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ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Final Exam, Computational Complexity 2018

You are only allowed to have a handwritten A4 page written on both sides.

Communication, calculators, cell phones, computers, etc... are not allowed.

Your explanations should be clear, well motivated, and proofs should be complete.

The solutions to the questions of the exam are rather short. If you end up writing a

solution requiring a lot of pages then there is probably an easier solution.

Do not touch until the start of the exam.

Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4

/ 30 points | / 20 points | / 25 points | / 25 points

Total / 100
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1 (30 pts) Basic questions with short answers.

la (10 pts) Consider the operation of copying a qubit x by performing the map |zy) — |zz)
where y is an arbitrary qubit. Can this map be implemented as a quantum operation?

Solution:

No because quantum operations are reversible and the above map is not (there is no way to
recover |zy) from |zz)).

1b (10 pts) Briefly explain why no proof can resolve the P vs NP question if it uses only these
two facts about Turing Machines:

1. The existence of an effective representation of Turing machines by strings.

2. The ability of one Turing Machine to simulate any other without much overhead in
running time or space.

Solution: Such a proof would also work for oracle Turing Machines and be oblivious to the
oracle. But we know that there exist an oracle A such that PA = NP4 and an oracle B such
that PB £ NPB. Hence any proof would need to depend on more properties.

lc (10 pts) Let g : {0,1}" — {0,1} be a function that is (1 — €)-close to a Walsh-Hadamard
code. In other words, g is (1 — €)-close to a linear function f : {0,1}" — {0,1}. Describe
a “decoding” algorithm that on input g and = € {0,1}" has the following guarantees:

1. Tt outputs f(z) with probability at least (1 — 2¢). (We emphasize however that the
algorithm has no access to f, only to g.)

2. It evaluates g on two inputs.
Description of algorithm (no analysis needed):

1. Select r € {0, 1}" uniformly at random.

2. Output f(x+r)+ f(r).
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2 (20 pts) Circuits. In the last lecture, we saw that there are functions that require circuits of
linear depth assuming that AND and OR gates have fan-in 2 (and NOT gates have fan-in 1). In
this problem, we are going to consider circuits where AND and OR gates are allowed to have
unbounded fan-in. In that case, any function f : {0,1}" — {0,1} can be calculated using a
circuit of constant depth. While this shows that the required depth changes dramatically if we
have unbounded fan-in, this is not the case for the size of the circuit. Indeed, your task is to
prove the following:

For every n large enough, there exists an n-ary function f : {0,1}" — {0, 1} not computable
by circuits of size 2™/3 even if AND and OR gates have unbounded fan-in.

Hint: recall that most functions f require circuits of large size when fan-in is bounded by 2. In
particular, you are allowed to use the statement proved in class about the bounded fan-in circuit
size of most functions.

Solution:

e We know from class that there exists a function f : {0,1}" — {0,1} that requires Q(2"/n)
gates of fan-in at most 2.

e Now consider a circuit C' of size 2*/% where gates have unbounded fan-in.
e Since C has size 2"/3 the fan-in of any gate is bounded by 27/3.

e Now observe that we can replace every AND (OR) gate of fan-in ¢ with binary tree of
fan-in-2 AND (OR) gates with ¢ leaves and thus at most 2¢ gates in total.

e Hence, by doing this replacement for every gate, we can obtain a circuit C’ that is identical
to C and has at most 27%/3 . 2. 2/3 = 22n/3+1 gates each of fan-in at most 2.

e As 22/3+1 is much smaller than 2" /n? for large enough n the statement of the exercise
follows.
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3 (25 pts) Closed under reductions. Prove that DTIME(2""") is not closed under many-to-
one polynomial time reductions. In your proof you may assume the Time Hierarchy Theorem
without proving it.

(Recall that a language A has a many-to-one polynomial time reduction (aka Karp reduction)
to a language B, written <,, if there is a polynomial time computable function f(-) such that
for every instance x € {0,1}* we have x € A & f(x) € B. Moreover, a class C of languages
is closed under polynomial many-to-one reductions if A <, B and B € C implies A € C. A
famous example of a class that is closed under such reductions is NP.)

Solution:

102 100
) )-

e By the Time Hierarchy Theorem, there is a language L € DTIME(2" )\ DTIME(2"

e Now define the language L' = {(z,01*") : 2 € L}.

We claim that L' € DTIME(2"50. To see this observe first that, given y € {0,1}*,
we can in polynomial time verify that y is in the form <:L',O“E|2> for some x. Now since
L € DTIME(2"'"), we can verify that = € L in time 2/*I'"" which is at most 2/¥/"",

Finally, there is a trivial Karp reduction from L to L’. Take any z and output (z, O‘$|2>.

We conclude that DTIl\/.[E(Q”100 cannot be closed under Karp reductions since L' €
DTIME(2"'") and L ¢ DTIME(2""").
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4 (25 pts) Cryptography. Let (E,D) be any polynomial-time computable encryption scheme with
key length < m/2 on messages of length m that satisfies Dy (Ex(z)) = = for every key k and
message .

In this problem we are going to show that (E, D) is not computationally secure if P = NP.
Specifically, prove the following: Assuming P = NP, there is a polynomial time algorithm A
such that for every input length m, there is a pair of messages zo,x1 € {0,1}™ satisfying:

1
b A(E —p>1-=.
bG{O,l},kre{o’l}n[ (Ex(x0)) | > 5

where n denotes the key length and by assumption n < m/2.

Solution:
e Let (E,D) be an encryption for messages of length m and with key length n < m/2.

e Let S C {0,1}* denote the support of Eg;, (0™). Note that y € S if and only if y = Ex(0™)
for some k. Hence, if P = NP, then membership in S can be verified efficiently (by
“guessing” the right k).

e Algorithm A will be very simple: on input ¥, it outputs 0 if y € S and it outputs 1
otherwise.

e We set 2o = 0™ and we will find some z; satisfying the statement of the lemma.

e If we let D, denote the distribution Ey, (), then

1 1
bG{O,l},kI‘G{O,l}” [ ( k(xb» ] 9 I'[ ( 0) 0] + B I'[ ( 1) ]

1 1

e It thus suffice in finding an x; such that Pr[A(D,,) = 1] > 1 — 277% or, equivalently,
Pr[D,, € S] < 1/2m/2,

e To see that such an z exists, define S(x, k) to be 1 if Ex(x) € S and 0 otherwise. Then
Erefo1ym Bre(op[S(@, k)] = Breqonyn Eaegoaym[S(x, k)] < 1/27/2,

where the last inequality follows from the fact that, for any fixed k, E; is one-to-one and
hence at most 2" < 2™/2 of the z’s can be mapped to the set S of size 2.

e Hence there must exist an ;1 such that Eyecqo 130 [S(21, k)] < 1/2™/2 which is equivalent to
Pr[D,, € S] < 1/2m/2,
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