
Exercise VII, Computational Complexity 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

Randomised Complexity

1 Characterisation of ZPP.

(a) Prove that L ∈ ZPP if and only if there is a polynomial-time probabilistic TM M that
outputs values in {0, 1, ?} such that for every input x, we have M(x) ∈ {L(x), ?} and
Pr[M(x) = ?] ≤ 1/2. (Hint: Suppose we have a PTM M with expected runtime t(n). Use
Markov’s inequality to show that M halts within 2t(n) steps with probability at least 1/2.)

(b) Show that ZPP = RP ∩ coRP. (Hint: How to combine an RP-style algorithm and an
coRP-style algorithm into a single ZPP-algorithm?)

Solution:

(a) Suppose that L ∈ ZPP and let M be a PTM computing L with zero error and expected
run-time t(n). Consider the PTM machine M ′ that runs M for 2 · t(n) steps and outputs
whatever M ′ outputs or ? if M ′ wasn’t finished. M ′ runs in worst-case 2t(n) and if it
doesn’t output ?, then it is correct. On the other hand using Markov’s inequality:

Pr(M ′(x) = ?) = Pr(M runs for more than 2t(n) steps) ≤ t(n)

2t(n)
=

1

2

Regarding the other direction let M be a PTM for L which runs in worst-case time t(n)
and is always correct but might output ?. Consider the PTM M ′ that simply runs M in
turns until it gives a non-? answer. Clearly, M ′ is always correct. On the other hand, we
can bound its expected run-time:

E
[
time spent by M ′] ≤ t(n) · E [# of runs of M] = t(n) ·

∞∑
i=1

i · 2−i ≤ O(t(n))

thus, M ′ witnesses that L ∈ ZPP

(b) We first show that ZPP ⊆ RP. Let M be a zero-error expected time t(n) PTM for L. Just
as in part (a), define M ′ that runs M ′ for 3t(n) steps. If M had the time to finish in that
many steps, return the answer, else reject. M ′ runs in worst-case polynomial time and note
that if x /∈ L, Pr(M ′(x) = 1) = 0. On the other hand using Markov’s inequality, we have
that if x ∈ L, Pr(M ′(x) = 1) ≥ 2/3 so that L ∈ RP too. Using the same trick, it can be
shown that ZPP ⊆ coRP.

Page 1 (of 4)

CS-524 Computational Complexity • Fall 2024

Regarding the other direction, let L ∈ RP∩ coRP and let M0 be a coRP machine for L and
M1 a RP machine for L. Consider the PTM M that runs M0 and M1 in turns until either
M0 reject (in which case we know for sure that x /∈ L) or M1 accept (in which case we
know for sure that x ∈ L). M is correct on all inputs, and its expected time is polynomially
bounded using a calculation similar to the second part of (a).

2 Prove that NP ⊆ BPP implies NP = RP.

Solution: Observe first that RP ⊆ NP. Indeed, let L ∈ RP and M be a poly-time Turing and
p : N → N be a polynomial such that for any x ∈ {0, 1}∗:

x ∈ L =⇒ Pr
r∈U{0, 1}p(|x|)

(M(x, r) = 1) ≥ 2/3

x /∈ L =⇒ Pr
r∈U{0, 1}p(|x|)

(M(x, r) = 1) = 0

The above is taking the view that a PTM is nothing but a TM with a random input. But this
means that r can act as a certificate and shows that L ∈ NP:

x ∈ L ⇐⇒ ∃r ∈ {0, 1}p(|x|) : M(x, r) = 1

Regarding the other direction, it is sufficient to show that if NP ⊆ BPP, then Sat ∈ RP. To this
end, let M be a PTM for Sat which is boosted so that for any formula φ :

φ ∈ Sat =⇒ Pr(M(φ) = 1) ≥ 1− n−2

φ /∈ Sat =⇒ Pr(M(φ) = 1) ≤ n−2

Where n is the number of variables in φ. We design a PTM M ′ that tries to build a satisfying
assignment x⋆ for φ. First, let φ0 (respectively φ1) be the formula φ where x1 is set to be 0
(respectively 1). If M(φ0) = 1 we have found a value for x1 (i.e. 0) and continue with the smaller
formula φ0. Else, if M(φ1) = 1, we have found a value for x1 and continue with the smaller
formula φ1. If both runs reject, we reject φ. At the end of the process, we get an assignment x⋆

which is supposedly satisfying φ. Finally we output 1 if and only if φ(x⋆) = 1.

Observe that M ′ runs in poly-time and that if M ′ accepts φ, then it must be that φ ∈ Sat
so that if φ /∈ Sat, then Pr(M ′(φ) = 1) = 0. We still need to prove that if φ ∈ Sat then
Pr(M ′(φ) = 1) ≥ 2/3, hence let φ ∈ Sat. Using a union bound, we have:

Pr(M ′(φ) = 0) ≤ Pr(M fails for x1 or x2 or . . . or xn) ≤
n∑

i=0

n−2 ≤ 1/3

As a technicality, any sub-formula that gets investigated on needs to be padded with trivially
satisfiable clauses like x1 ∨ ¬x1. This is to make sure that their size remains ≥ n and that we
can use the n−2 faillure probability bound.

3 Consider the 4-bit function f(x) = (x1 ∧ x2)∨ (x3 ∧ x4). Suppose we want to evaluate f using a
simple query algorithm (a decision tree) that queries, in arbitrary adaptive order, individual input
variables xi ∈ {0, 1} until it learns enough information about x in order to output f(x) ∈ {0, 1}.

(a) Show that any deterministic query algorithm for f needs to query all variables in the worst
case. That is, for any deterministic query strategy, there is some input x such that the
strategy makes 4 queries.

Page 2 (of 4)

CS-524 Computational Complexity • Fall 2024

(b) Show that there is a randomised 0-error strategy (i.e., ZPP style) that, for every input x,
makes 3 queries in expectation and always outputs f(x) correctly.

(c) (*) For n = 2k, define g : {0, 1}n → {0, 1} as the function computed by a depth-k binary
tree that has ∨- and ∧-gates on alternating levels, and with n variables at the leaves:

Show that every deterministic query algorithm requires n queries to compute g but that
there exists an 0-error randomised algorithm with expected query cost

3k/2 = nlog2
√
3 = n0.79248....

Solution:

(a) Let t be a deterministic query algorithm for f . We build a strategy for answering queries
that leaves the function value undetermined until the very last query. Suppose without
loss of generality that t first queries x1, then we respond 1. Now t can either query x2 or
x3 (the case x4 is symmetric). If x2 is queried, then we respond 0 so that t must solve
x3 ∧ x4, further taking two queries. On the other hand if t queries x3, we respond by 1 so
that t must now solve x2 ∨ x4, taking two other queries.

(b) A random strategy is as follows. Choose randomly to solve x1 ∧ x2 or x3 ∧ x4 (stopping
at the first which evaluates to ’1’). To solve a problem of type xi ∨ xj , choose the query
order at random and stop at the first ’0’ found. This algorithm is always correct, let us
now evaluate its expected cost.

Suppose first that x is such that f(x) = 1. It means that at least one and-block evaluates
to 1. With probability ≥ 1/2 we find it in the first try, resulting in only two queries. With
the remaining probability, we need 4 queries to evaluate the function. On the other hand,
if f(x) = 0 it means that both and-blocks evaluates to zero and so we expect to spend 1.5
queries on both. Thus, the overall expected query cost is 3.

(c) To get the upper bound, the idea is to define an adversarial strategy to respond to queries.
This strategy is built recursively and the base case is part (a). The same recursive trick
applies to evaluate the function in ZPP style.

4 Suppose Alice holds an n-bit string x ∈ {0, 1}n and Bob holds an n-bit string y ∈ {0, 1}n. Alice
and Bob want to decide whether x = y using a one-way communication protocol where Alice
sends a single message m = m(x) to Bob, and Bob outputs one bit indicating whether or not
x = y. Their goal is to minimise the bit-length |m| of the message.

(a) Show that any deterministic protocol requires message length |m| ≥ n.
(Hint: Exercise V-4.)

(b) Suppose Alice and Bob now have access to a shared random string r ∈ {0, 1}ℓ and that
Alice’s message m = m(x, r) can depend on r. Show that Alice and Bob can succeed with

Page 3 (of 4)

CS-524 Computational Complexity • Fall 2024

probability ≥ 2/3 (i.e., BPP style) by sending only |m| ≤ O(1) bits.
(Hint: Suppose ℓ = n. What can you say about the mod-2 inner products ⟨x, r⟩ mod 2 and
⟨y, r⟩ mod 2? Here ⟨x, r⟩ =

∑n
i=1 xiri.)

Solution:

(a) Suppose toward contradiction that Alice has a way to send only n − 1 bits and solve the
problem. This implies that Alice can send at most 2n−1 different messages, since her input
space is {0, 1}n, there exists two distinct x1, x2 ∈ {0, 1}n that map to the same message
m ∈ {0, 1}n−1. Now, since the protocol is correct it must be that if Bob holds x1, it
accepts. But since Alice’s message is the same for x1 and x2, the protocol also accepts the
pair (x2, x1): a contradiction.

(b) Let r1, . . . , rn
iid∼ U{0, 1} be iid 0/1 random variables. Then, for any two different x, y ∈

{0, 1}n, Pr(⟨x, r⟩ = ⟨z, r⟩) = 1/2. Indeed, supposing without loss of generality that
x1 ̸= y1:

Pr(⟨x, r⟩ = ⟨z, r⟩) = Pr

(
r1(x1 + y1) =

n∑
i=2

ri(xi + yi)

)

= Pr

(
n∑

i=2

ri(xi + yi) = 0

)
· Pr (r1 = 0)

+ Pr

(
n∑

i=2

ri(xi + yi) = 1

)
· Pr (r1 = 1)

=
1

2
·

(
Pr

(
n∑

i=2

ri(xi + yi) = 0

)
+ Pr

(
n∑

i=2

ri(xi + yi) = 1

))
= 1/2

Thus Alice simply sends two bits a1 := ⟨x, r1⟩ and a2 := ⟨x, r2⟩. Bob computes b1 := ⟨y, r1⟩
and b2 := ⟨y, r2⟩. Bob accepts a1 = b1 and a2 = b2 and else rejects.

If x = y, then Bob always accepts. On the other hand, if x ̸= y, then Bob rejects with
probability 3/4. So that overall the protocol only communicates 3 bits and has success
probability 3/4.

Page 4 (of 4)

CS-524 Computational Complexity • Fall 2024

