=Pr-L

Exercise IX, Computational Complexity 2024

These exercises are for your own benefit. Feel free to collaborate and share your answers with
other students. Solve as many problems as you can and ask for help if you get stuck for too
long. Problems marked * are more difficult but also more fun :).

Resolution

Prove that tree-like Resolution (and hence Resolution, too) is complete: If ¢ is an unsatisfiable
CNF, then there exists some tree-like Resolution refutation of ¢.

(Hint: For the easiest proof, use the equivalence between tree-like Resolution and decision trees
solving SEARCH(¢p).)

Solution: Because ¢ is unsatisfiable, there exists for each input x € {0, 1}" a falsified clause
C € . Thus, SEARCH(y) is total and there exists a decision tree solving it (e.g. the one that
queries everything). This decision tree combined with the equivalence between tree-like resolution
and decision trees shows that ¢ indeed has a tree-like resolution proof (i.e. simply flip the decision
tree solving SEARCH(¢)).

Prove the lemma for Tree—Adversary games from the lecture. Namely, prove that if there exists
an Adversary strategy for SEARCH(p) that scores at least r points against any Tree strategy,
then any decision tree solving SEARCH(¢p) has size at least 2".

(Hint: Prove the contrapositive. Given a decision tree, consider the Tree strategy that, when
Adversary leaves the choice of value of x; to Tree, it chooses the smaller subtree.)

Solution: Fix a decision tree ¢ solving SEARCH(yp) with < 2" nodes and let us derive a Tree
strategy that makes any adversary score at most r — 1 points. Tree choose what to query next
based on t. Whenever the adversary chooses its answer, Tree follows ¢ and recurses on a smaller
tree. When the adversary leaves the choice to Tree, Tree selects the smallest sub-tree, which
leaves it with a tree of at most half the size. Since ¢ has size < 2", Adversary can score at most
r — 1 points before Tree reaches a leaf of ¢ and thus a valid solution.

Recall that the n-bit OR,,: {0,1}" — {0,1} has a decision tree of size O(n). Let us modify OR,,
slightly by replacing each of its input variables with a 2-bit ANDy: {0,1}2 — {0,1}. Namely,
denote by OR,, o ANDy the function that on a 2n-bit input (z,y) € {0,1}" x {0,1}" outputs

(ORTL o AND2)('7"7 y) = ORTL(ANDQ(%I? yl)? ey ANDQ(xna yn))

Show that any decision tree for OR,, 0 ANDs requires size 2".

Solution: Observe that total Boolean function can be seen as search problems where each instance
xz € {0, 1} has a unique solution within {0,1}. It is thus enough for our purposes to display
an Adversary strategy that scores n points in the Tree-Adversary game for OR,, o ANDy. The
adversary strategy is simple: whenever the Tree wants to know the value of some bit b € {z;, y;},
the adversary lets the Tree choose the value of b if none of {z;,y;} is known and answers 0 else.
In that way, the Tree has to explore all pairs to compute the function and thus the Adversary
scores n points.

Page 1 (of 2)

CS-524 Computational Complexity e Fall 2024

4 The width of a Resolution refutation = = (C1, ..., Cs) is the maximum width |C;| of any clause C;
appearing in the proof.

(a) Show that if a CNF formula ¢ with n variables admits a width-w refutation, then it also
admits one of size s < nOw),

(b) Given a formula ¢ and a width parameter w, show that one can find a width-w refutation
O(w)

of ¢ (if one exists) in time n“").
(This exercise shows that bounded-width Resolution is polynomial-time automatable; that is,
short proofs can be found efficiently.)

Solution:

(a) Note that there are 3%, (2n)" < n°™) possible clause of width at most w on n variables.
Since a resolution refutation can re-use previously derived clauses, we get that any width-w
refutation can be made into a proof of size n®™) at most. Note that this would not be true
for tree-like resolution.

(b) Let Sy be the set of clauses in ¢ — the idea of the algorithm is to grow it by using the
resolution rule iteratively. More precisely, the set .S; 11 is composed of 5; in addition to any
clause of width at most w that can be obtained by resolving on two clauses from .S;. The
process stops when ;11 = .5;. Note that there exists a width-w resolution rule if and only
if § € S; and that this process lasts for at most n©®) step, each taking time n®®) . Finally,
a width-w resolution refutation (if one exists) can be computed by storing for each C' € S;
a pointer to the two parent clauses that created it and back-tracking from (.

5 Sometimes (for convenience) one allows an additional weakening rule in Resolution: From any
clause A this rule allows to derive the clause AV B where B is an arbitrary clause. Show that
allowing this rule does not add power to Resolution: If a CNF formula ¢ has a size-s refutation
in Resolution-with-weakening, then ¢ also has a size-s refutation in (usual) Resolution.

Solution: Let ¢ be an unsatisfiable CNF and fix a resolution refutation of ¢ that uses weakening.
The idea is to see the refutation as a DAG and remove the weakening steps from bottom (i.e. the
clauses from ¢) to the top (i.e the empty clause). Note that each time a weakening is removed,
the resulting clause is a subset of the original clause. When the top of the DAG is reached, the
resulting clause is a subset of (), i.e. () itself: the pruned refutation that does not use weakening is
thus still valid.

Page 2 (of 2)

CS-524 Computational Complexity e Fall 2024

