t + 1 < d, then C “corrects f errors”.

Definition 10.4. The Pauli group on n qubits is P, = {£1,+i} x {I,X,Y,Z}*" C B((C?)®"). For
E=E®---®E, € Py, its weightis wt(E) = #{i: E; # I}. Example: wt(I @ X® I ® Z) = 2.

The encode—error—decode sequence is ) € (C2)®k e, |y € (C?)&n E|P) Dee, lp)..
Still informaly, a code corrects ¢ errors if this sequence is correct for any E such that wt(E) < t.

EeP,
—
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10.4 Stabilizer codes

Definition 10.5. A Stabilizer Group S is an abelian (commutative) subgroup of P, that does not contain I.

Example (valid). Forn = 2, one choiceis S = { II, XX, YY, ZZ}, whose codespace is Span { % (]00) +

|11)) } This codespace has dimension 0 as a quantum code: since there is a single quantum state in is, we
cannot even encode one (qu)bit of information in it.

Example (invalid). S’ = {II, IX, IZ, 1Y}, which fails since these generators do not all commute.

10.4.1 Codespace and Dimension

Given a stabilizer group S C P, define the codespace
Cs = {ly) € (C)®": Ply) = |y) VP € S}.
Claim 10.6. If S has g independent generators, then
dimCg = 2"78,

Proof. The projector onto Cg is

I+P § 1+ G;
e, =[] ——=11 ,
’ PeS 2 i=1 2
where G, ..., Gg generate S. Hence
. § 1+G; 1 2"
dim Cg = Tr(Il¢,) = Tr(H Tl) = 5% Z Tr(H GZ-> =5
i=1 TC{1,....q} ieT

10.4.2 Distance of a Stabilizer Code
Definition 10.7. The distance of the code Cg is
ds = min{wt(E) : E€{L,X,Y,Z}*"\S, [E,P] =0VP € S}.

* If E € S, then E acts trivially on Cg.
e IfE ¢ Sbut 3P € S with EP = —PE, then ($|EPE|p) = — (| P|y), so E is detectable.

o If E ¢ S and E commutes with all P € S, then E is undetectable, which is a problem.

62



10.4.3 Example: 9-Qubit Shor Code

One can build a [n = 9,k = 1,d = 3] code by “nesting” a [3, 1, 3] bit-flip code inside a [3, 1, 3] phase-flip
code. A convenient set of ¢ = 8 stabilizer generators is

111 ZZ7Z ZZZ
Zz7zZ 11l ZZZ
XXI 111 III
IXX Il III
111 XXI 111
I IXX 111
111 111 XXI
Ir 11 IXx

S =

Heren =9,¢ =8,s0k = n — g = 1, and one checks d = 3 (corrects any single error).

10.5 CS-Hamiltonians from Codes

Let S C P, be a stabilizer group generated by {Gy, ..., Gg}. Define the code Hamiltonian

One checks that
/\min(HS) = -1, <1)U|H5|1/J> = -1 «— |¢> - Cs.

Lemma 10.8. If k > 1 then every ground state of Hg is non-trivial (i.e. requires circuit depth > logds to
prepare).

Proof. We will show the codewords |0) and |1) are “globally entangled.”
Suppose, for contradiction, there is an £-qubit observable O such that

(0[ofo) # (1]O[1).
Since Paulis span observables, there exists P € P,, with wt(P) < ¢ for which
(0[P[0) # (1|P[L).

If £ < dg, then either

1. P € S, in which case P|0) = |0) and P|1) = |1), so both expectations are 1, contradiction; or

2. 3Q € S with PQ = —QP, in which case

(0]P|0) = (0]Q P Q[0) = —(0[P[0) =0,
again a contradiction.
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Next, suppose |0) were prepared by a depth-f circuit R with £ < logds, i.e.
0) = R,[0%).

Foreachi = 1,...,n define
O; := R (Z; ® L) RY.

Since Z;|0") = |0"),
(0]0i[0) = (0"Z;]0") = +1.

But after depth £, each O; is supported on at most 2t < dg qubits. By the same commutation/anticommutation
argument above, O; must also fix |1), contradicting that (1|G;|1) # 1 for some stabilizer G;. Hence
t <logds. O

10.6 CSS Codes

Let Cy be a [1, k1, dq] binary linear code and C; a [1, k, dp] binary linear code. Write

C,=kerH,, H;¢€ ]ngzxn,

so that
Cy ={yeF):y -x=0Vx € C} = span{rows of Hy}.
Suppose
Cy CC, <= HHI =0,
where

H, € ]F;nlxn’ H, € IF;QXﬂ,

and the rows of Hy and H; are pairwise orthogonal.

Definition 10.9. The CSS code CSS(Cy, C,) is the stabilizer code on 1 qubits with generators
(Z-type) {Z":rarowof Hi},
(X-type) {X®:sarowof Hp}.
Fact. CSS(Cy, Cy) is an [n, k, d] stabilizer code with
k=ki+ky—n, d = min(dy,d>).
Indeed, the total number of independent stabilizers is
my+my = (n—ky)+ (n—ky),

SO
k:n—(m1+m2):k1+k2—n,

and commutation holds because H; HZT =0.
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10.7 How to construct good quantum codes ?

1. From surfaces

2. Product constructions

Example: Toric code

Embed a graph on the torus (a closed surface of genus 1). Place one qubit on each edge of the graph, and
define two types of stabilizer generators:

* Face (Z)-stabilizer. For each face f,

By = [] Z.

ecof

¢ Vertex (X)-stabilizer. For each vertex v,

Because the surface is closed, all A, and B ¢ commute, and the code is well defined on the torus.

Distance. The code distance d is the length (number of edges) of the shortest non-contractible loop on the
torus.

Remark. The same construction works on any closed surface of genus g, giving a [[1,2g, d]] code whose
distance is the systole (shortest non-trivial cycle) of the underlying surface.
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