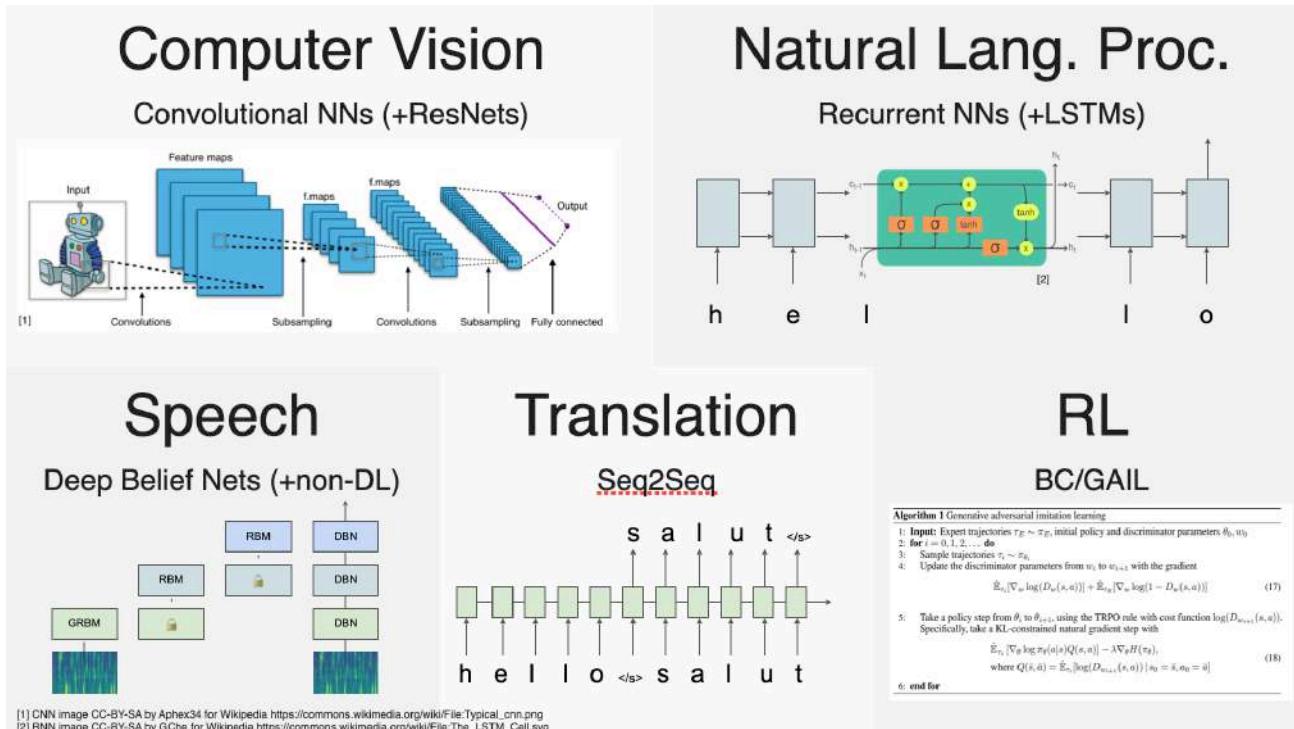


SotA lecture: Transformers

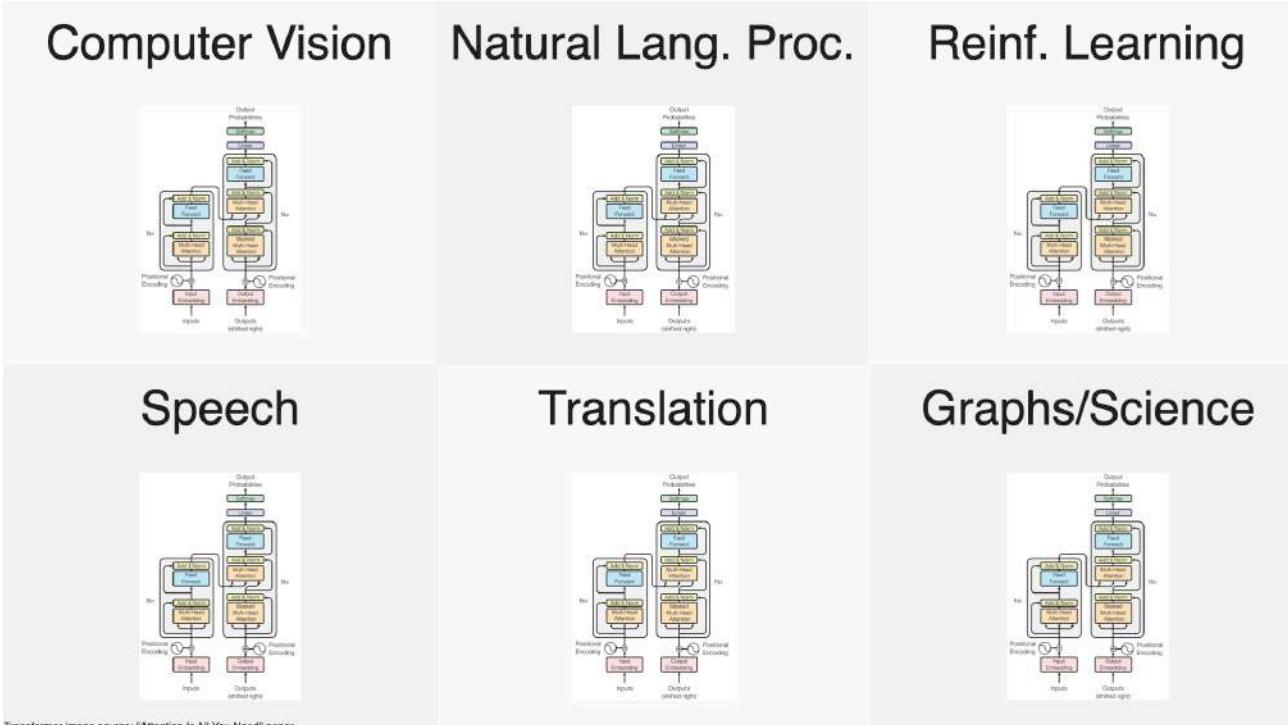
The **classic landscape**: One architecture per “community”



[1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png
 [2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

[Slide credit: Lucas Beyer]

The Transformer's takeover: One community at a time



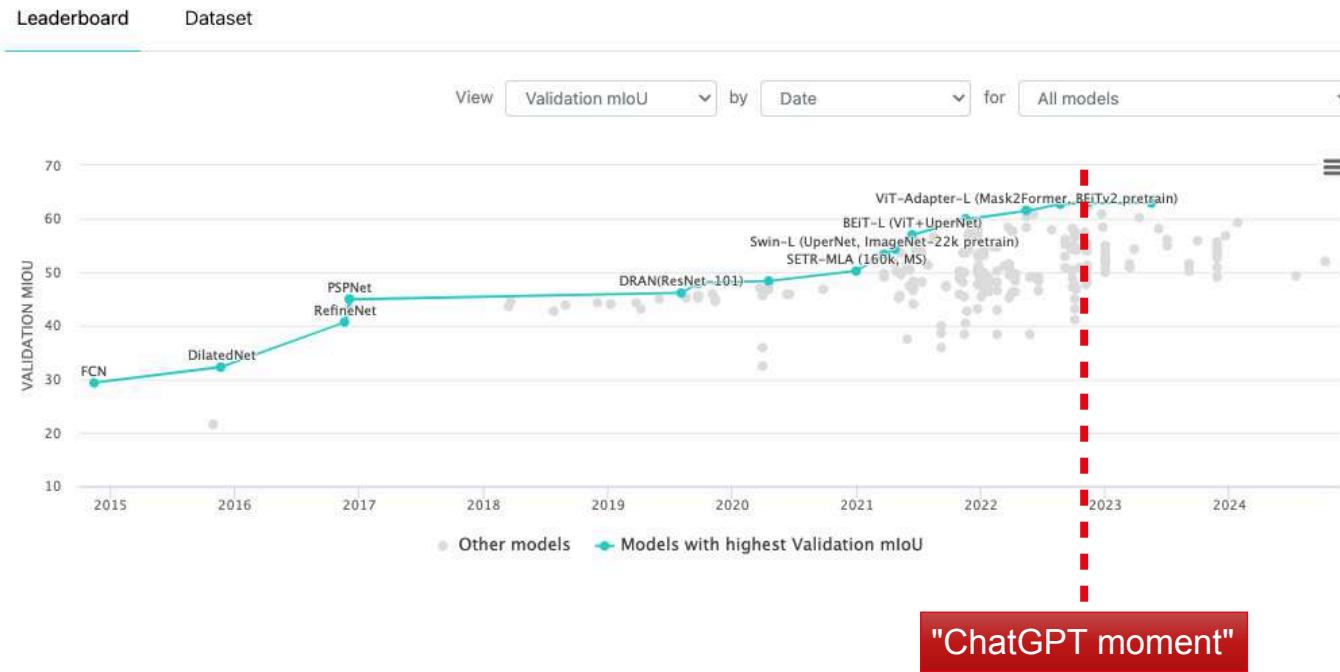
Leaderboards for image classification on ImageNet1K val:

Rank	Model	Top 1 Accuracy	Top 5 Accuracy	Number of params	GFLOPs	Extra Training Data	Paper				
1	BASIC-L (Lion, fin-tuned)	91.1%		2440M			Symbolic Discovery of Optimization Algorithms				
2	CoCa (finetuned)	91.0%		2100M			CoCa: Contrastive Captioners are Image-Text Foundation Models	6	CoAtNet-7	90.88%	2440M
3	Model soups (BASIC-L)	90.98%		2440M			Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time	7	ViT-G/14 (Lion)	90.71%	1843M
4	Model soups (ViT-G/14)	90.94%		1843M			Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time	8	CoCa (frozen)	90.60%	2100M
5	ViT-e	90.9%		3900M			PaLI: A Jointly-Scaled Multilingual Language-Image Model	9	CoAtNet-6	90.45%	1470M
								10	ViT-G/14	90.45%	1843M
										2859.9	✓
											Scaling Vision Transformers

Leaderboards for semantic segmentation on ADE20K val:

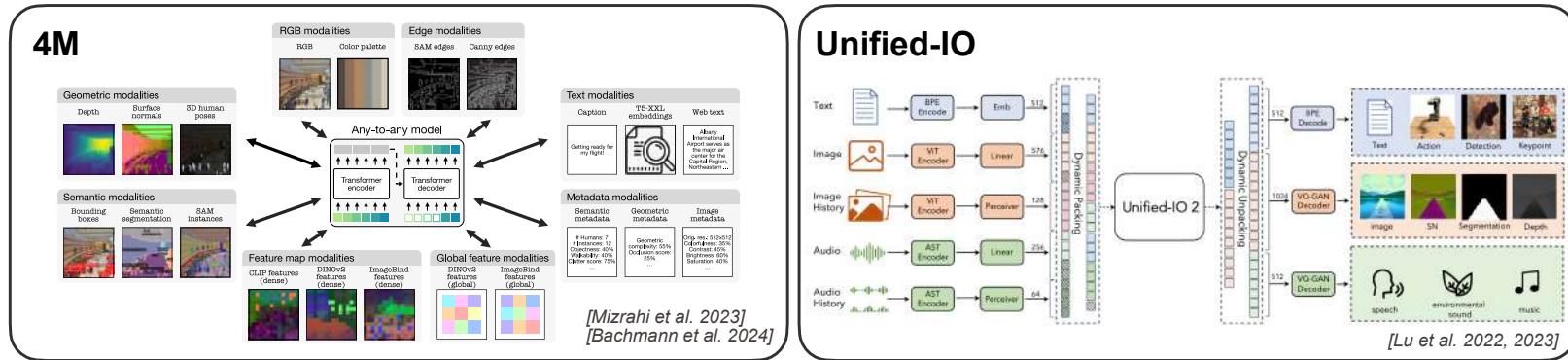
Rank	Model	Validation mIoU	Test Score	Params [M]	GFLOPs (512 x 512)	Extra Training Data	Paper		
1	InternImage-H (M3I Pre-training)	62.9		1310		✓	InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions	6	FD-SwinV2-G
2	M3I Pre-training (InternImage-H)	62.9		1310		✓	Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information	7	RevCol-H (Mask2Former)
3	BEiT-3	62.8		1900		✓	Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks	8	MaSK DINO (SwinL, multi-scale)
4	EVA	62.3		1074		✓	EVA: Exploring the Limits of Masked Visual Representation Learning at Scale	9	ViT-Adapter-L (Mask2Former, BEiT pretrain)
5	ViT-Adapter-L (Mask2Former, BEiT v2 pretrain)	61.5		571		✓	Vision Transformer Adapter for Dense Predictions	10	SwinV2-G (Upernet)
									Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation
									Reversible Column Networks
									Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation
									Vision Transformer Adapter for Dense Predictions
									Swin Transformer V2: Scaling Up Capacity and Resolution

Leaderboards for semantic segmentation on ADE20K val:
... in 2025



Transformers in vision

After Nov. 2022 "ChatGPT moment":
 Gradual shift from task-specific models to **unified foundation models**

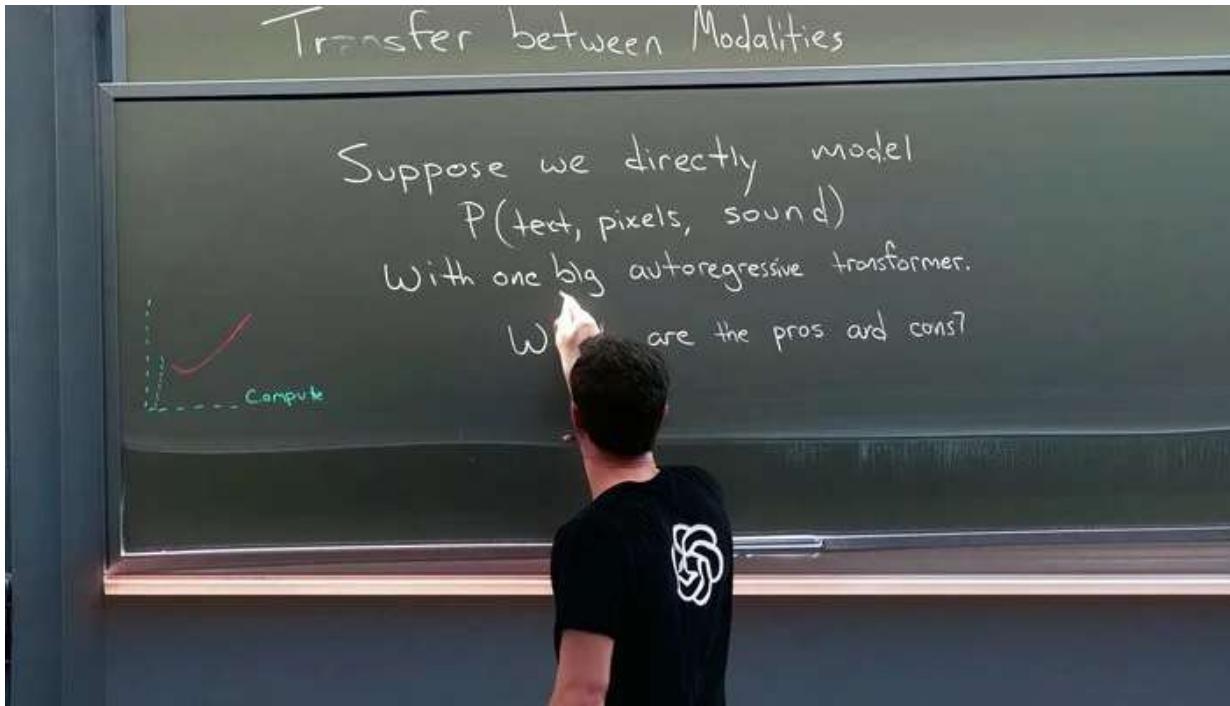


Any-to-any LLMs

Transformers in vision

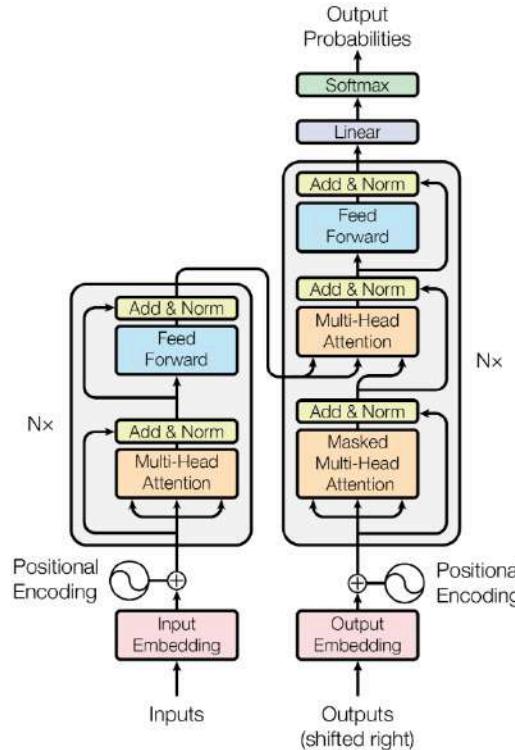
After Nov. 2022 "ChatGPT moment":

Gradual shift from task-specific models to **unified foundation models**



[GPT-4o generated image posted by Greg Brockman. 16.05.2024. <https://x.com/gdb/status/1790869434174746805>]

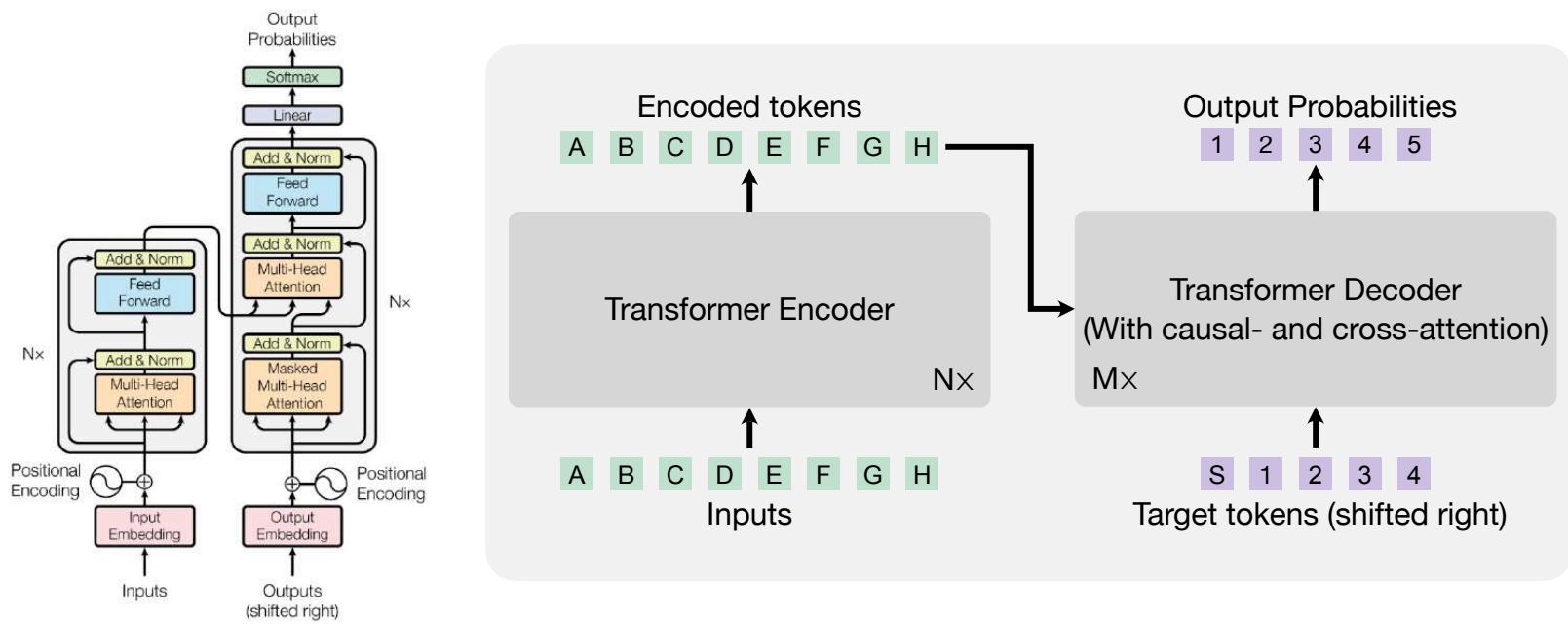
Since *[Attention Is All You Need, Vaswani et al., 2017]*, the core architecture has *largely* remained the same.



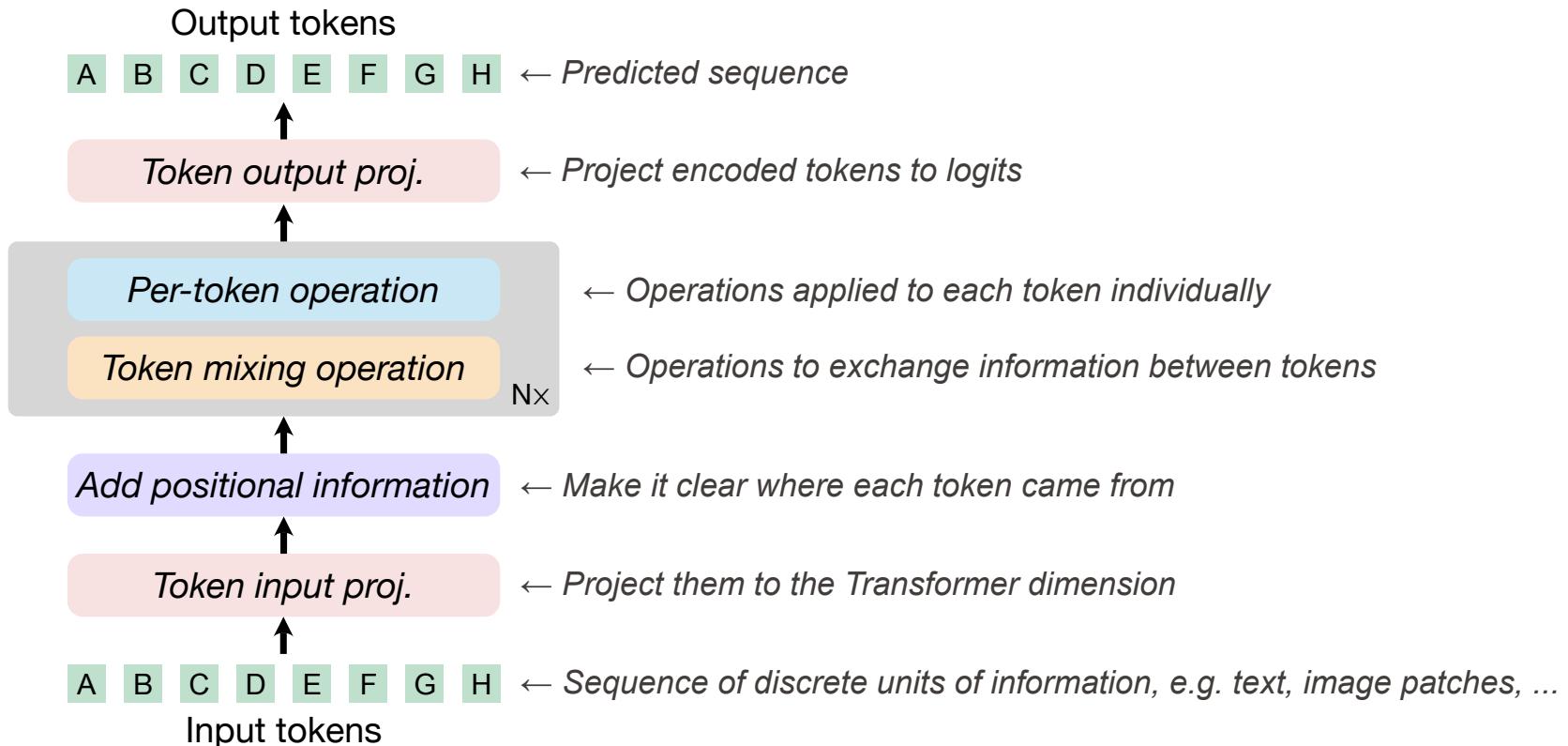
Overview

Transformer I/O and overview

Generic sequence to sequence architecture



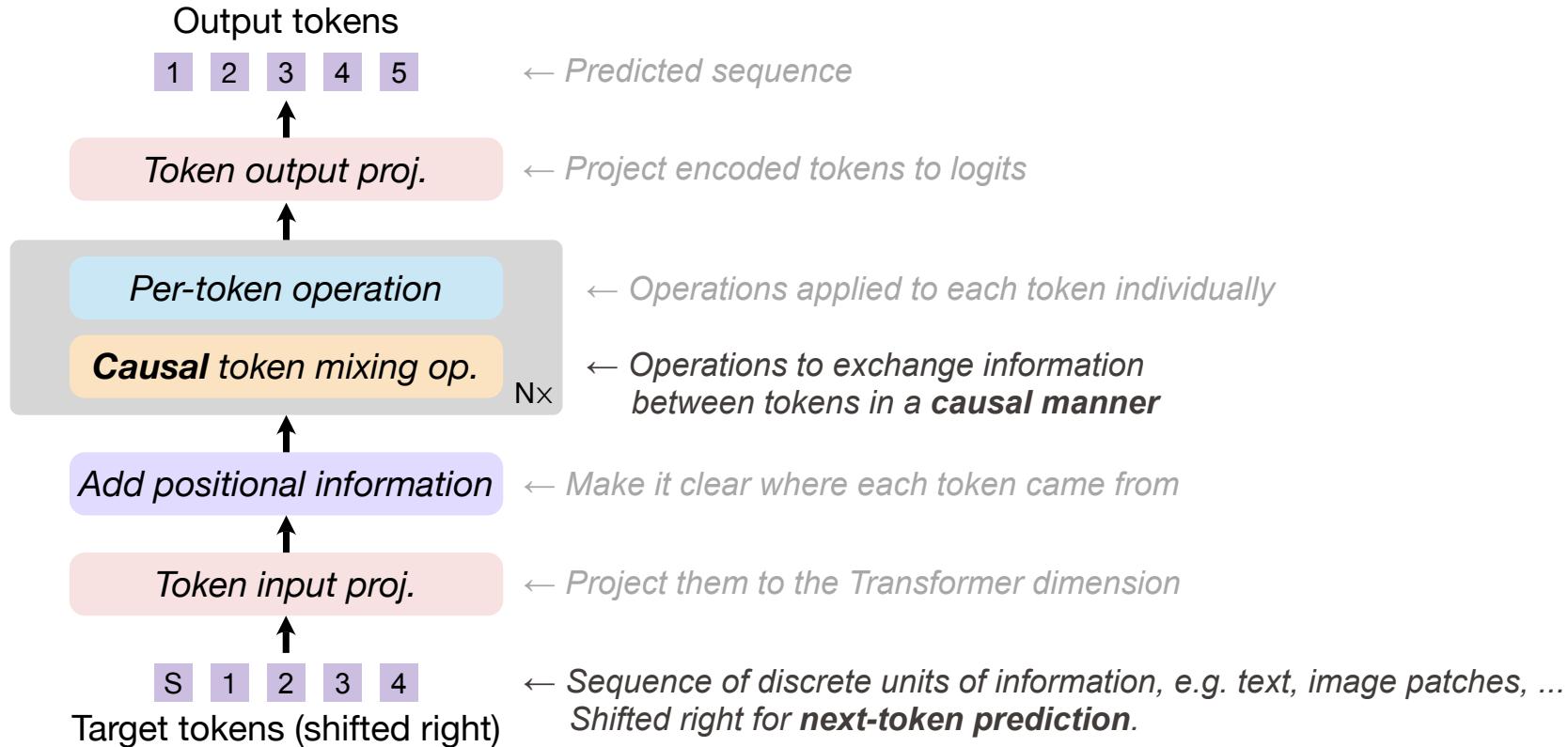
"Encoder-only" Transformer



Common Transformer types

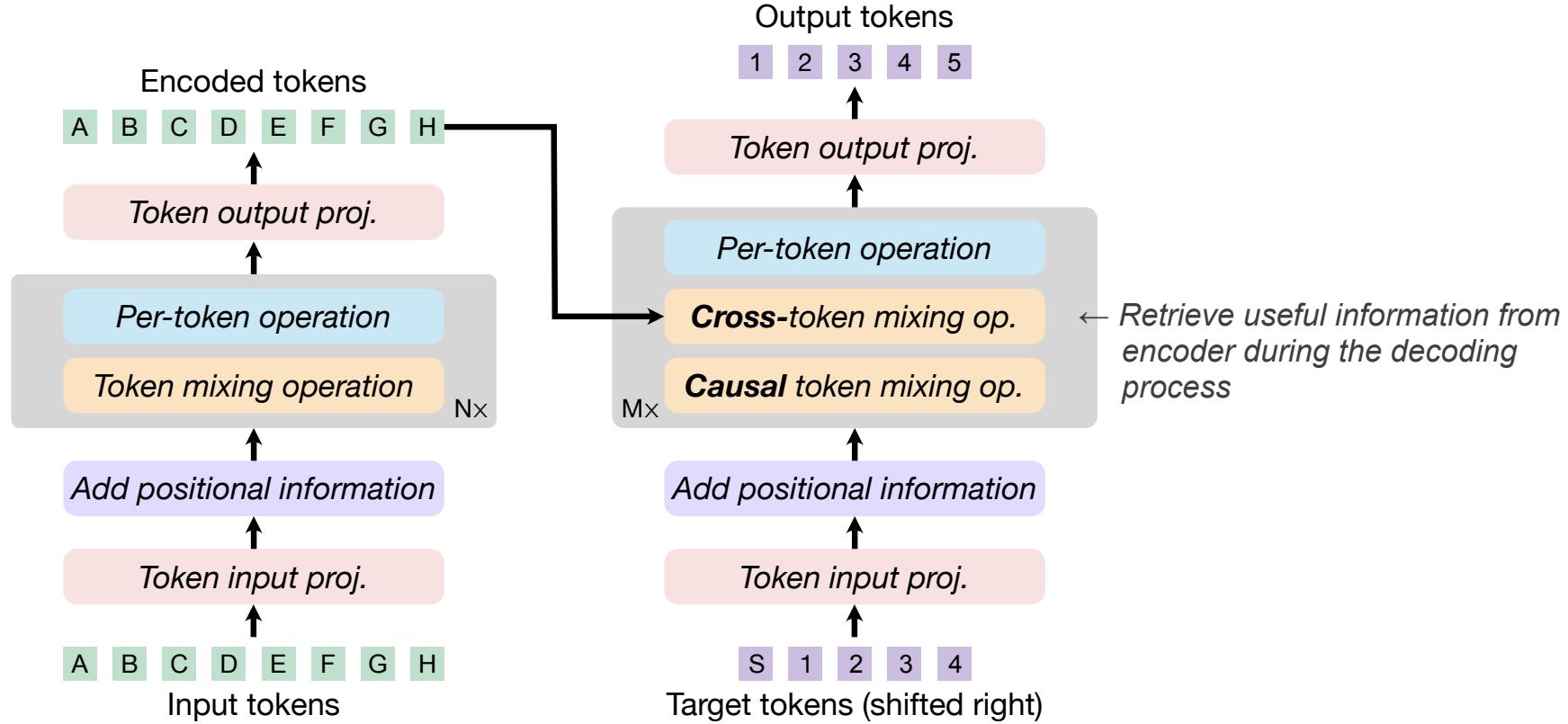
"Decoder-only" Transformer

(Also: "GPT", "Causal Transformer", "Autoregressive Transformer", "Teacher forcing")

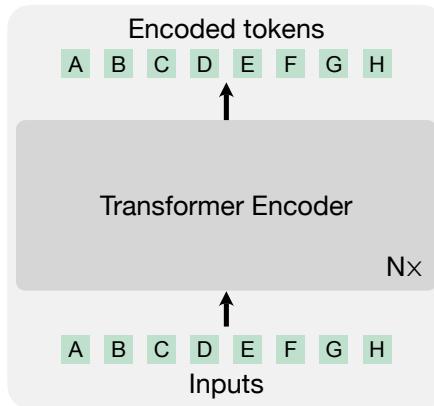


Common Transformer types

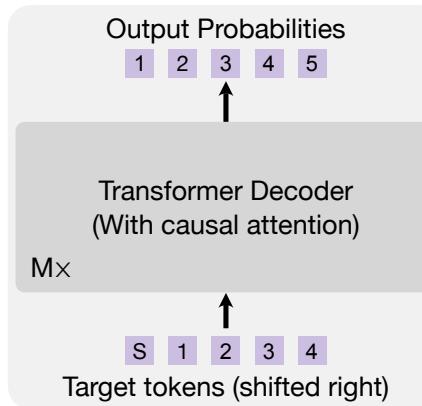
"Encoder-Decoder" Transformer



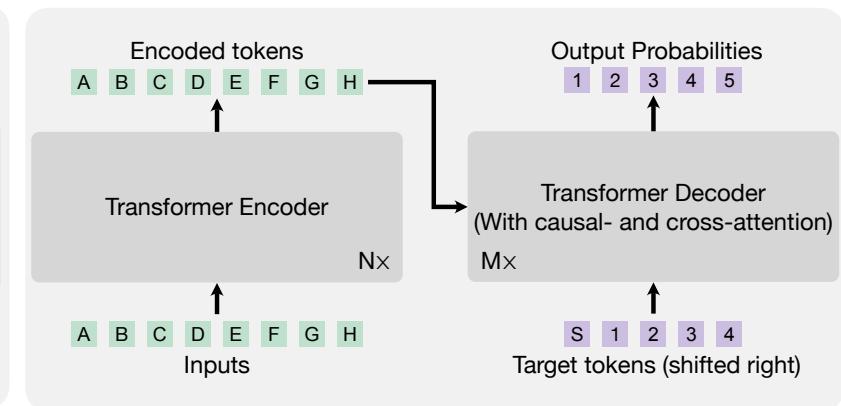
“Encoder-only”



“Decoder-only”



“Encoder-decoder”



Encoding & masking

(*E.g. ViT, BERT, MaskGIT, etc...*)

Next-token prediction

(*E.g. GPT, LLaMaGen, etc...*)

Sequence-to-sequence

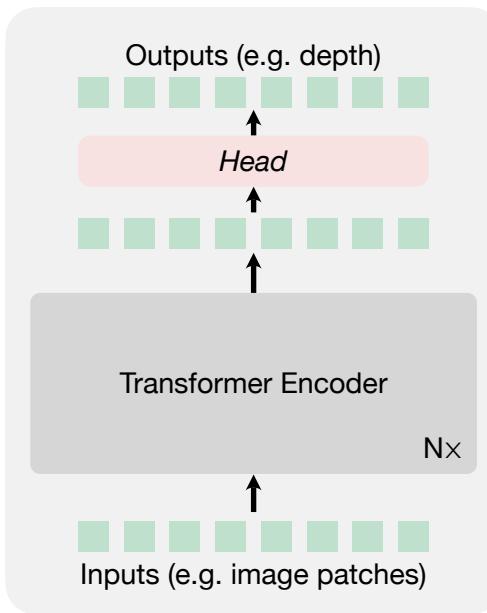
(*E.g. T5, 4M, Unified-IO, etc...*)

Common Transformer training schemes

As a vision backbone...

... for classification, SSL, etc.

... for dense prediction tasks



Outputs (e.g. class)

Head

Pooling

Transformer Encoder

Outputs (e.g. class)

Head

Transformer Encoder

Nx

Inputs (e.g. image patches)

Transformer Encoder

Transformer Encoder

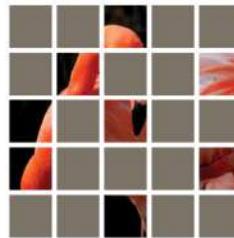
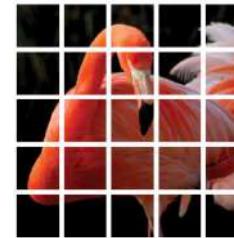
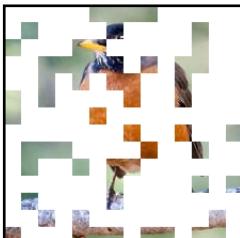
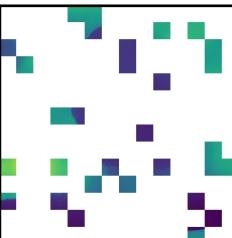
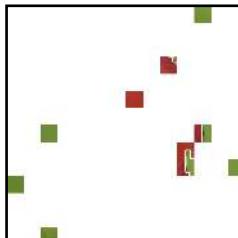
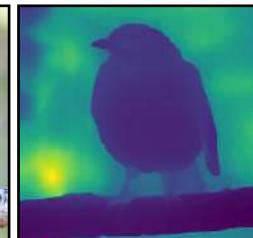
Nx

[CLS] Inputs (e.g. image patches)

Masked training

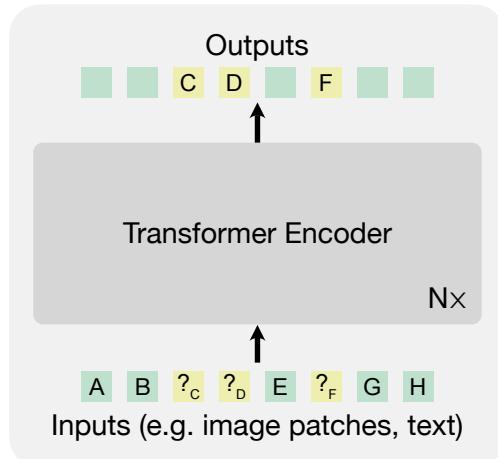
"I love drinking [MASK]
tea when it's hot outside."

"iced"

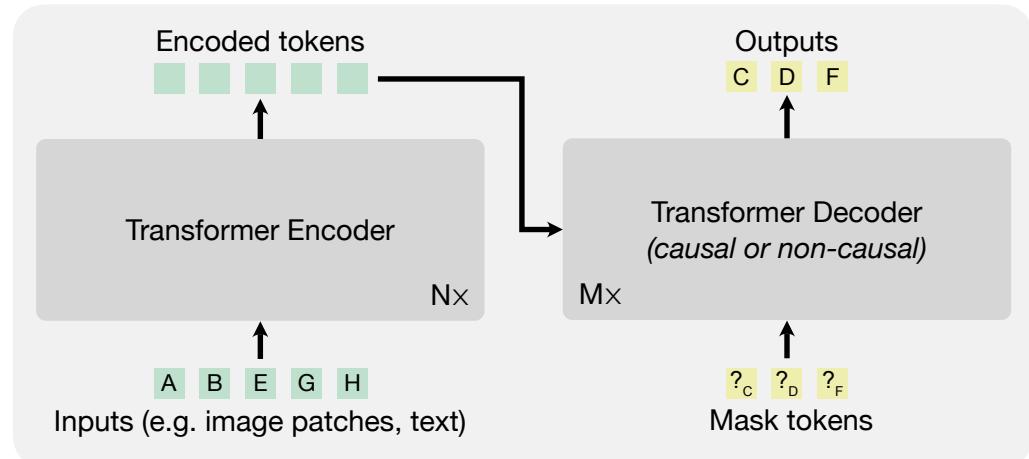


Masked training

Masked modeling with
"Encoder-only" Transformer



Masked modeling with
"Encoder-Decoder" Transformer



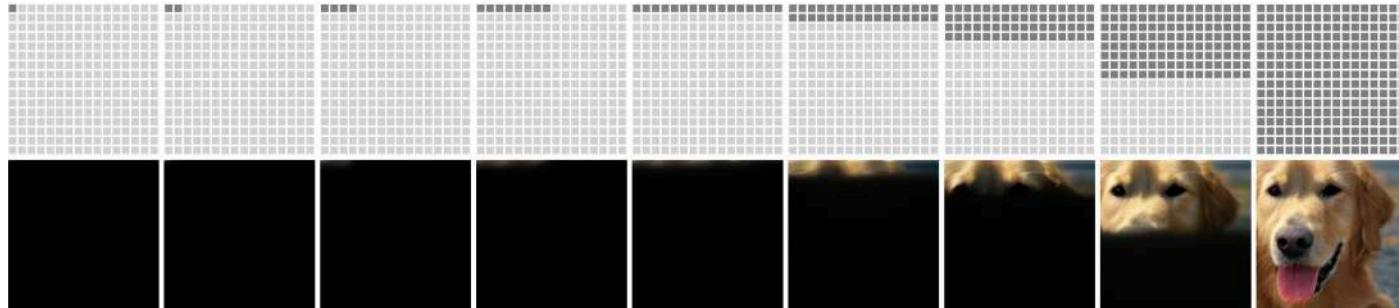
? = mask token (learnable placeholder token)

Autoregressive training / next token prediction

Task	Example sentence in pre-training that would teach that task
Grammar	In my free time, I like to {code, banana}
Lexical semantics	I went to the store to buy papaya, dragon fruit, and {durian, squirrel}
World knowledge	The capital of Azerbaijan is {Baku, London}
Sentiment analysis	Movie review: I was engaged and on the edge of my seat the whole time. The movie was {good, bad}
Translation	The word for "pretty" in Spanish is {bonita, hola}
Spatial reasoning	Iroh went into the kitchen to make tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the {kitchen, store}
Math question	Arithmetic exam answer key: $3 + 8 + 4 = \{15, 11\}$

[millions more] Extreme multi-task learning!

[Stanford CS25: V4 | Jason Wei & Hyung Won Chung of OpenAI]



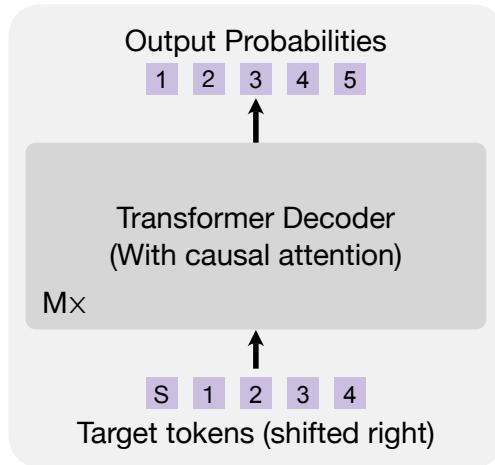
Autoregressive training / next token prediction

We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.

""	→	" "
" "	→	"love"
"I love"	→	"drinking"
"I love drinking"	→	"iced"
"I love drinking iced"	→	"tea"
"I love drinking iced tea"	→	"when"
"I love drinking iced tea when"	→	"it's"
"I love drinking iced tea when it's"	→	"hot"
"I love drinking iced tea when it's hot"	→	"outside"

Autoregressive training / next token prediction

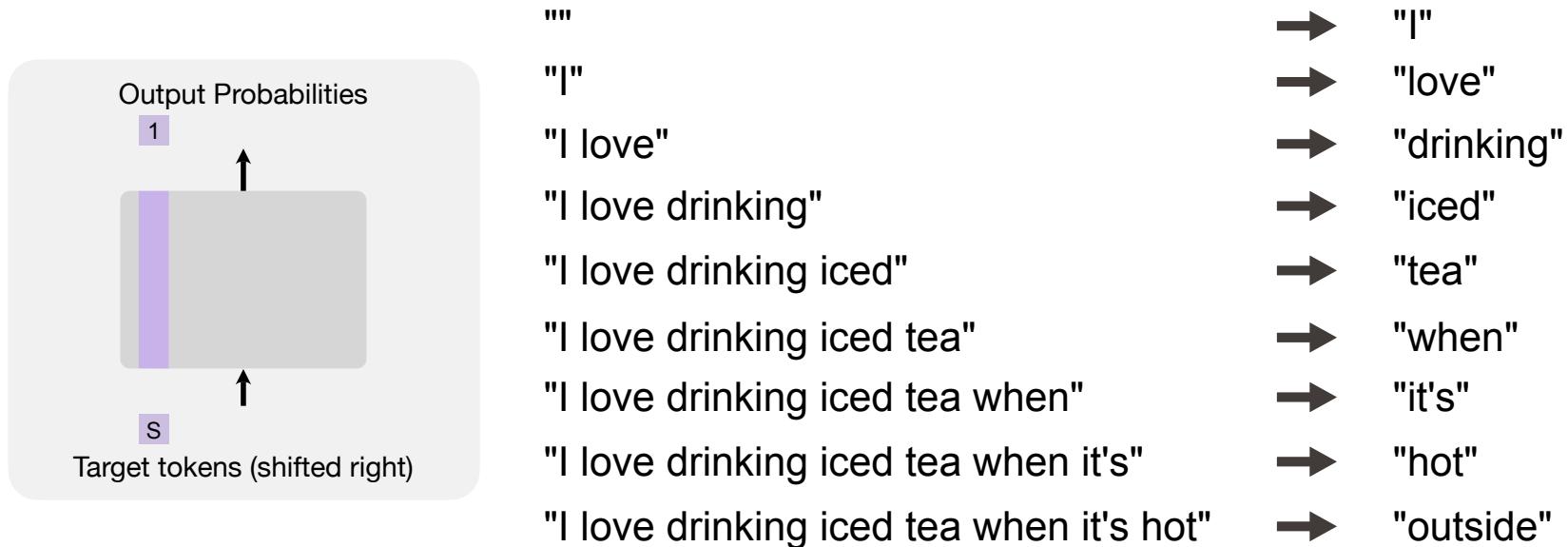
We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.



"" → |
"I" → "love"
"I love" → "drinking"
"I love drinking" → "iced"
"I love drinking iced" → "tea"
"I love drinking iced tea" → "when"
"I love drinking iced tea when" → "it's"
"I love drinking iced tea when it's" → "hot"
"I love drinking iced tea when it's hot" → "outside"

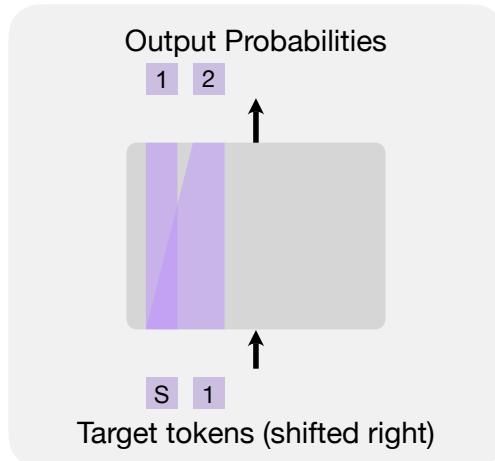
Autoregressive training / next token prediction

We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.



Autoregressive training / next token prediction

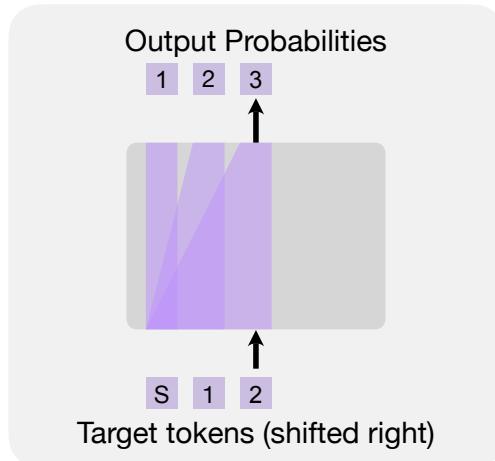
We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.



"" → "!"
"!" → "love"
"I love" → "drinking"
"I love drinking" → "iced"
"I love drinking iced" → "tea"
"I love drinking iced tea" → "when"
"I love drinking iced tea when" → "it's"
"I love drinking iced tea when it's" → "hot"
"I love drinking iced tea when it's hot" → "outside"

Autoregressive training / next token prediction

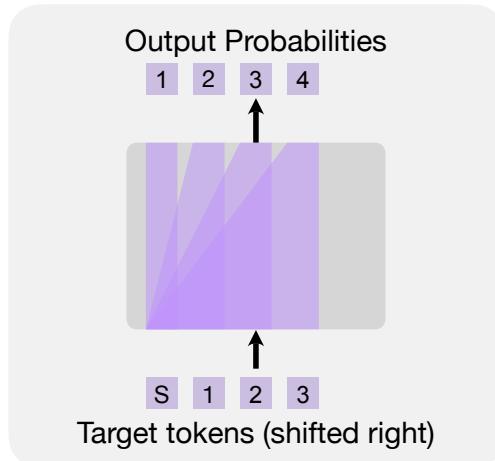
We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.



"" → "I"
"I" → "love"
"I love" → "drinking"
"I love drinking" → "iced"
"I love drinking iced" → "tea"
"I love drinking iced tea" → "when"
"I love drinking iced tea when" → "it's"
"I love drinking iced tea when it's" → "hot"
"I love drinking iced tea when it's hot" → "outside"

Autoregressive training / next token prediction

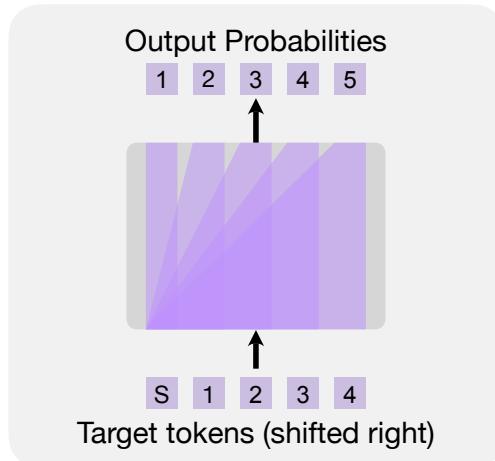
We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.



"" → "I"
"I" → "love"
"I love" → "drinking"
"I love drinking" → "iced"
"I love drinking iced" → "tea"
"I love drinking iced tea" → "when"
"I love drinking iced tea when" → "it's"
"I love drinking iced tea when it's" → "hot"
"I love drinking iced tea when it's hot" → "outside"

Autoregressive training / next token prediction

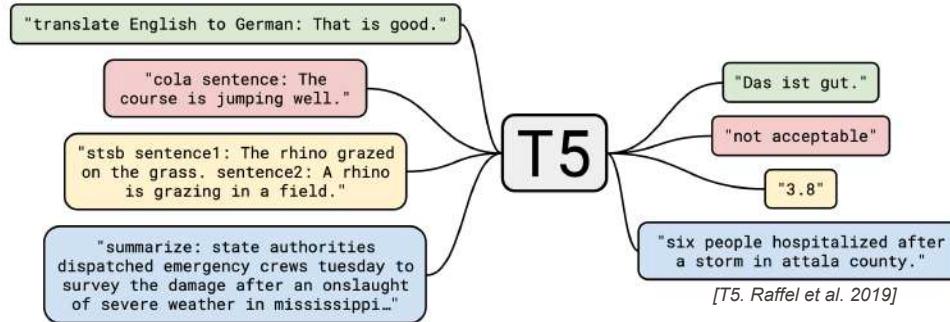
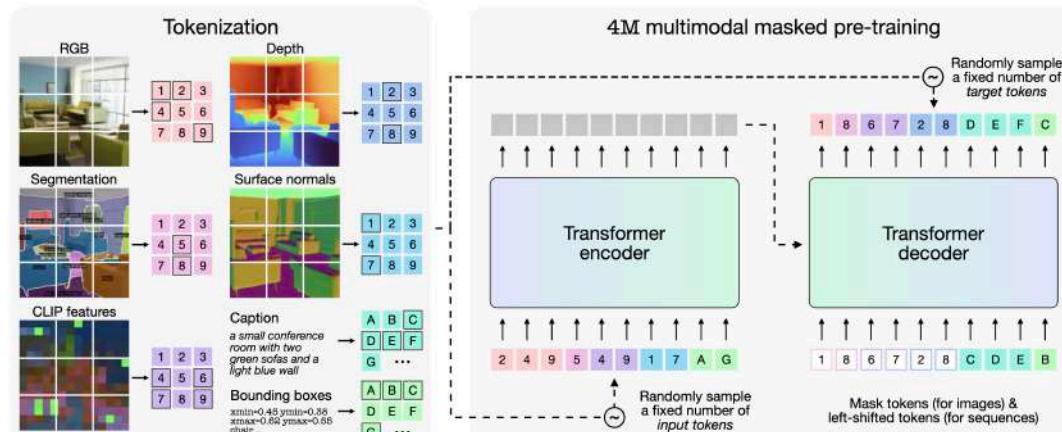
We model $p(x_{i+1} | x_1, \dots, x_i)$ with a single model.



"" → "I"
"I" → "love"
"I love" → "drinking"
"I love drinking" → "iced"
"I love drinking iced" → "tea"
"I love drinking iced tea" → "when"
"I love drinking iced tea when" → "it's"
"I love drinking iced tea when it's" → "hot"
"I love drinking iced tea when it's hot" → "outside"

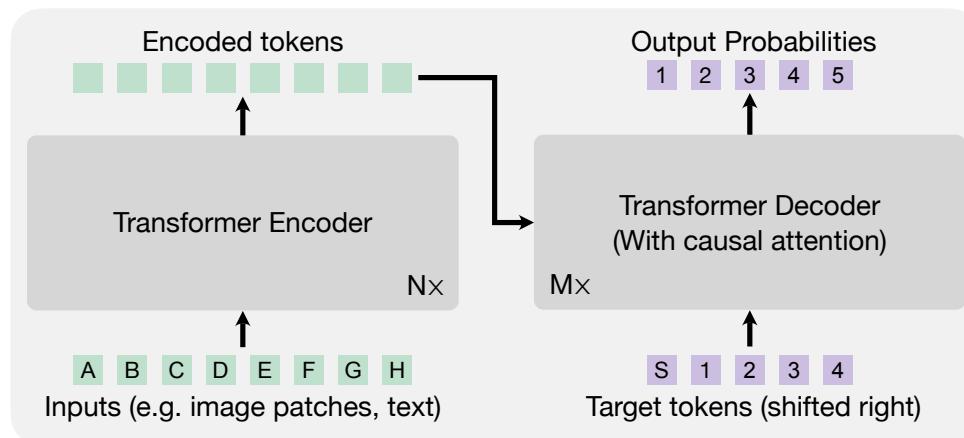
Common Transformer training schemes

Sequence to sequence (seq2seq)

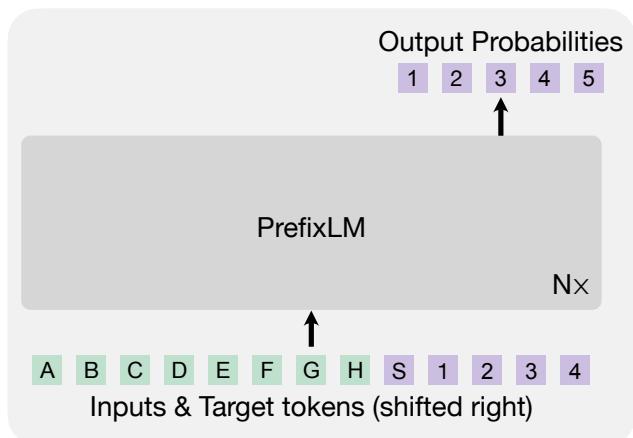


Sequence to sequence (seq2seq)

With an "Encoder-Decoder" Transformer

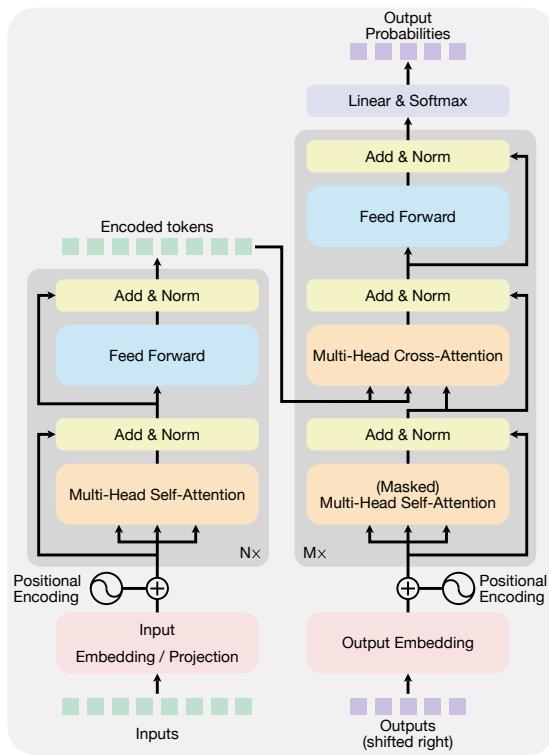


With a "Decoder-only" Transformer and "PrefixLM" attention mask



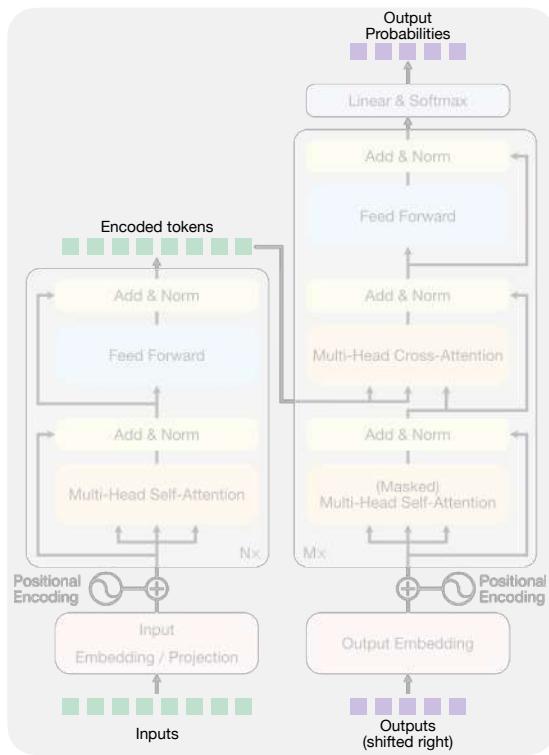
Attention is all
you need

Transformer I/O and overview



Generic sequence to sequence architecture

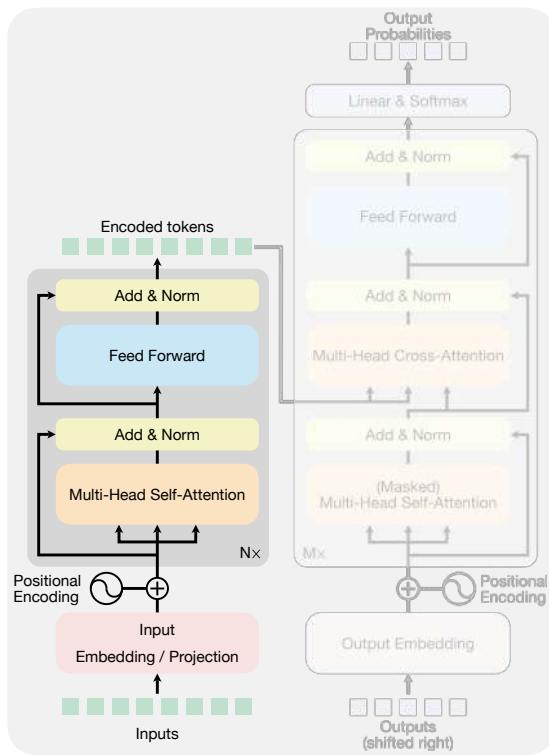
Transformer I/O and overview



Generic sequence to sequence architecture:

- **Input:** sequence of N_{in} tokens
- **Target:** sequence of N_{out} tokens

Transformer I/O and overview



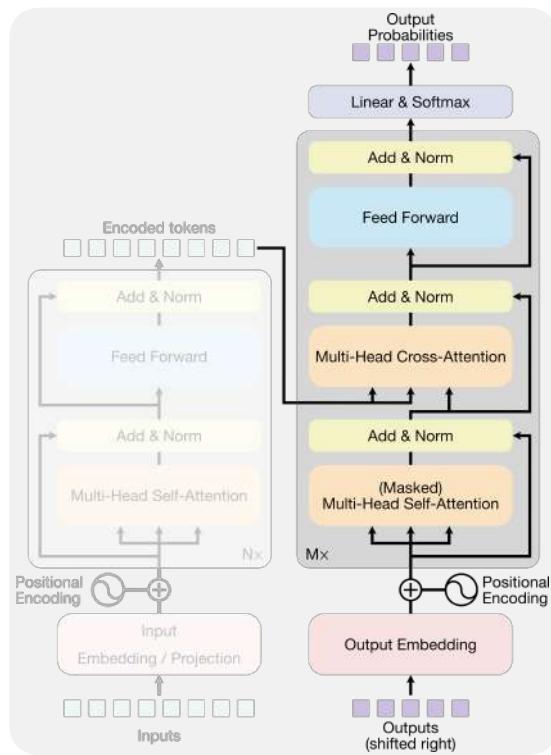
Generic sequence to sequence architecture:

- **Input:** sequence of N_{in} tokens
- **Target:** sequence of N_{out} tokens

Split into Encoder and Decoder:

- **Encoder:** Processes input tokens with alternating self-attention and feed forward layers

Transformer I/O and overview



Generic sequence to sequence architecture:

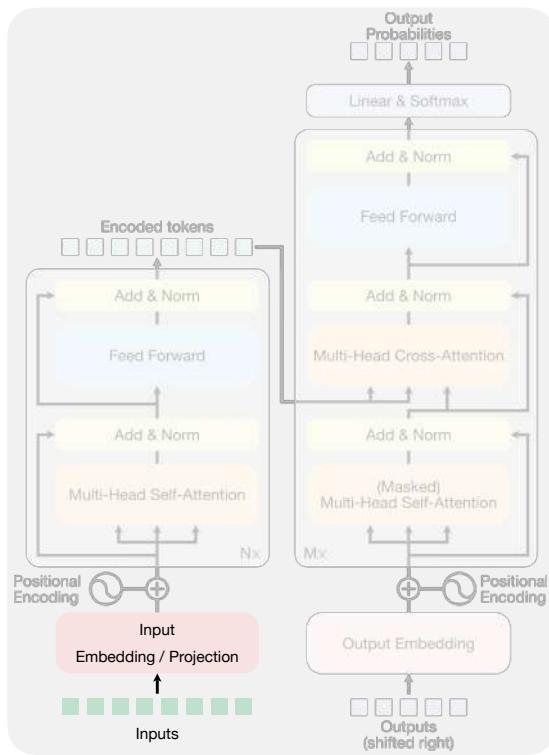
- **Input:** sequence of N_{in} tokens
- **Target:** sequence of N_{out} tokens

Split into Encoder and Decoder:

- **Encoder:** Processes input tokens with alternating self-attention and feed forward layers
- **Decoder:** Generates outputs, conditioned on encoded tokens (via cross-attention)

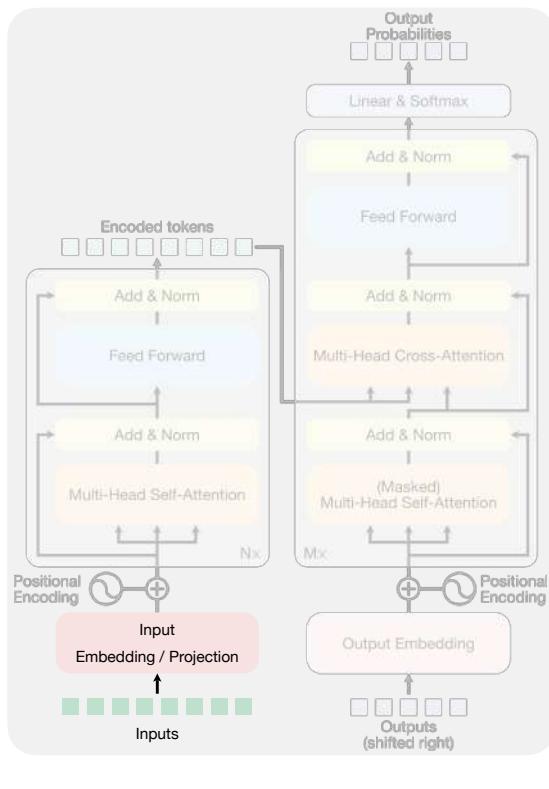
NB: We'll also discuss "encoder-only" and "decoder-only" architectures.

Tokenization and embeddings



- Transformers operate on sequences / sets of tokens
- Each token is a vector of dimension d_{model}
- How to bring data into this format?

Tokenization and embeddings

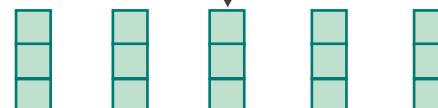


Tokenization depends on modalities used:

- Text → characters / words / sub words → learned embeddings
- Images → patches → linear projection

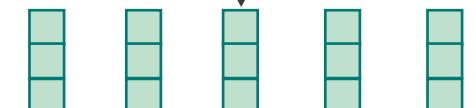
Attention is all you need

Learned embeddings

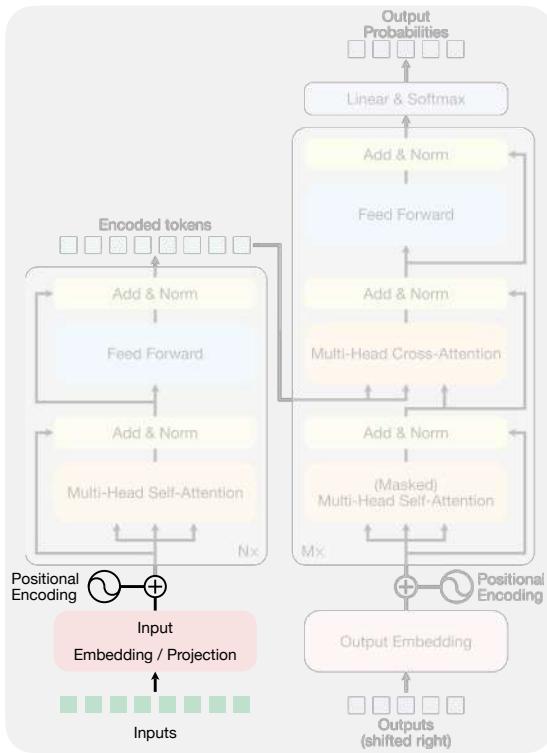


Patching & flattening

Linear projection

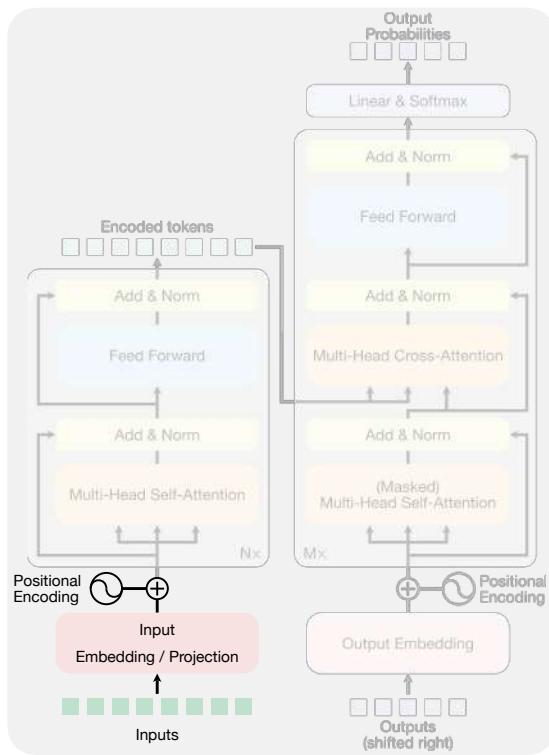


Positional embeddings

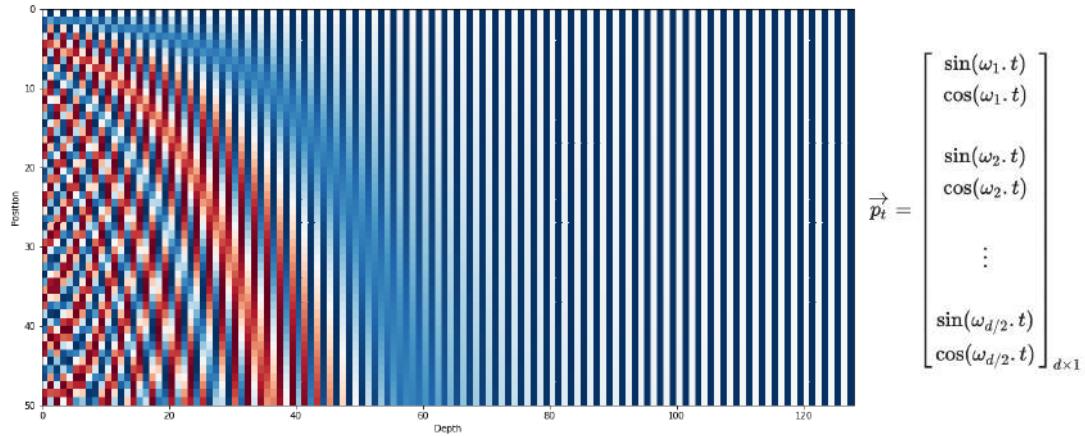


- Attention is permutation invariant, but often our data is not!
- To each token, add unique “positional” encoding vectors
- Learned or hand-engineered (e.g. sinusoidal)
- Format depends on the data:
 - 1D for sequences
 - 2D embeddings for images
 - 3D embeddings for videos
 - Modality-specific embeddings to distinguish sources

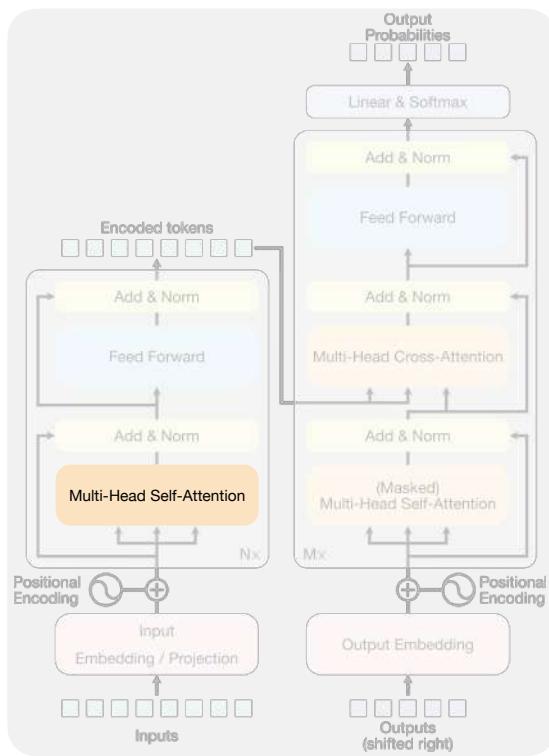
Positional embeddings



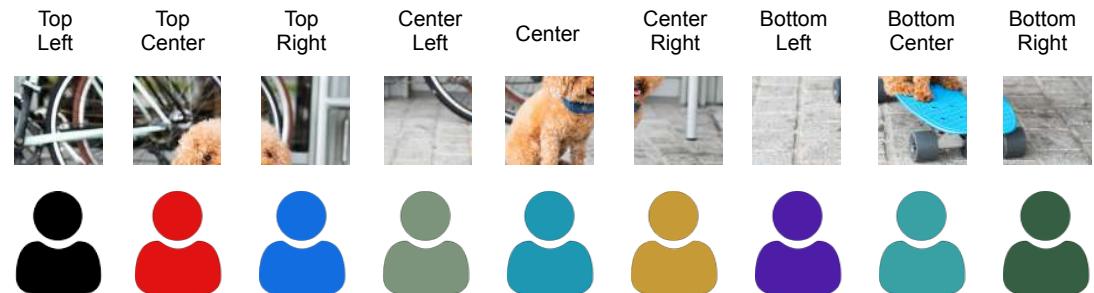
Example: 128-dimensional embedding for maximum sequence length 50. Each row represents the embedding vector p_t .



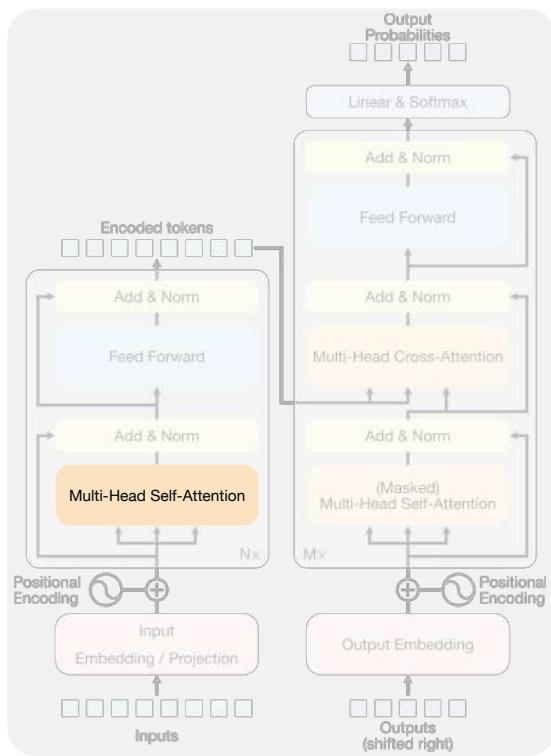
Attention motivation



Goal:
Figure out what's
in the image



Attention motivation



Q: Is there some grey
at the bottom?

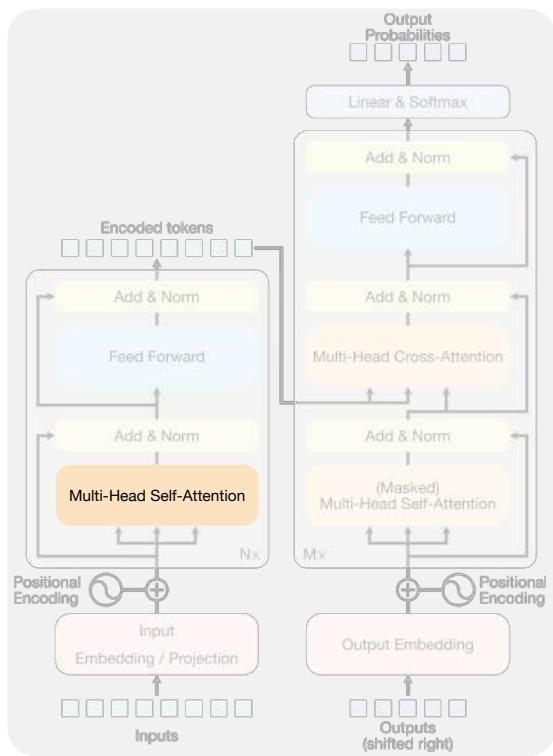
No clue.
There's some black and white here
(but I'm at the top).

Kind of.
There's some blue and some grey.

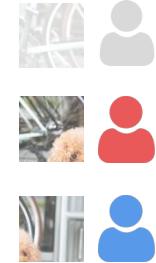
Yes!
There's grey everywhere.

...

Attention motivation



Q: Do you see some fur anywhere?

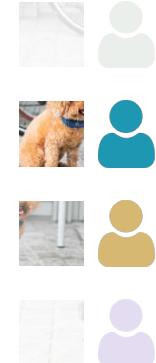
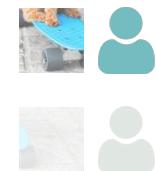


Yes!
There's fur all over this patch.

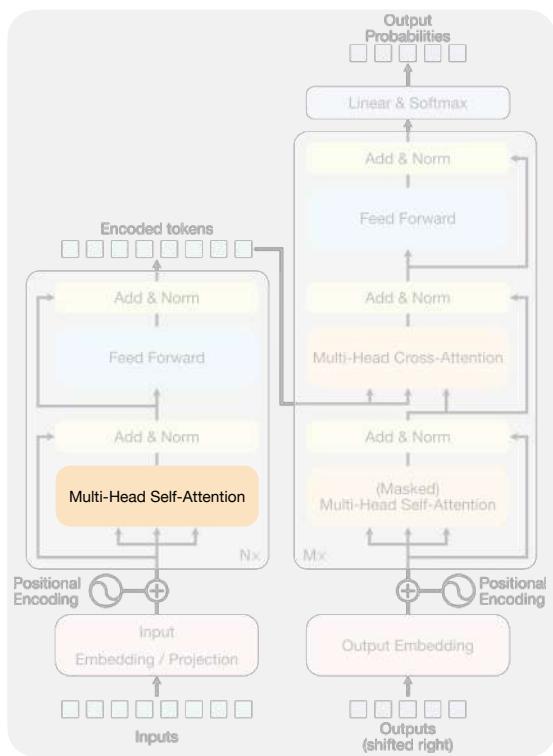
Not at all.
I mostly see pavement.

Kind of.
I see a bit of fur on my bottom left.

...



Attention motivation



Q: Do you know what's
on my left?

No clue.

I see some eyes and ears
(but I'm not on your left).

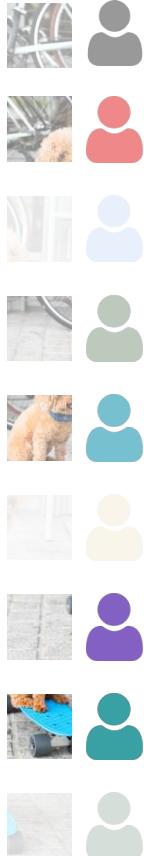
I do!

**I see a skateboard and some
fluffy legs.**

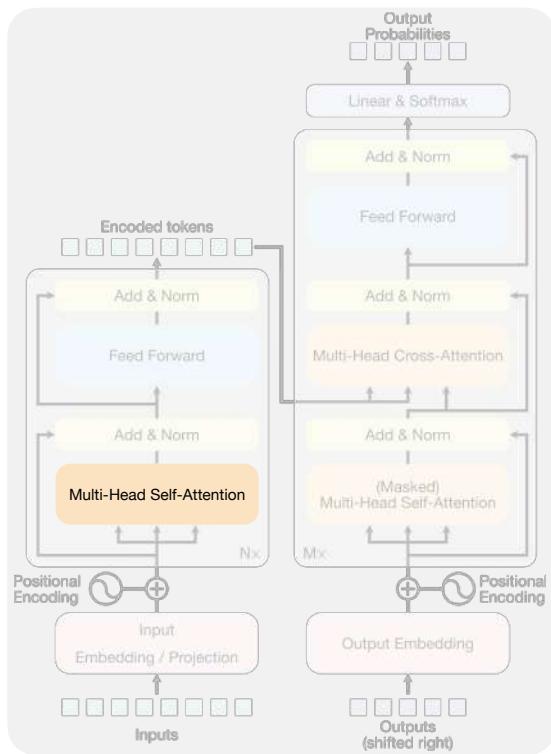
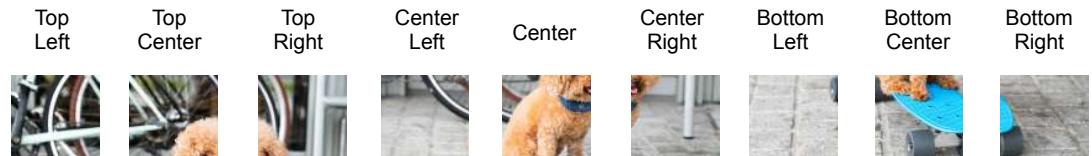
I somewhat do.

I see a lot of pavement.

...

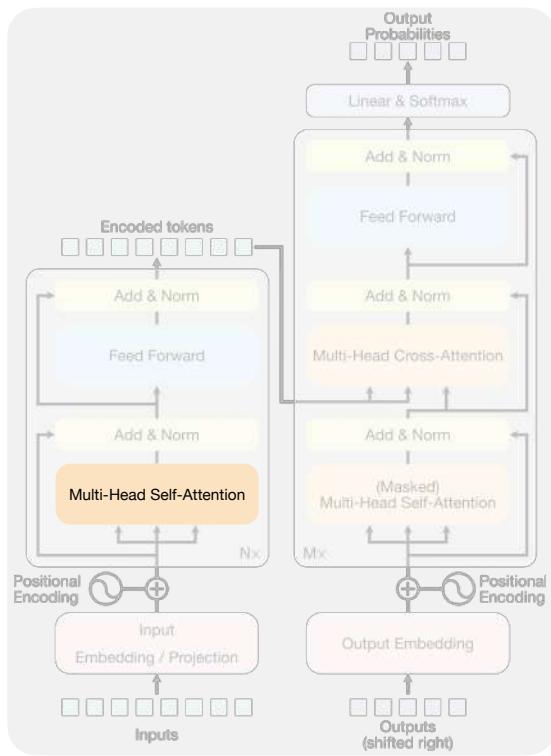


Attention motivation

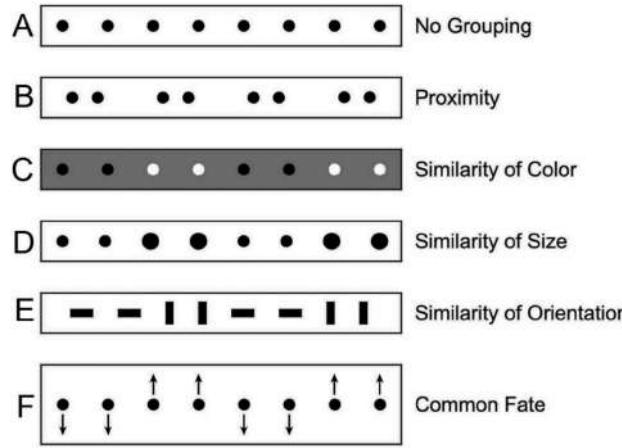


A small dog riding a skateboard in front of a building.

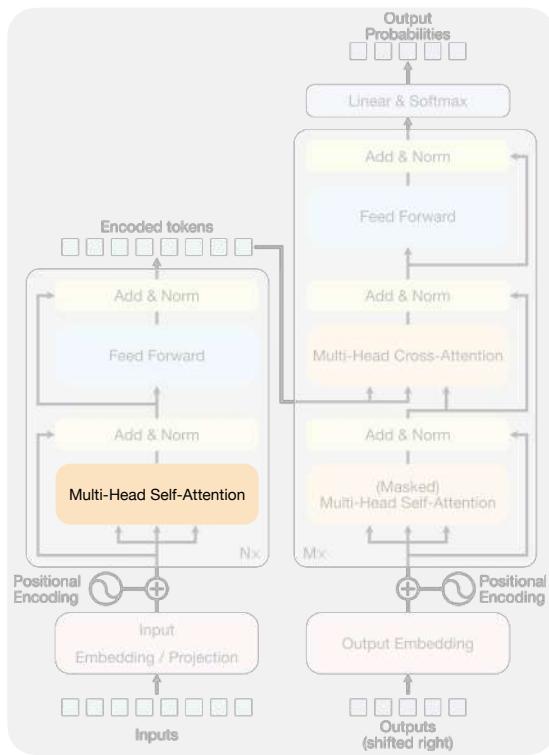
Attention motivation



Organize / group visual stimuli through selective attention



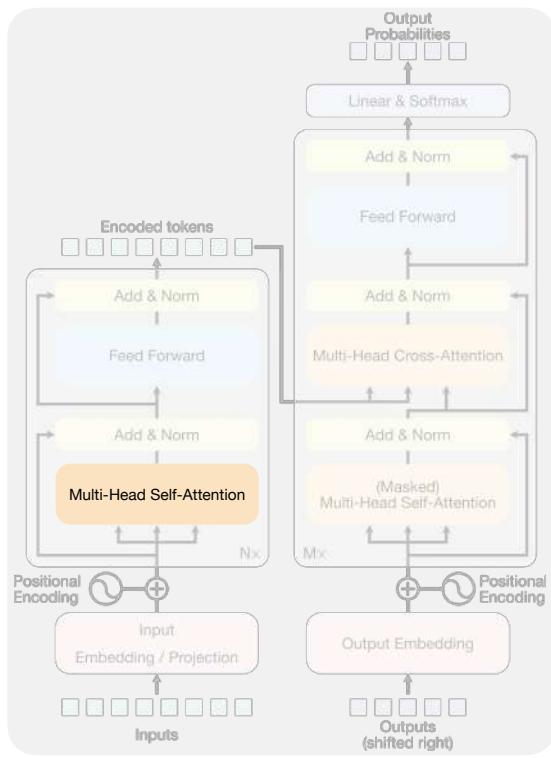
Different forms of attention



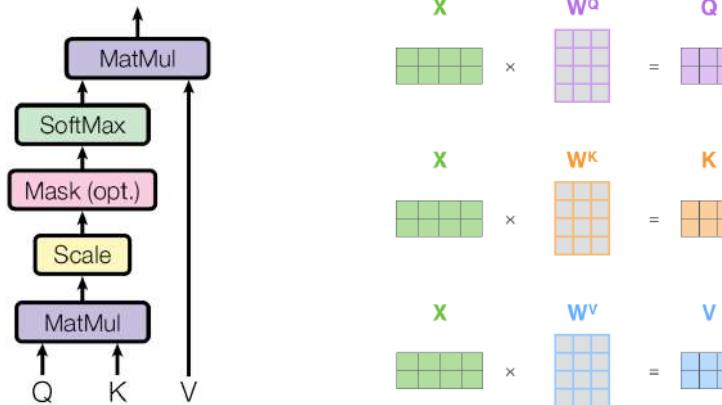
- Many types of alignment score functions to compute attention
- We'll focus on scaled dot-product attention

Name	Alignment score function	Citation
Content-base attention	$\text{score}(s_t, \mathbf{h}_i) = \text{cosine}[s_t, \mathbf{h}_i]$	Graves2014
Additive(*)	$\text{score}(s_t, \mathbf{h}_i) = \mathbf{v}_a^\top \tanh(\mathbf{W}_a[s_t; \mathbf{h}_i])$	Bahdanau2015
Location-Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a s_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$\text{score}(s_t, \mathbf{h}_i) = s_t^\top \mathbf{W}_a \mathbf{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\text{score}(s_t, \mathbf{h}_i) = s_t^\top \mathbf{h}_i$	Luong2015
Scaled Dot-Product(^)	$\text{score}(s_t, \mathbf{h}_i) = \frac{s_t^\top \mathbf{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Scaled dot-product attention

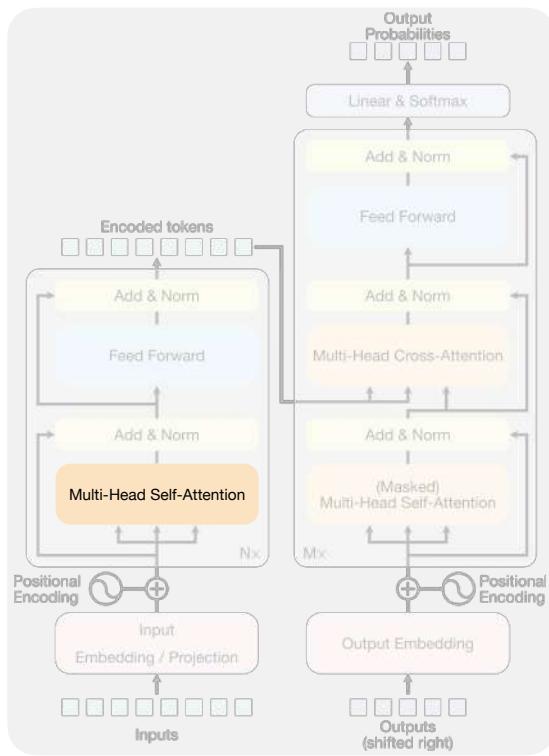


Attention = “*averaging of values associated to keys matching a query*”

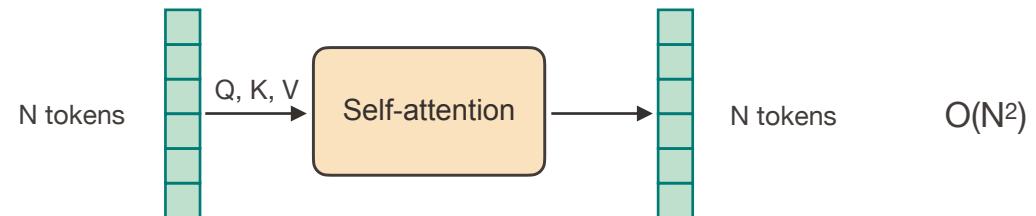


$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

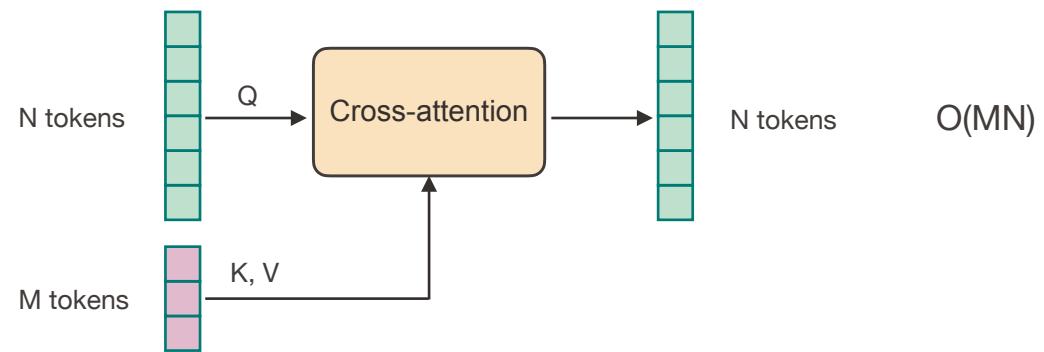
Scaled dot-product attention



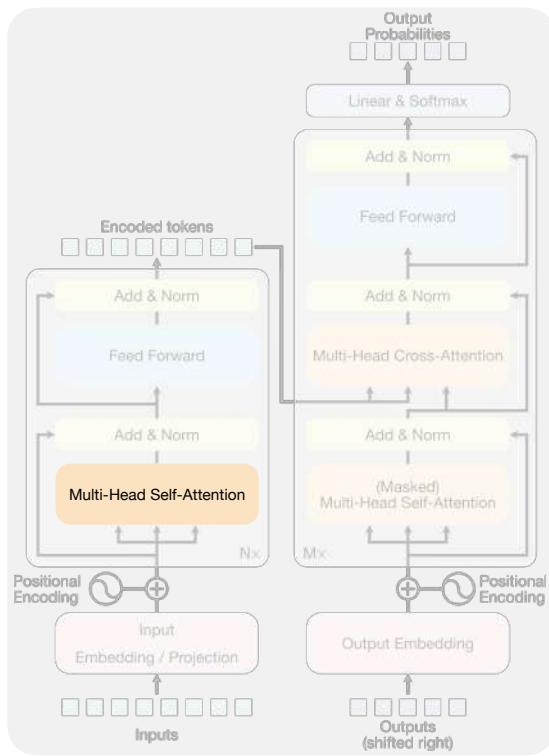
- **Self-attention:** Attention from each token to all other tokens



- **Cross-attention:** Attention from one set of tokens to another set of tokens

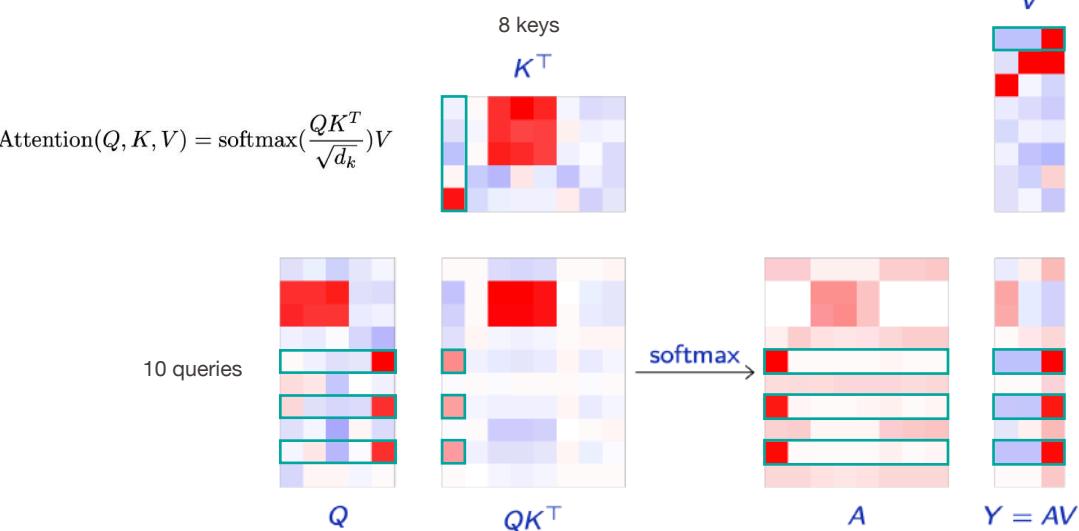


Scaled dot-product attention

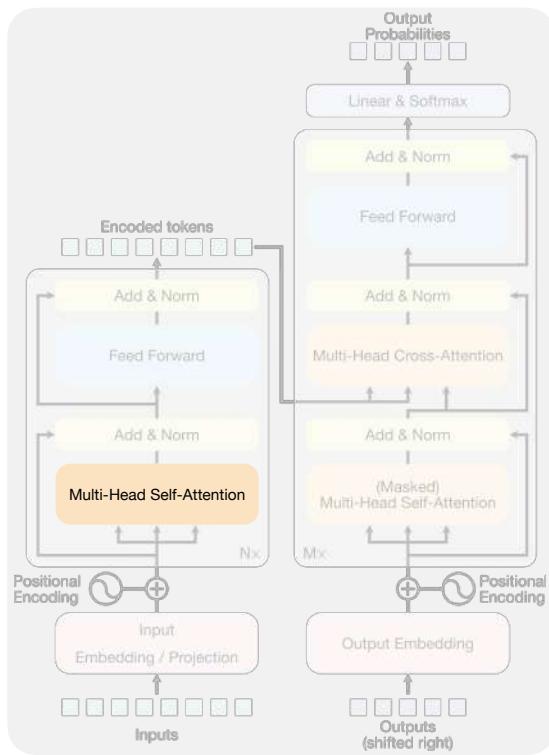


Attention = “*averaging of values associated to keys matching a query*”

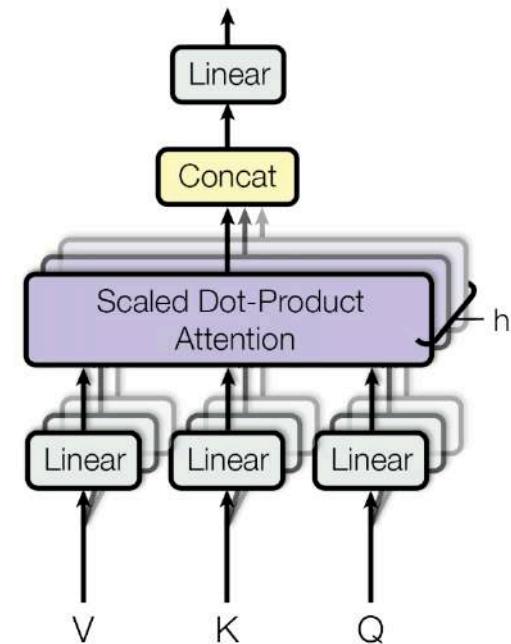
Example: Cross-attention from 10 queries to 8 keys



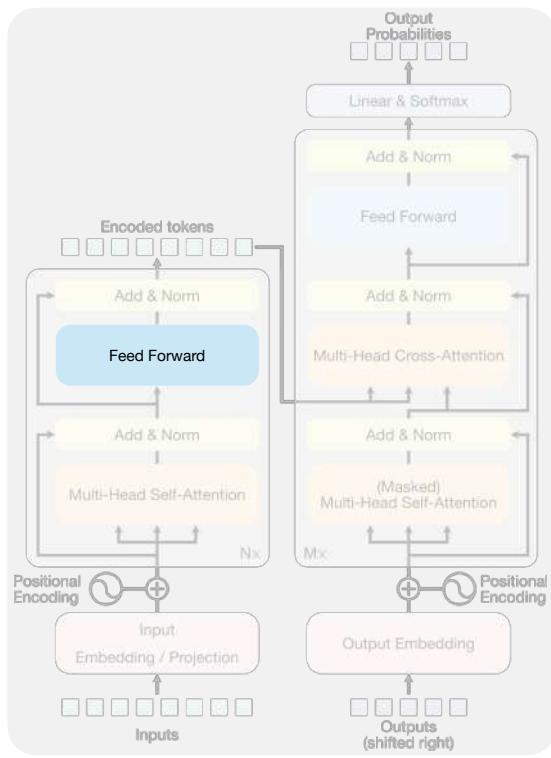
Multi-headed Self-Attention



“multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this.”

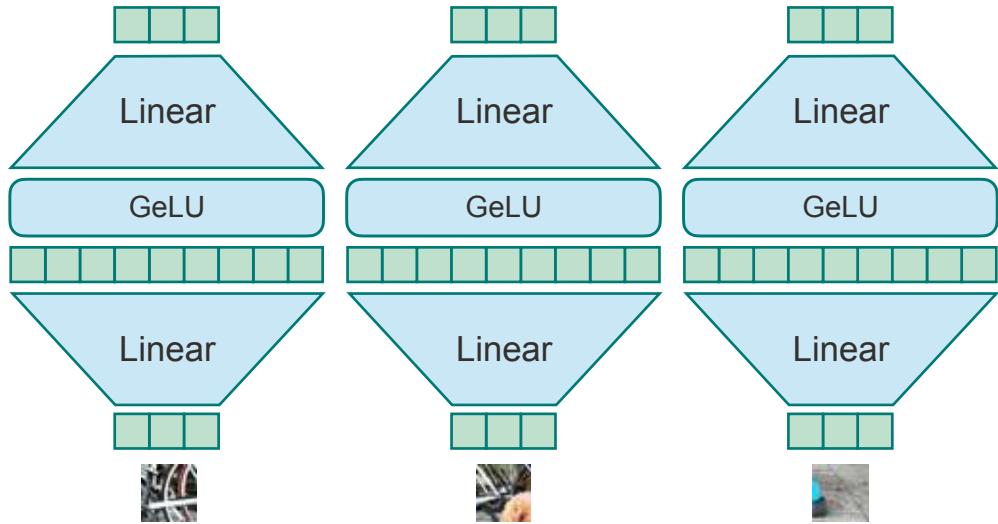


Feed-forward layers



An MLP applied to each token individually (“point-wise”):

$$\text{FF}(x) = W_2 \text{GeLU}(W_1 x + b_1) + b_2$$

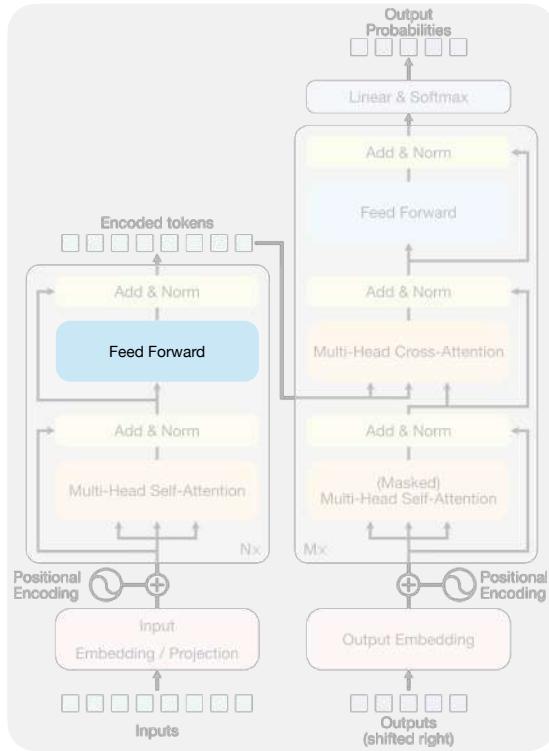
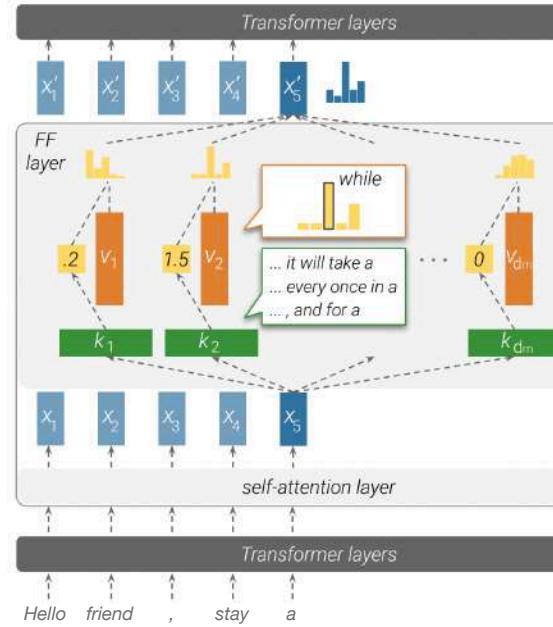
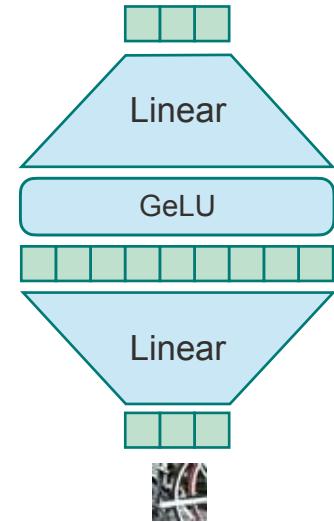


Contains the bulk of parameters!

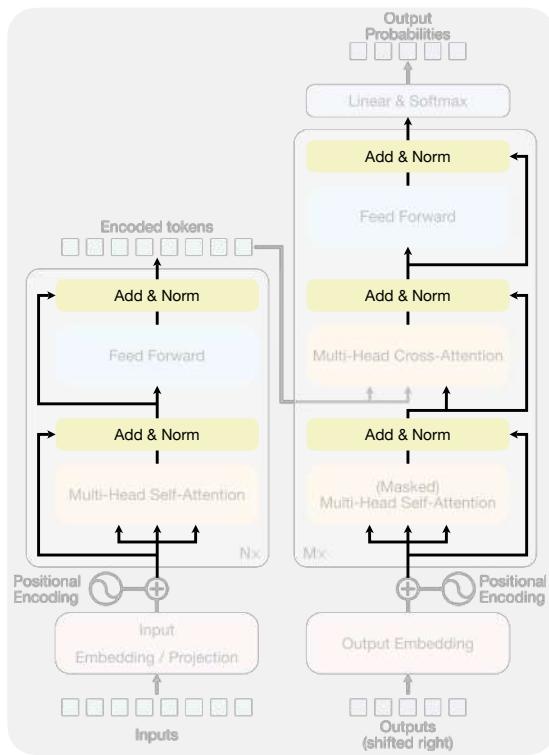
Feed-forward layers

Can be interpreted as key-value memory:

$$\text{FF}(x) = f(x \cdot K^\top) V \quad (\text{omitting bias})$$

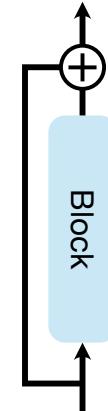


Skip connections & normalization



Skip connections:

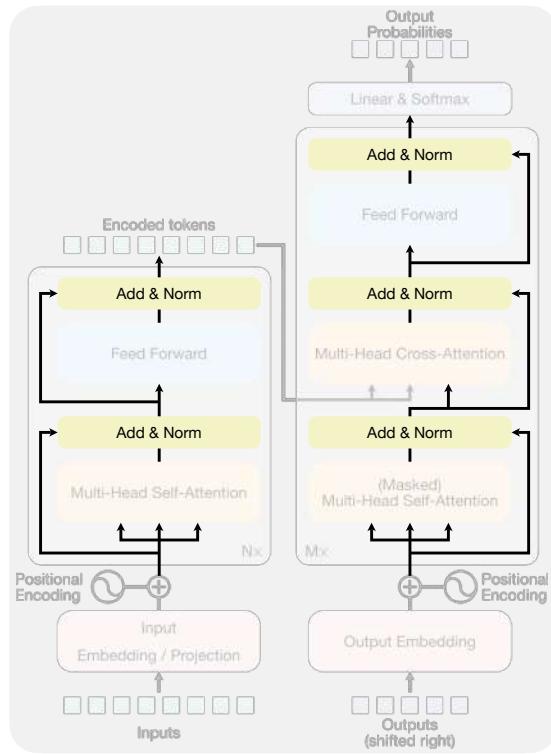
- $z_i = \text{Module}(x_i) + x_i$
- Following ResNets, dramatically improves trainability



LayerNorm:

- Dramatically improves trainability
- Post-norm (original): $z_i = \text{LN}(\text{Module}(x_i) + x_i)$
- Pre-norm (modern): $z_i = \text{Module}(\text{LN}(x_i)) + x_i$
- Sandwich norm: Pre-norm + post-norm

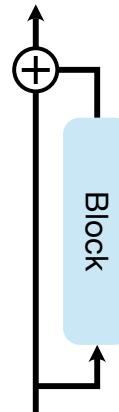
Residual stream perspective



Skip connections:

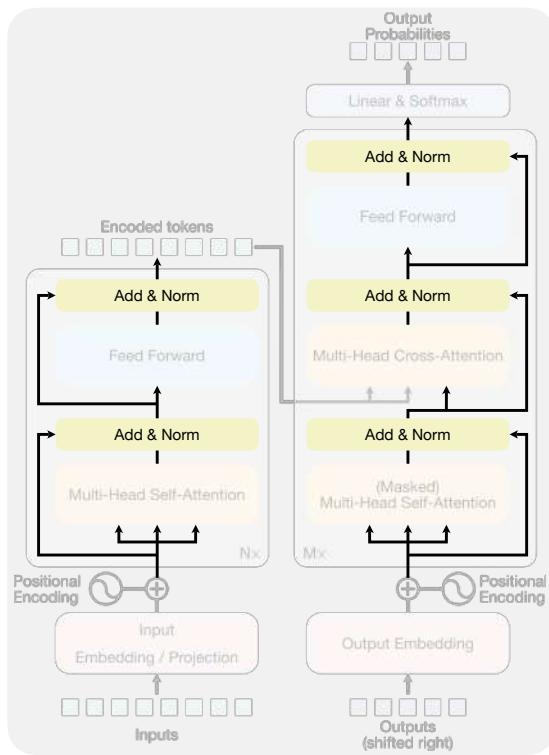
- $z_i = \text{Module}(x_i) + x_i$
- Following ResNets, dramatically improves trainability

“Skip connection”

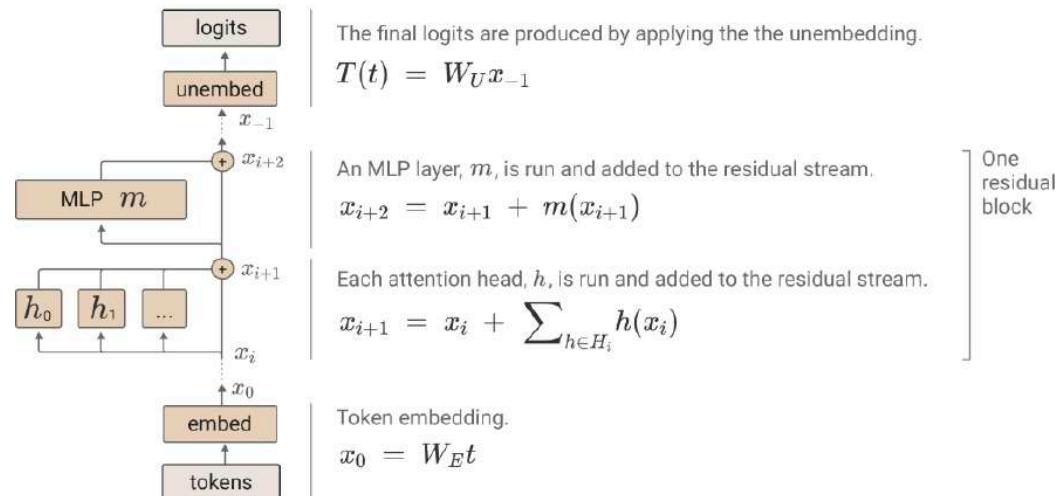


“Residual block”

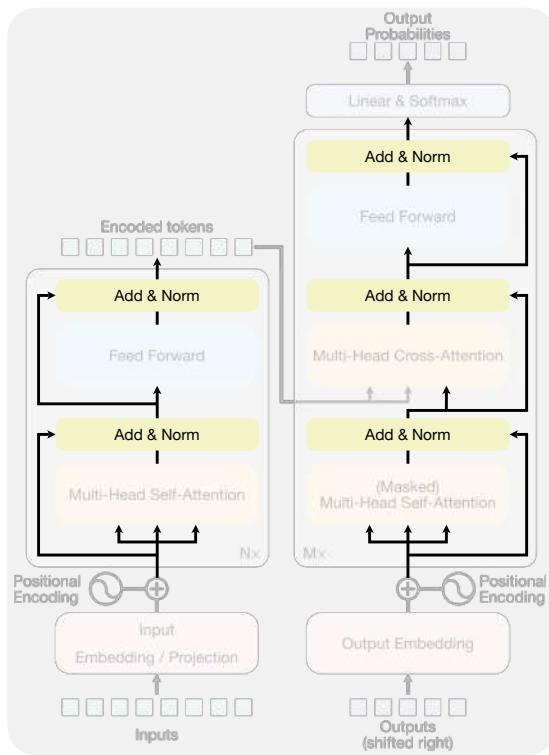
Residual stream perspective



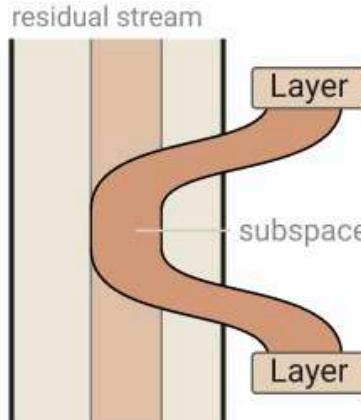
All components of a transformer communicate with each other by reading and writing to different subspaces of the residual stream



Residual stream perspective



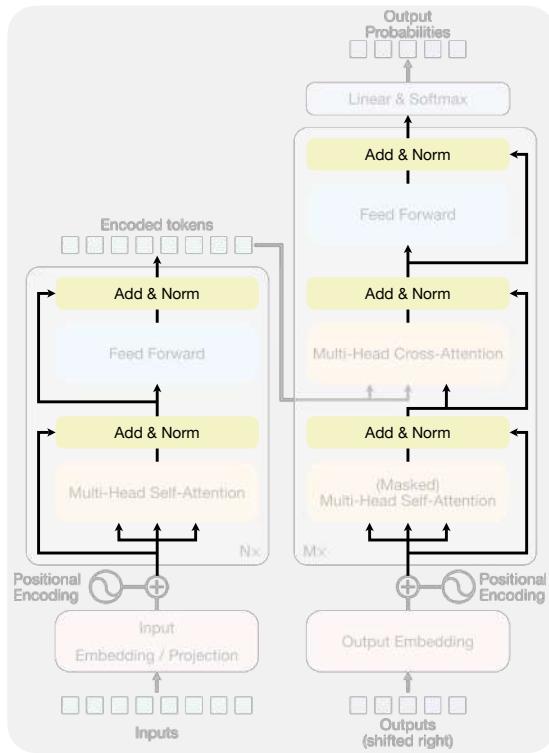
Residual stream is high dimensional and can be divided into different subspaces



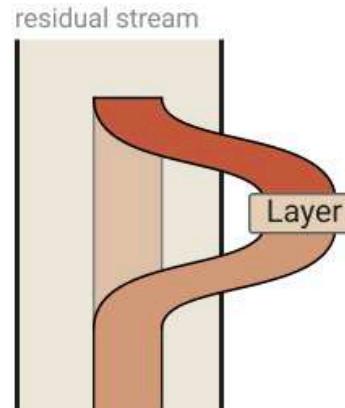
EPFL

Attention Is All You Need [Vaswani et al. 2017]

Residual stream perspective

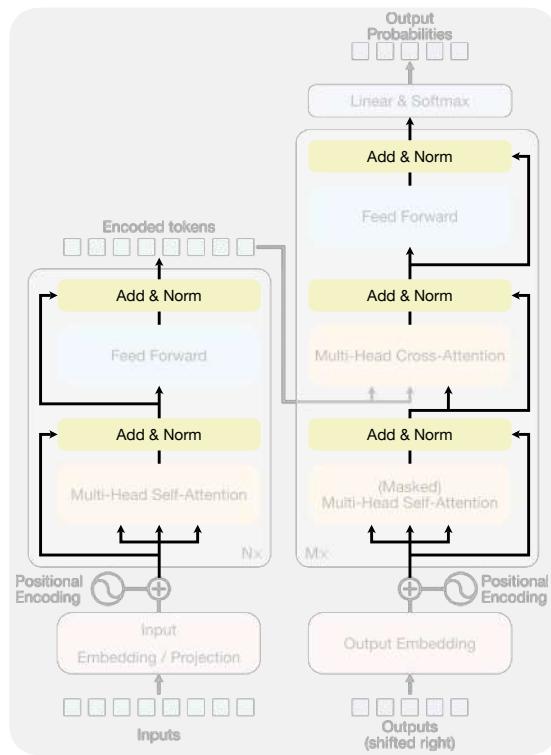


Memory management: Residual stream subspaces can be cleared



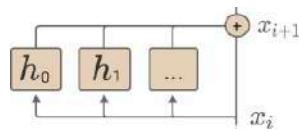
Layers can delete information from the residual stream by reading in a subspace and then writing the negative version.

Residual stream perspective



Attention heads can be understood as independent operations, each outputting a result which is added into the residual stream

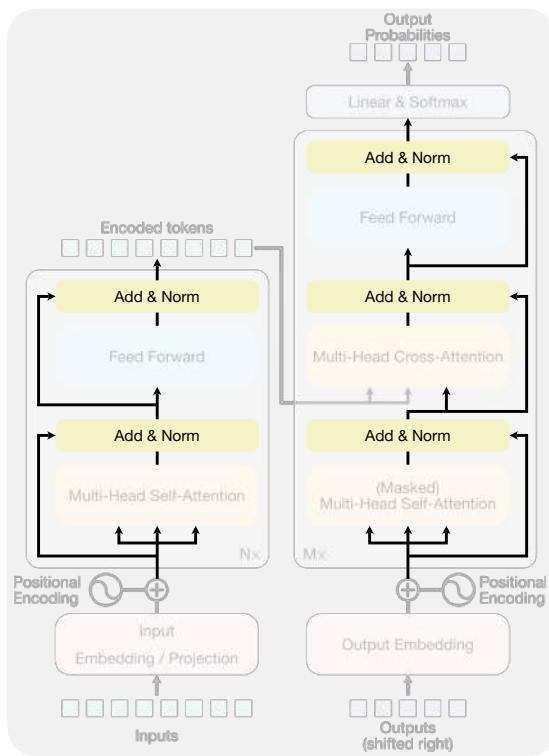
$$W_O^H \begin{bmatrix} r^{h_1} \\ r^{h_2} \\ \dots \end{bmatrix} = \begin{bmatrix} W_O^{h_1}, W_O^{h_2}, \dots \end{bmatrix} \cdot \begin{bmatrix} r^{h_1} \\ r^{h_2} \\ \dots \end{bmatrix} = \sum_i W_O^{h_i} r^{h_i}$$



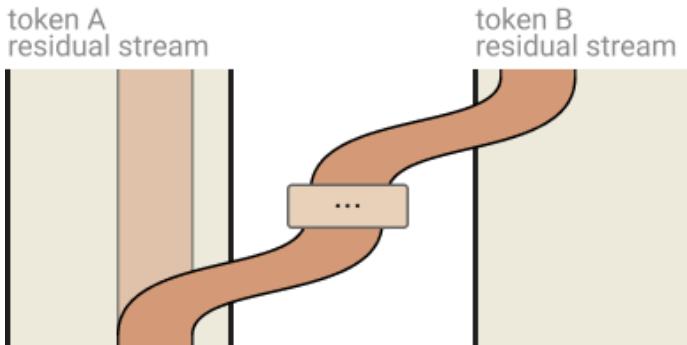
Each attention head, h , is run and added to the residual stream.

$$x_{i+1} = x_i + \sum_{h \in H_i} h(x_i)$$

Residual stream perspective

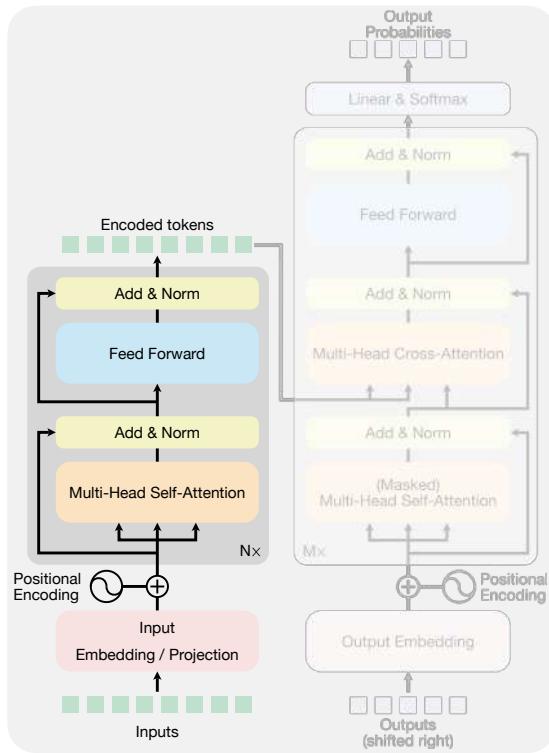


Attention heads as information movement



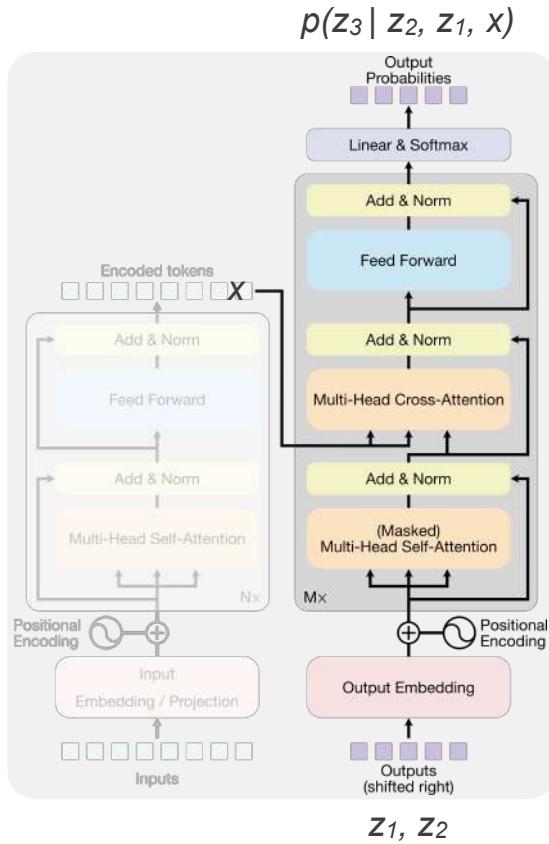
Attention heads copy information from the residual stream of one token to the residual stream of another. They typically write to a different subspace than they read from.

Encoder



- Input / output dimension of each block is identical → stack N blocks
- For encoder-decoder transformers, e.g. 6 (“base”), 12 (“large”), etc.
- Encoder output is a processed version of the input (but not the output yet!)

Decoder

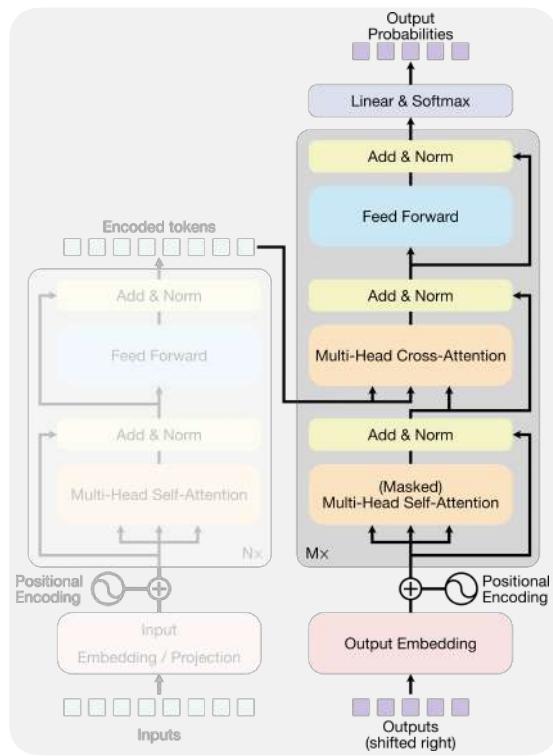


- Generates target sequences conditioned on encoded tokens
- I.e. we want to model:

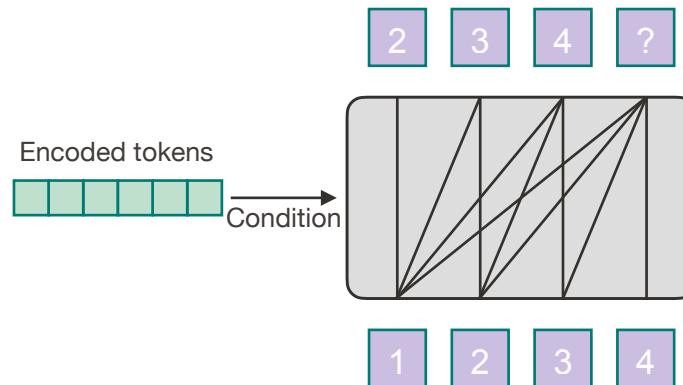
$$p(z | x) = p(z_1, z_2, \dots, z_L | x)$$

$$= p(z_1 | x) p(z_2 | z_1, x) p(z_3 | z_2, z_1, x) \dots$$
- E.g. for generating $p(z_3 | z_2, z_1, x)$:
 - x = encoded tokens
 - z_1 and z_2 are already predicted. Loop back into decoder input

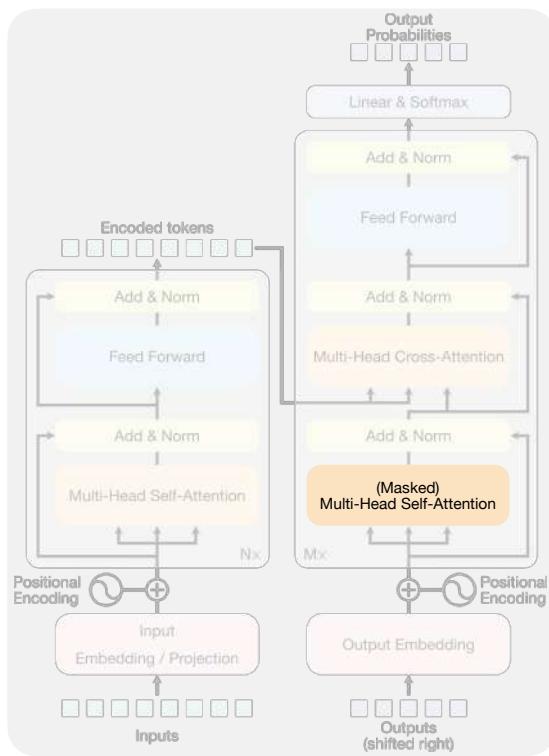
Decoder



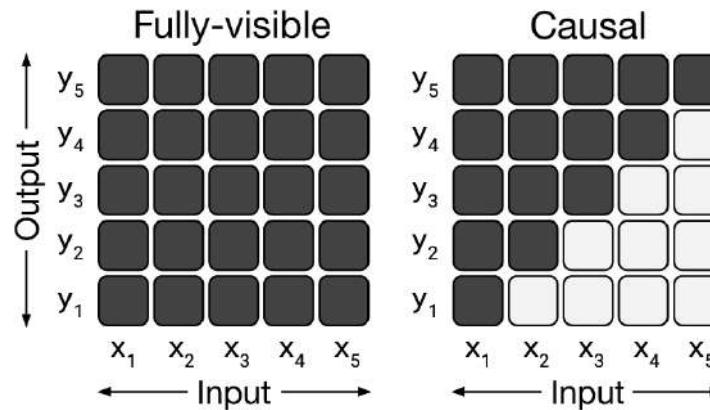
Inference: Decode auto-regressively (i.e. one token at a time)



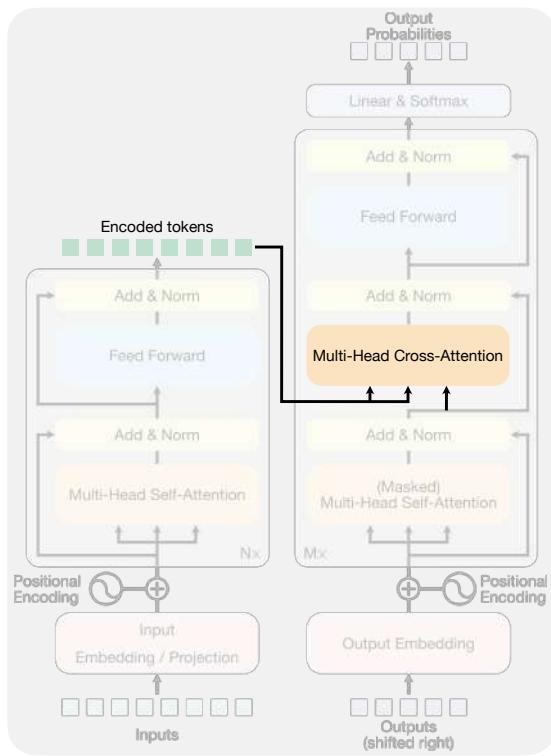
Masked self-attention



- Like standard self-attention, but apply a mask on the attention matrix
- E.g. causal self-attention: Prevent tokens to look at “future” tokens

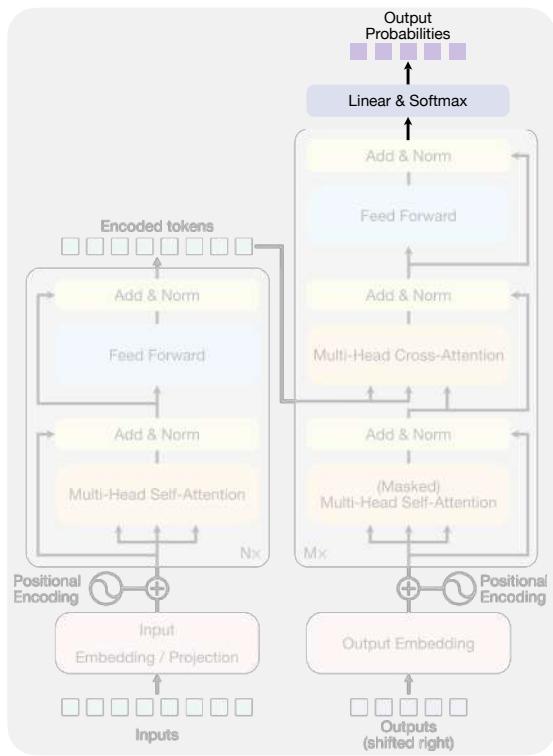


Cross-attention



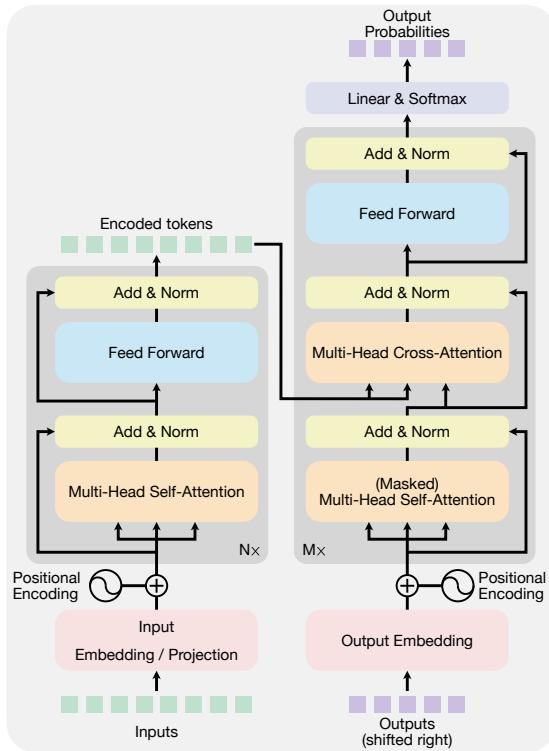
- Decoder reads relevant information from encoded tokens
- Attention from Decoder tokens to Encoder tokens
 - Queries from Decoder
 - Keys and Values from Encoder
- Cross-attention allows information retrieval from arbitrary sets of tokens (i.e. number of encoder tokens can be different than number of decoder tokens)

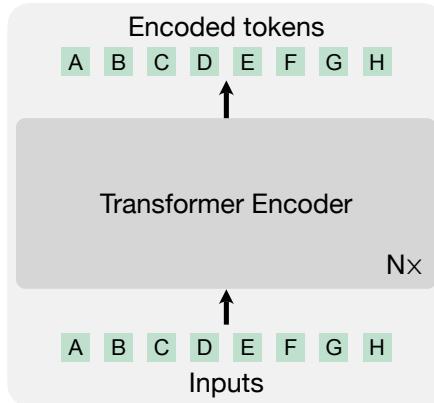
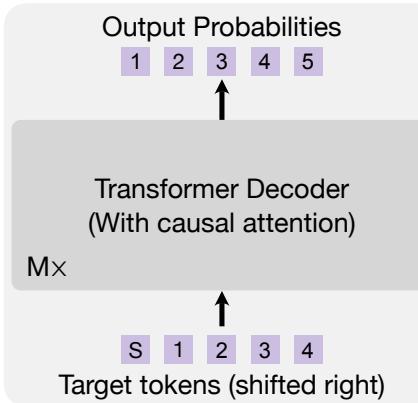
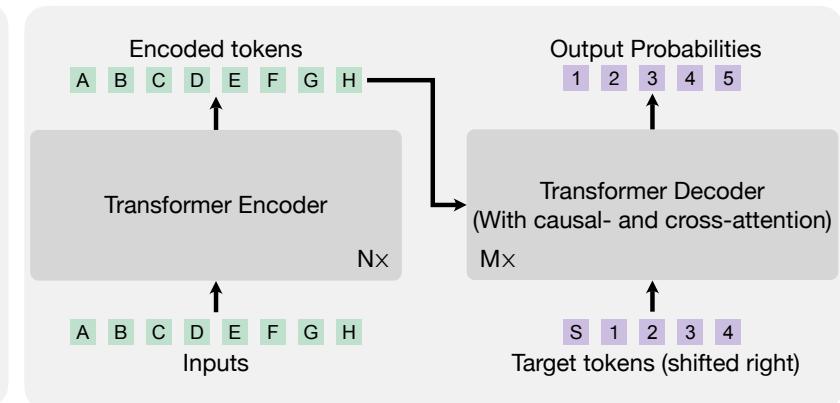
Output layer



- Predict a probability distribution over the vocabulary
- Linear & Softmax

EPFL Attention Is All You Need [Vaswani et al. 2017]



“Encoder-only”**“Decoder-only”****“Encoder-decoder”**

Encoding & masking

E.g. ViT, BERT,
MaskGIT, etc...

Next-token prediction

E.g. GPT,
LLamaGen, etc...

Sequence-to-sequence

E.g. T5, 4M,
Unified-IO, etc...

Some pointers

- **Normalization:**
 - Pre-norm instead of post-norm
 - RMSNorm instead of LayerNorm
- **Positional embeddings:** RoPE instead of absolute
- **FFN/Activation:** SwiGLU instead of MLP+GLU
- **Attention:**
 - Grouped Query Attention for more efficient KV-caches
 - QK-Normalization for stability

Some pointers

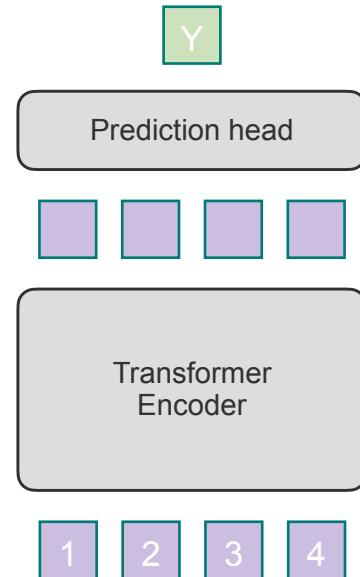
- **KV-caching**: Avoid redundant recalculation by caching keys and values
- **Speculative decoding**: Use a smaller model for fast autoregressive inference and verify with larger model
- **FlashAttention / RingAttention**: Reduce attention memory overhead from $O(N^2)$ to $O(N)$, while time complexity is still $O(N^2)$. Much faster than naive implementation thanks to GPU optimizations.
- **Alternative architectures**: E.g. state-space models, linear attention, ...

Examples

Encoder-only (Supervised & SSL)

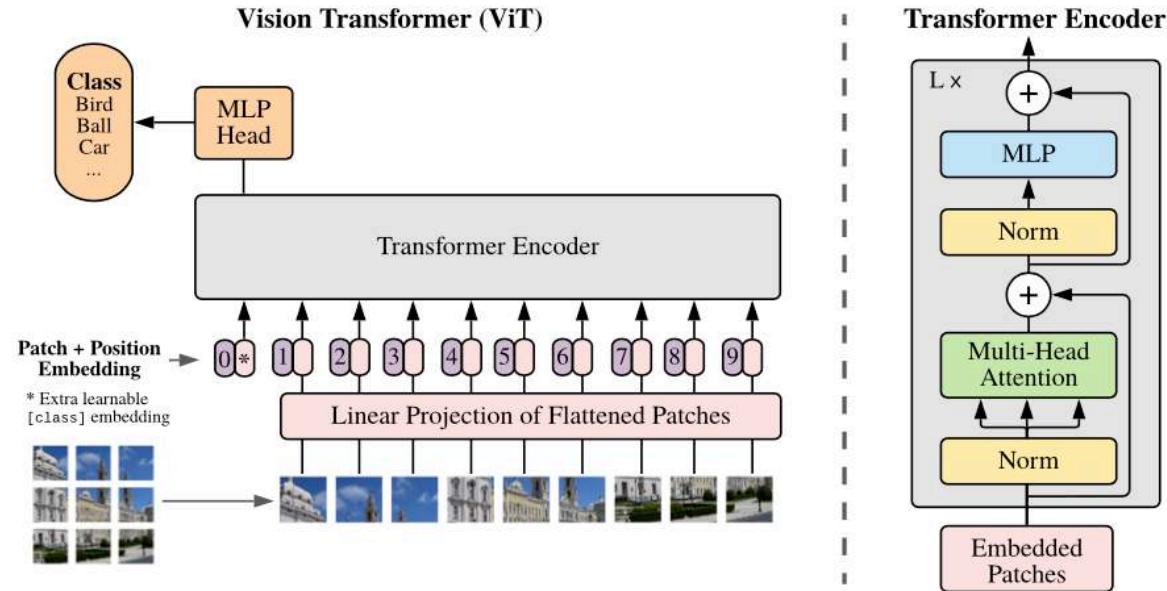
ViT, DPT, self-supervised methods, ...

- Treat (almost) like a classical ConvNet backbone
- Attach some prediction head (e.g. linear layer or convolutional layers)



Vision Transformers (ViT)

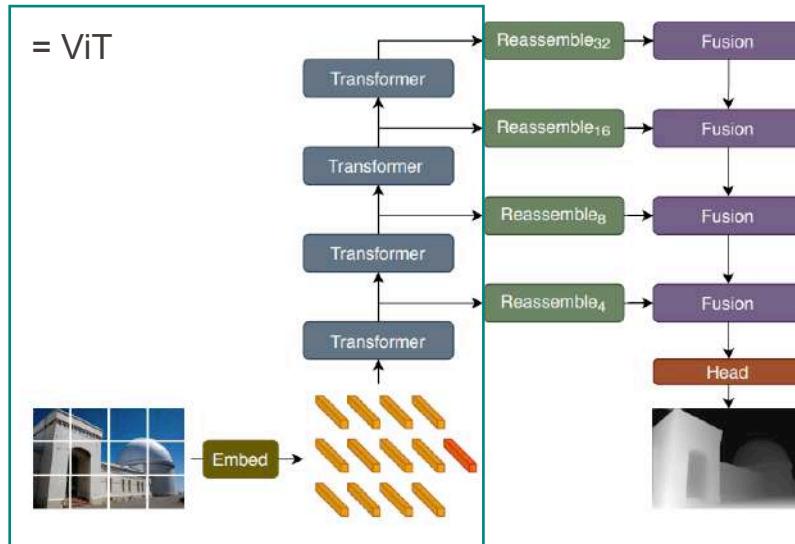
- Flattened images are too large for transformers
- **Idea:** Model image as sequence of patches and use vanilla transformer
- Add extra learnable class token for classification head



Credit: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Dosovitskiy et al. 2020

Dense Prediction Transformers (DPT)

- ViTs are classification architectures
- What about dense tasks (e.g. depth estimation, semantic segmentation)?
- Global receptive field and full resolution at every layer!



Dense Prediction Transformers (DPT)

- Monocular depth estimation (MiDaS) visuals:

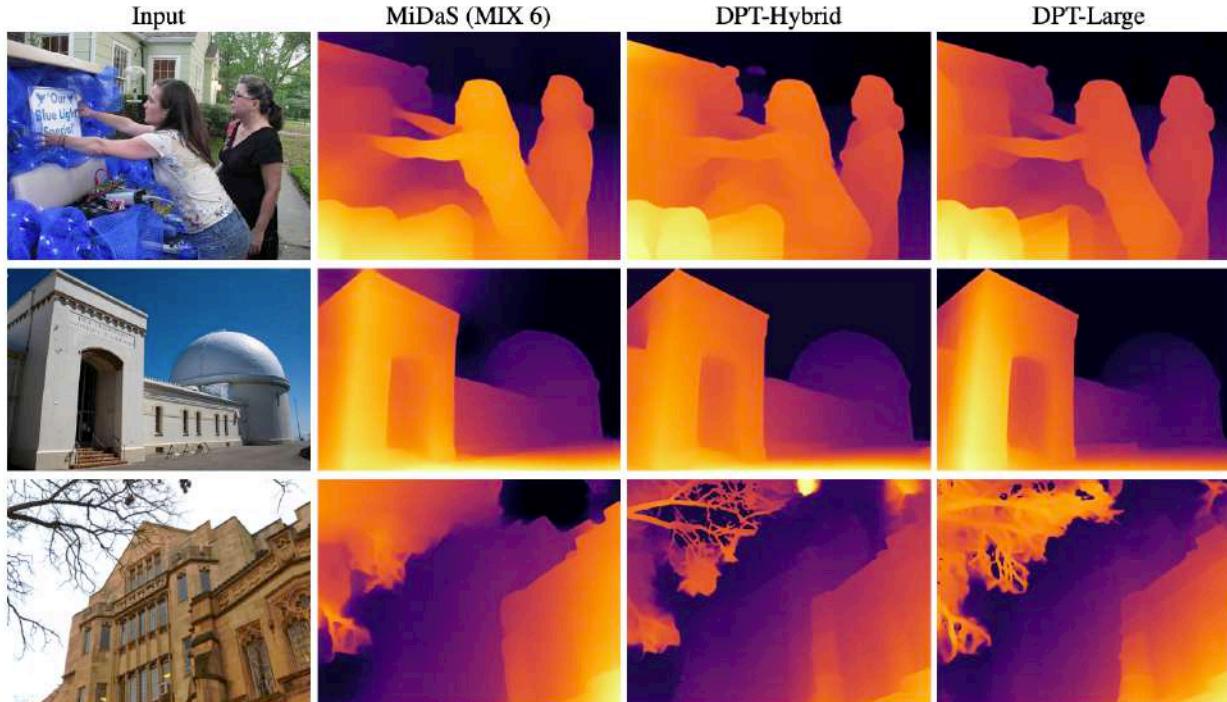


Figure 2. Sample results for monocular depth estimation. Compared to the fully-convolutional network used by MiDaS, DPT shows better global coherence (e.g., sky, second row) and finer-grained details (e.g., tree branches, last row).

Dense Prediction Transformers (DPT)

- Semantic segmentation (ADE20K) visuals:

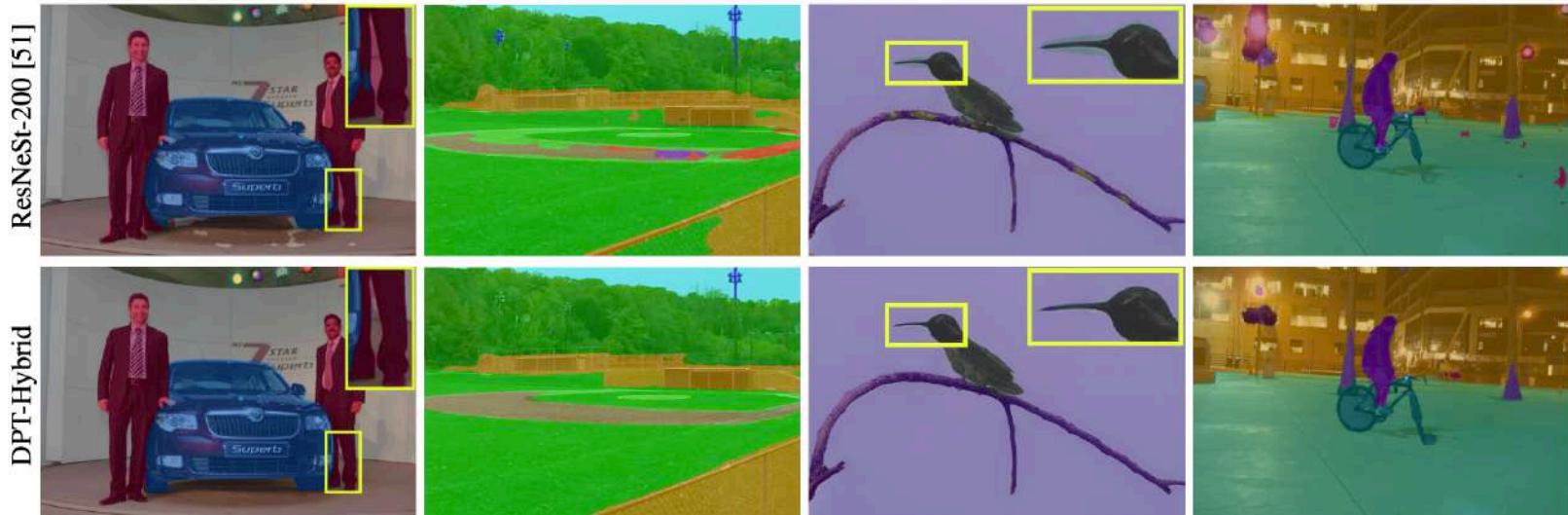
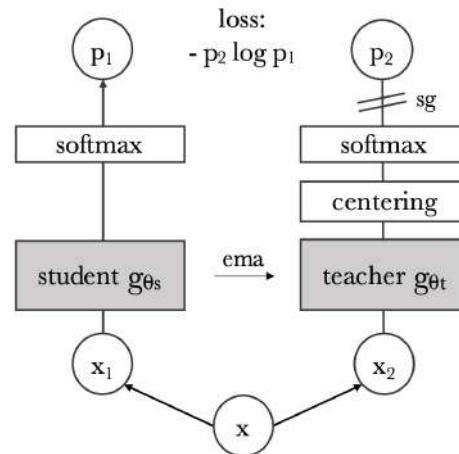
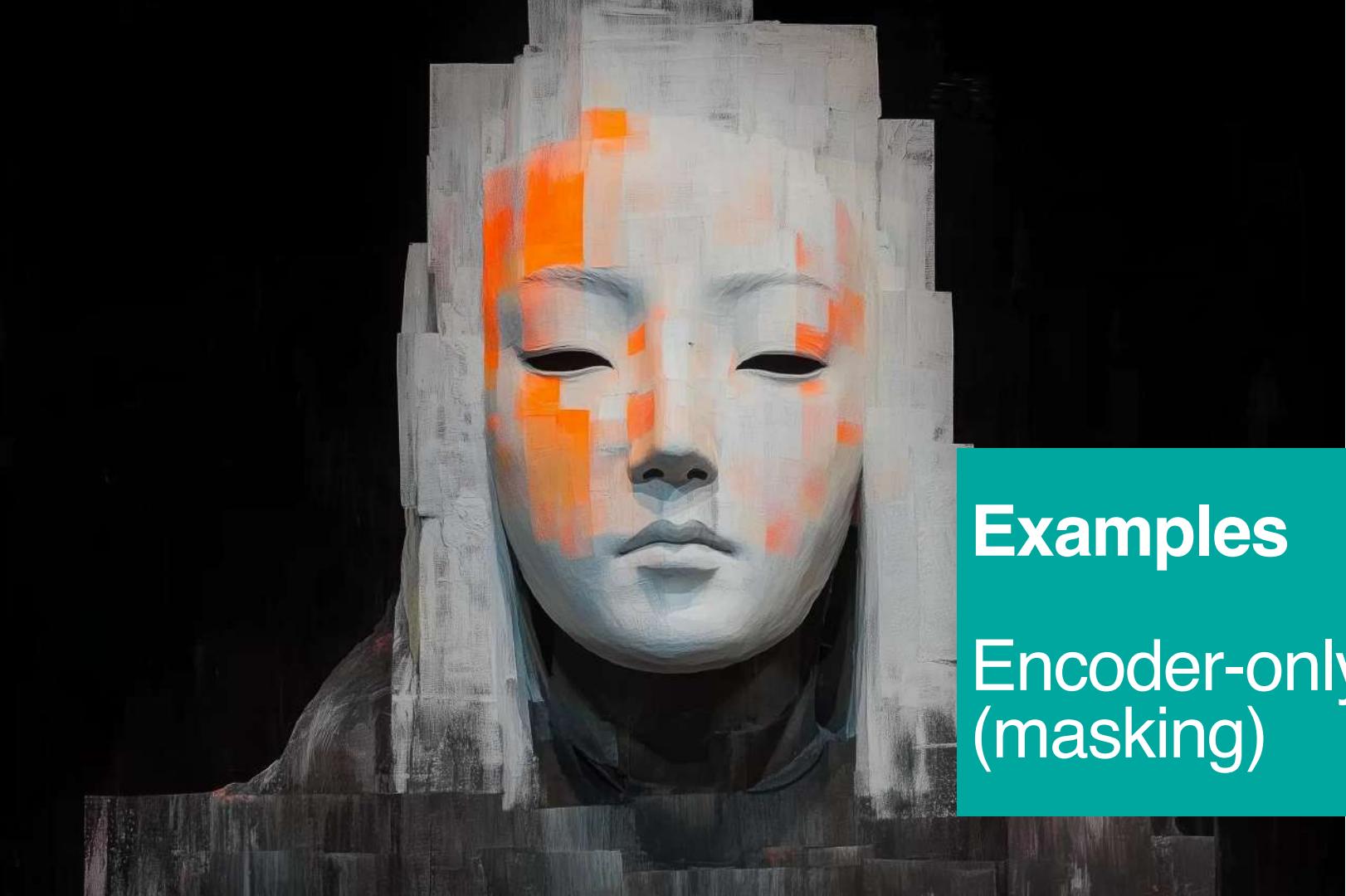


Figure 3. Sample results for semantic segmentation on ADE20K (first and second column) and Pascal Context (third and fourth column). Predictions are frequently better aligned to object edges and less cluttered.

Self-supervised learning. E.g. DINO

- Train ViT in self-supervised manner (self-distillation)
- Attention maps of different heads semantically interesting





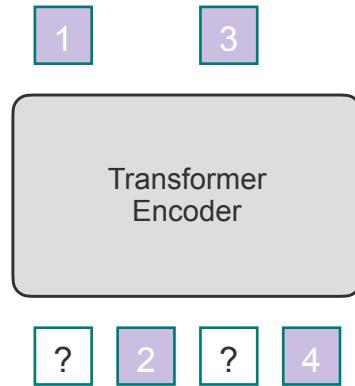
Examples

Encoder-only (masking)

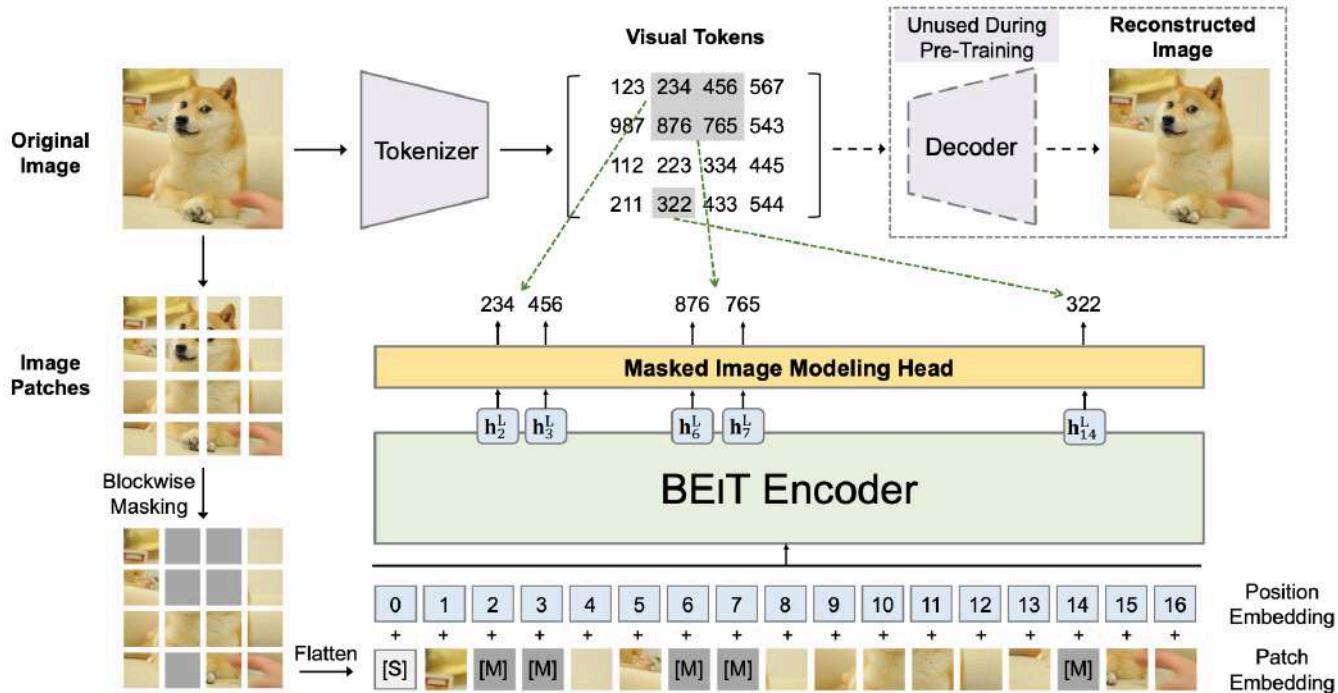
Encoder-only (masking)

BERT, BEiT, MaskGIT, ...

- Inspired by success of masked pre-training in NLP (BERT)
- **Idea:**
 - 1) Predict masked-out patches / tokens
 - 2) Use as backbone and fine-tune to downstream task



BEiT: BERT Pre-Training of Image Transformers



BEiT: BERT Pre-Training of Image Transformers

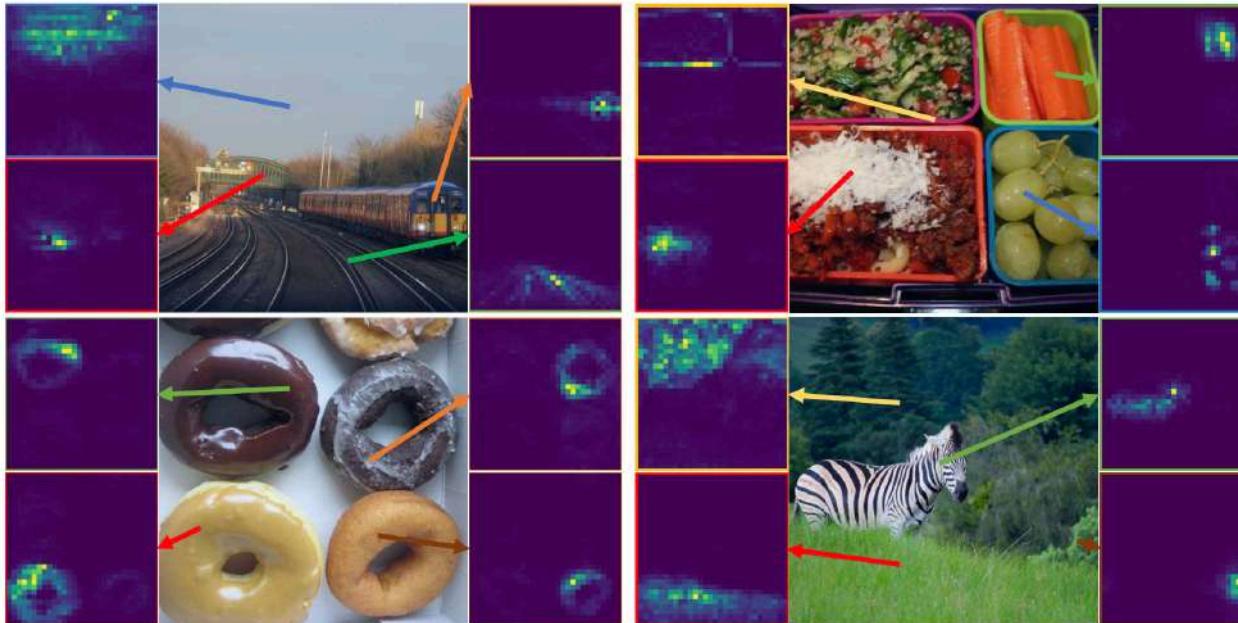
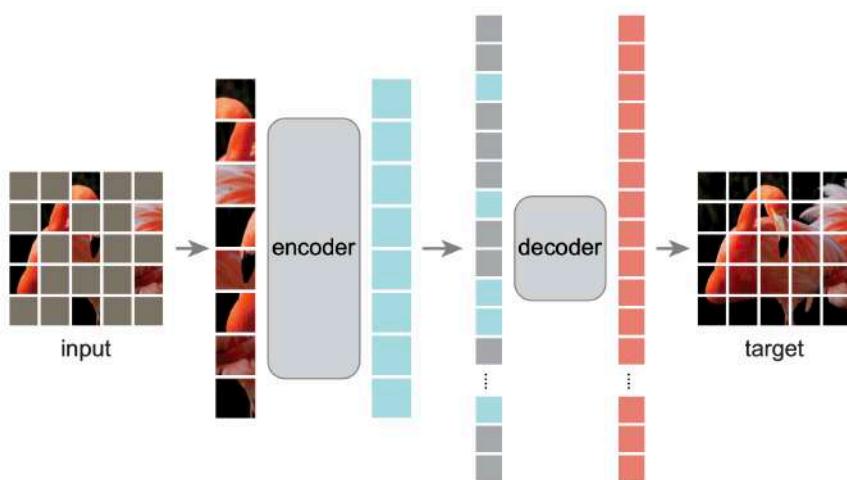


Figure 3: Self-attention map for different reference points. The self-attention mechanism in BEiT is able to separate objects, although self-supervised pre-training does not use manual annotations.

-

Credit: BEiT: BERT Pre-Training of Image Transformers, Bao et al. 2021

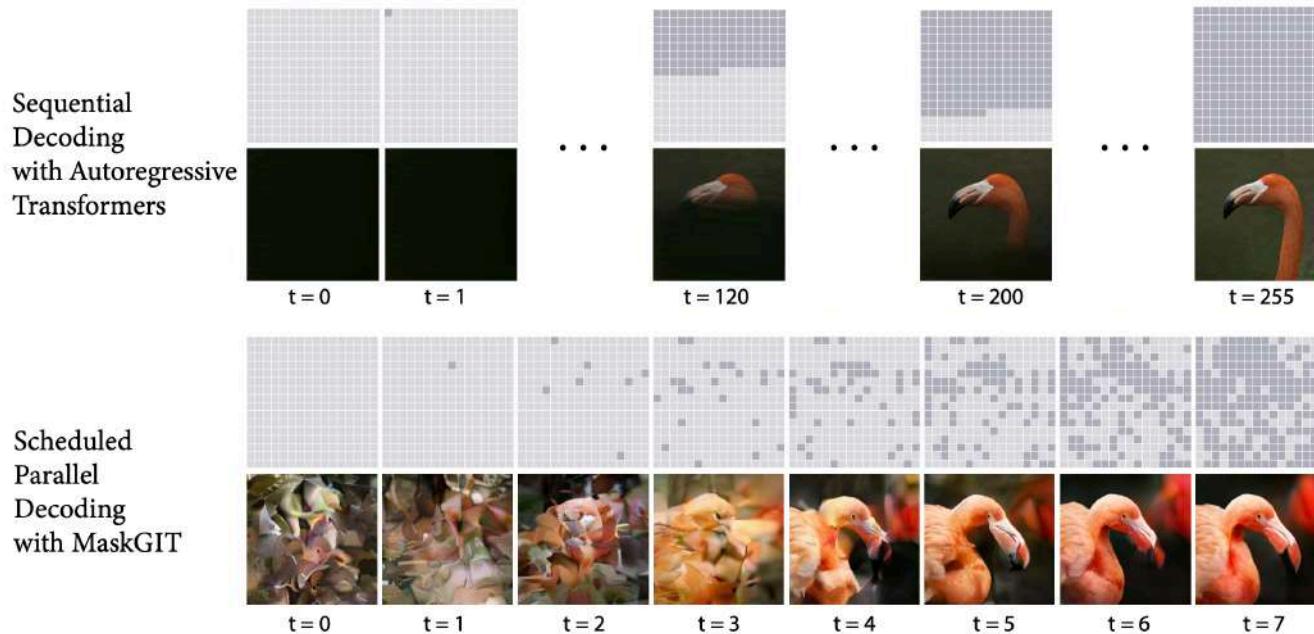
- **Idea:** Only encode visible tokens.
Read out missing tokens with shallow decoder.



Discrete diffusion / Parallel decoding

MaskGIT, Muse, MAGE, ...

- Token-based masked image models are fast generative models



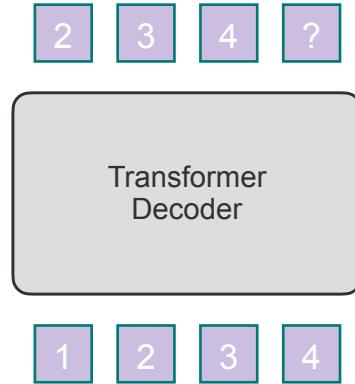
Examples

Decoder-only
(next token
prediction)

Decoder-only (next token prediction)

GPT, DALL·E 1, LLamaGen, AIM, ...

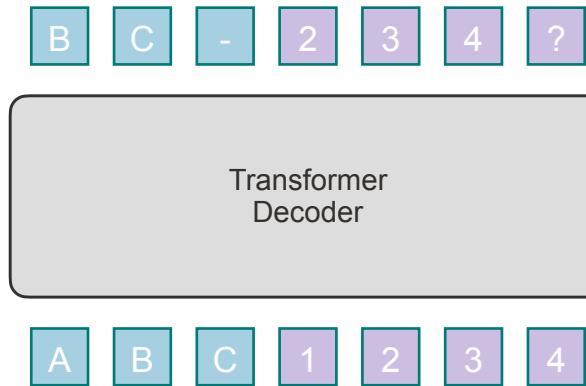
- Train for next token prediction (w/ causal attention)
- Autoregressive decoding



Decoder-only (next token prediction)

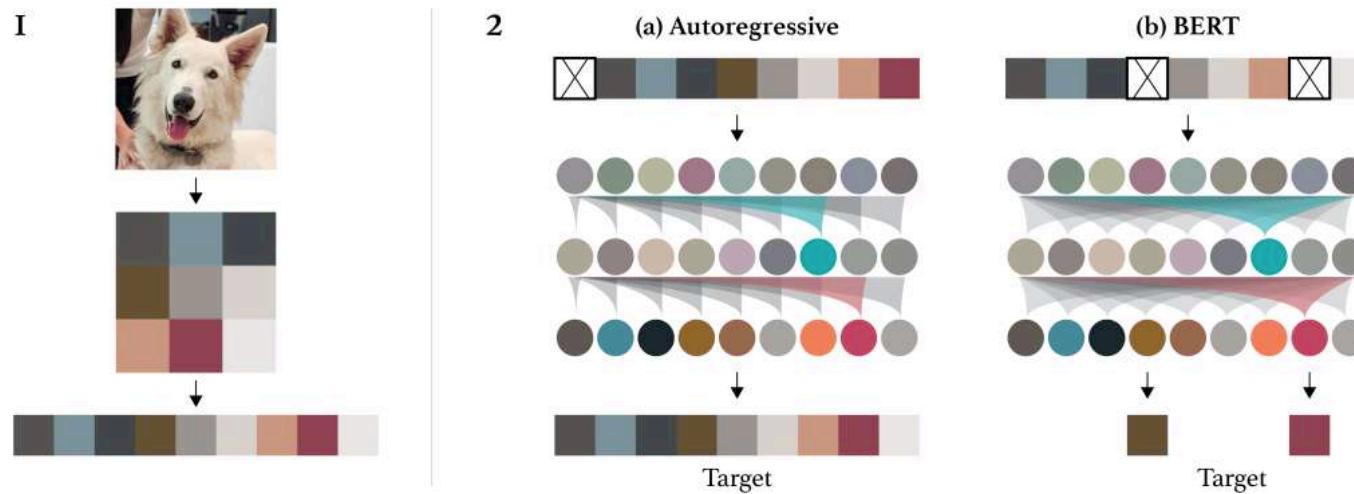
GPT, DALL·E 1, LLamaGen, AIM, ...

- Train for next token prediction (w/ causal attention)
- Autoregressive decoding



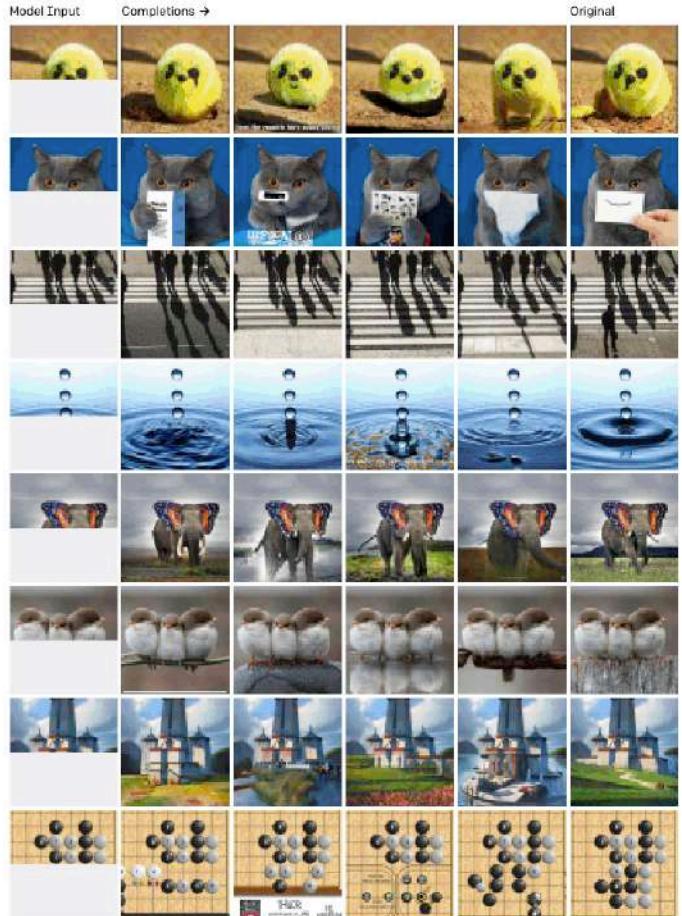
- Condition by prepending tokens (context). Also called PrefixLM.

- First turn pictures into small set of tokens
- Then train a GPT on them



■ Samples and completions

Credit: Generative Pretraining from Pixels, Chen et al. 2020



Taming Transformers for High-Resolution Image Synthesis

Transformers seem great at modelling sequences, but quadratic complexity is problematic.

- Idea: Reduce sequence length by modelling latent space of a discrete VAE

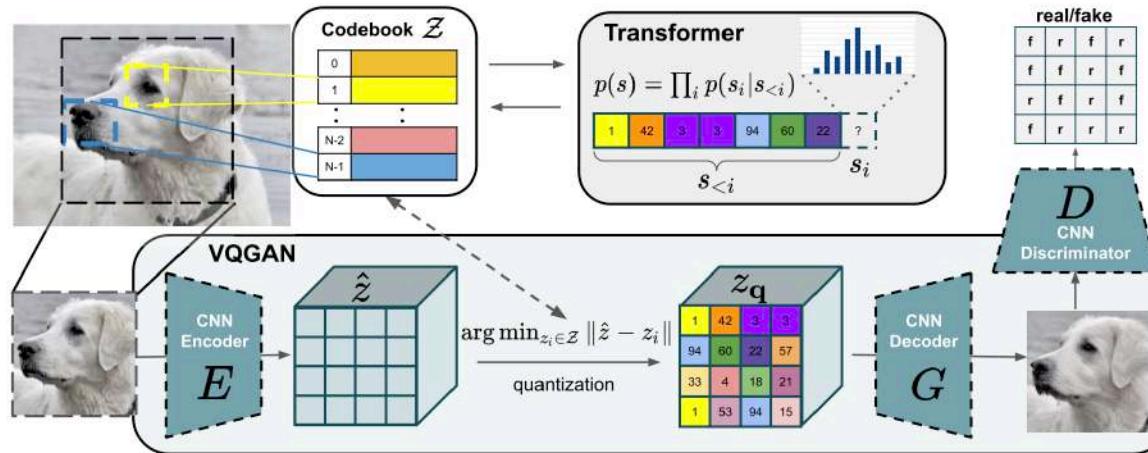
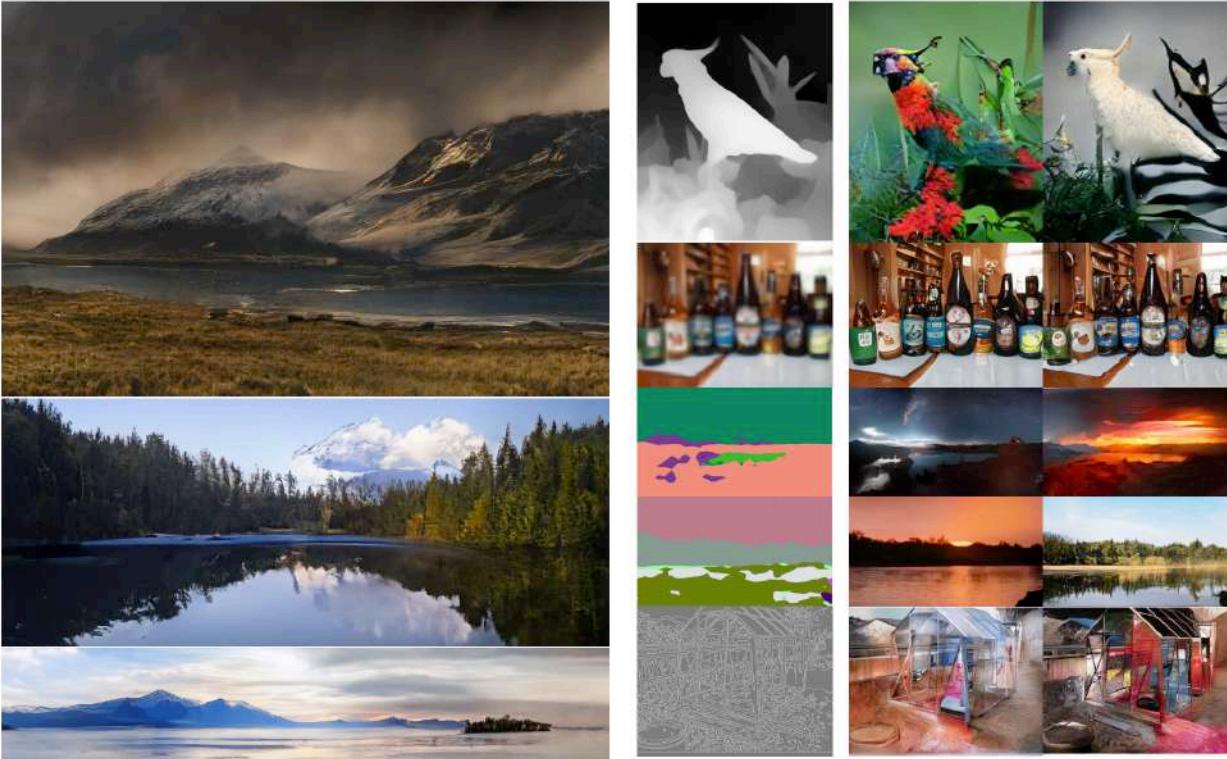


Figure 3. Sliding attention window.

Taming Transformers for High-Resolution Image Synthesis



Credit: Taming Transformers for High-Resolution Image Synthesis, Esser et al. 2020

Image generation with vanilla autoregressive models - LLamaGen

Autoregressive language modeling has come a long way and is highly efficient.

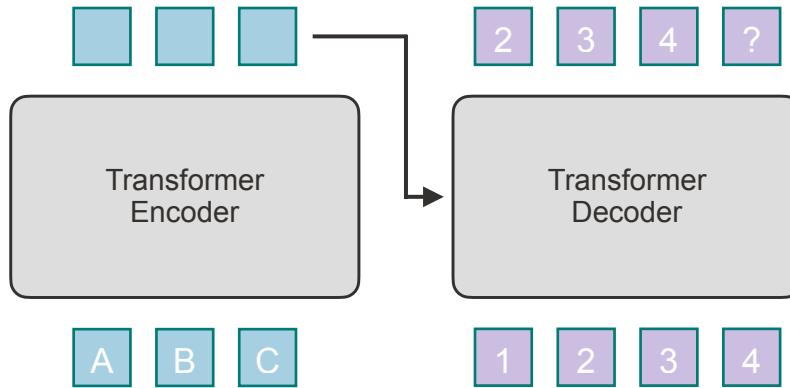
- **Idea:** Simply train Llama architecture on next-image-token prediction

Examples

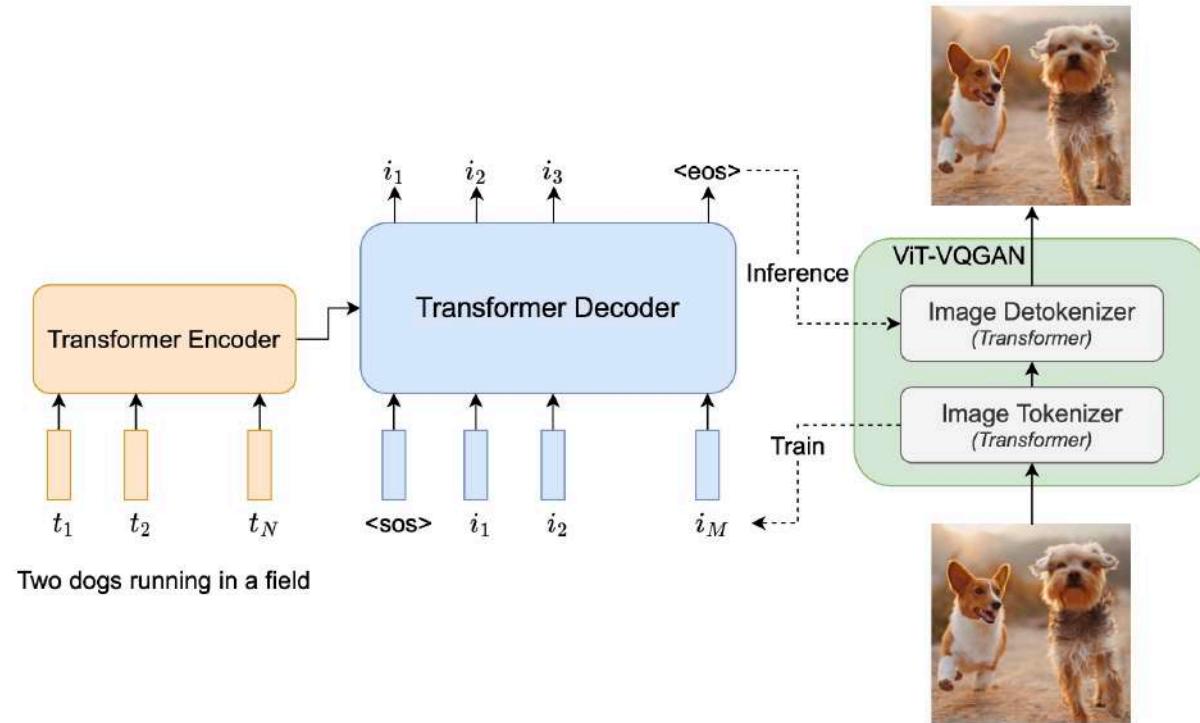
Encoder-decoder
(seq2seq)

Parti, DETR, T5, 4M, Unified-IO, ...

- Sequence-to-sequence (e.g. Parti)
- Sequence-to-set (e.g. DETR)
- Hybrid sequence modeling + masking (e.g. T5, 4M, Unified-IO)



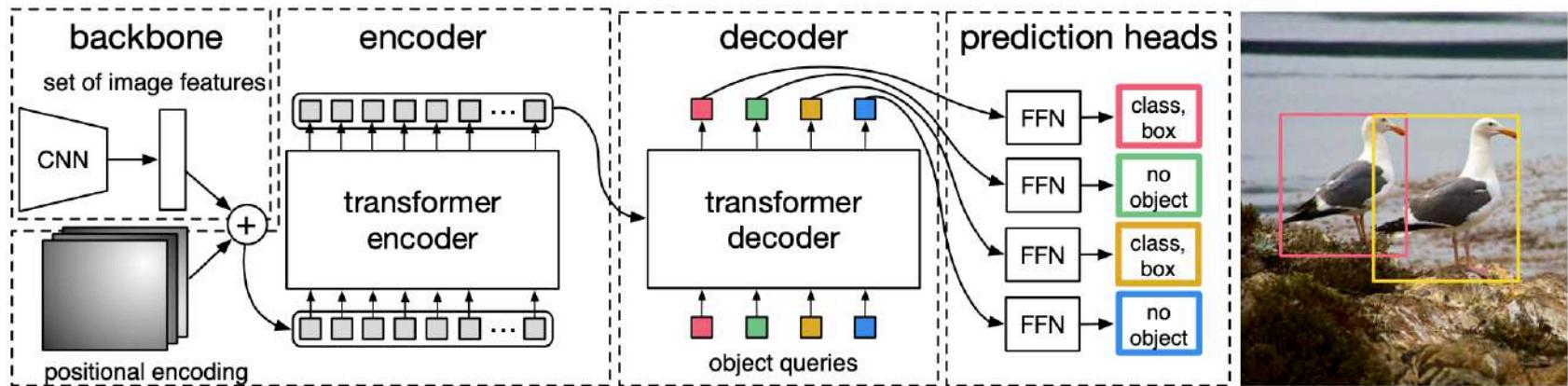
Scaling autoregressive image modeling

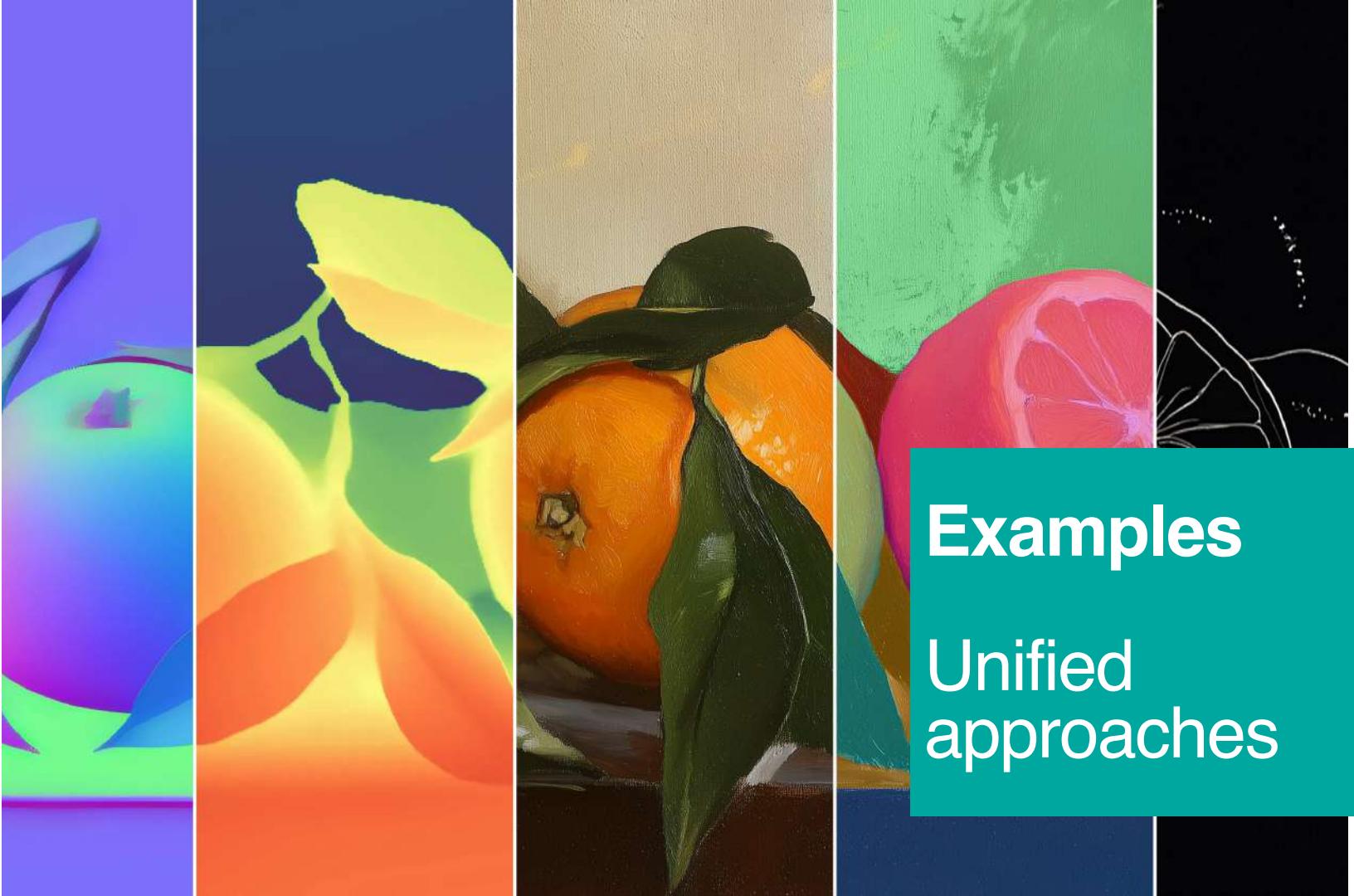


Credit: Scaling Autoregressive Models for Content-Rich Text-to-Image Generation, Yu et al. 2022

Scaling autoregressive image modeling

- Object detection & Panoptic segmentation (instance + semantic + detection) using transformers
- Approach as a set prediction problem with set-based loss
- Decoder directly outputs set in parallel. Queries can “communicate” with each other to avoid overlaps.

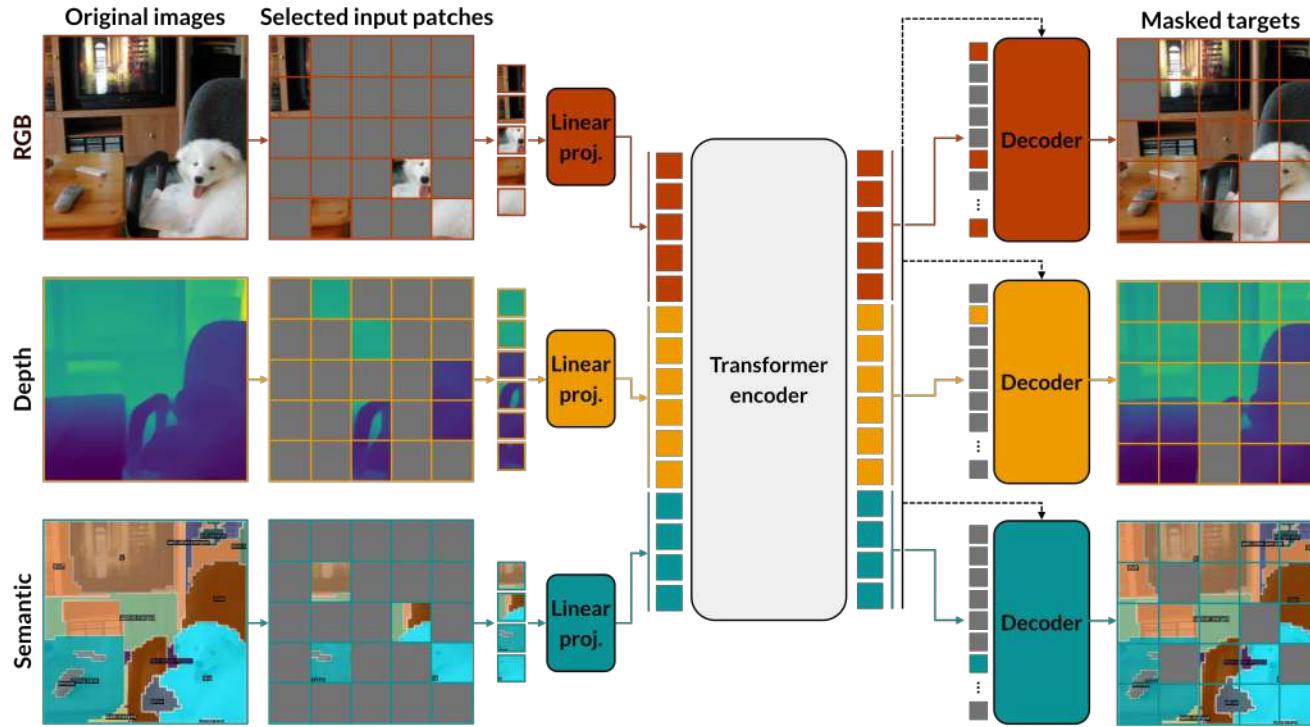


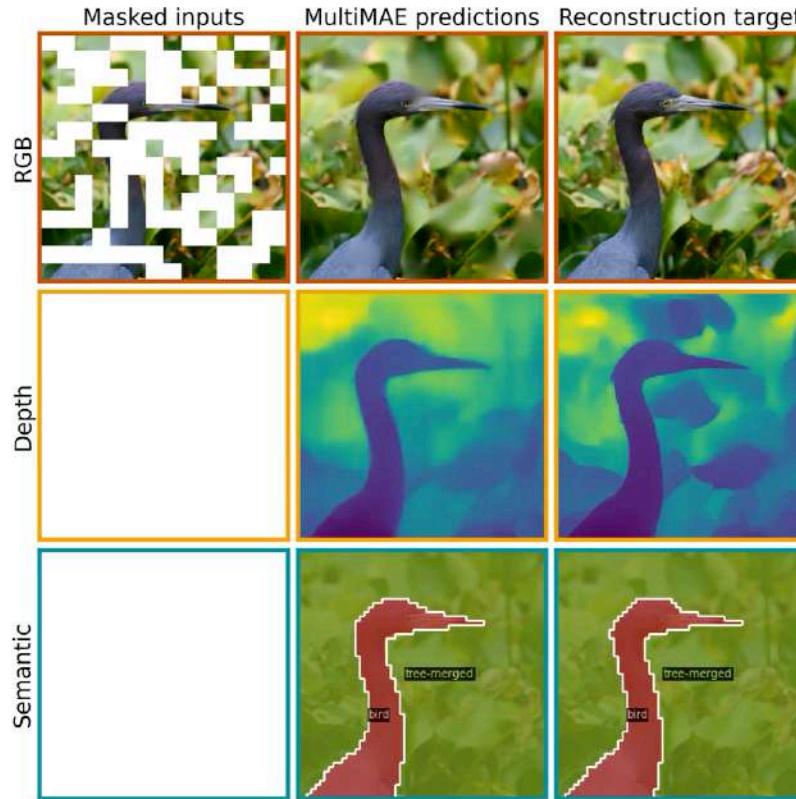


Examples

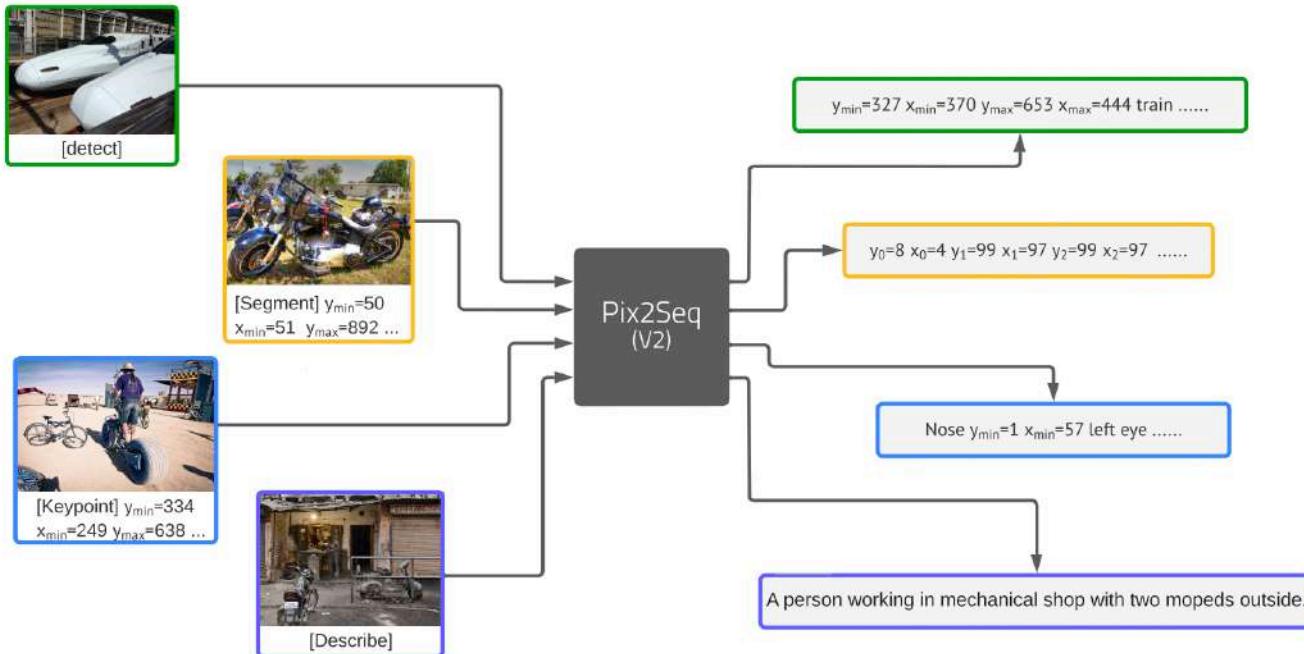
Unified approaches

- Idea: Predict any patch of any modality from any other

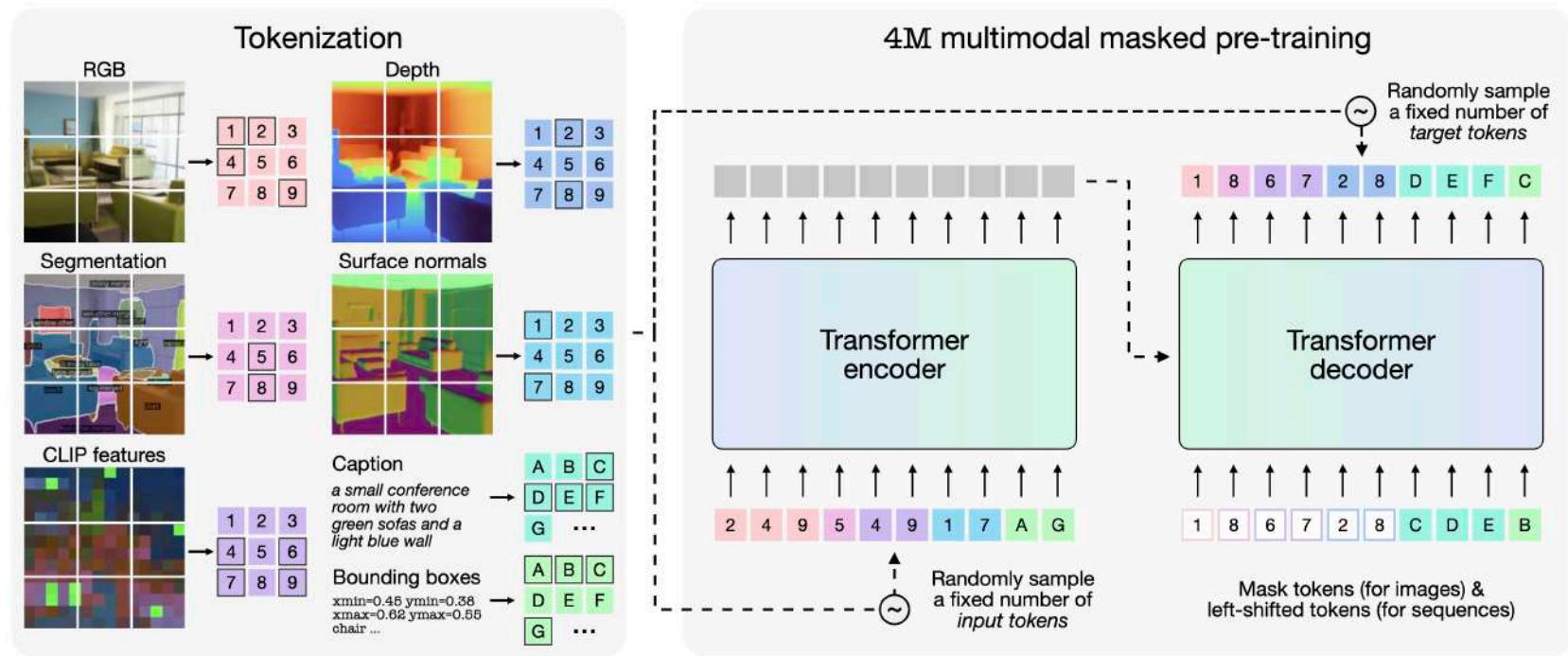




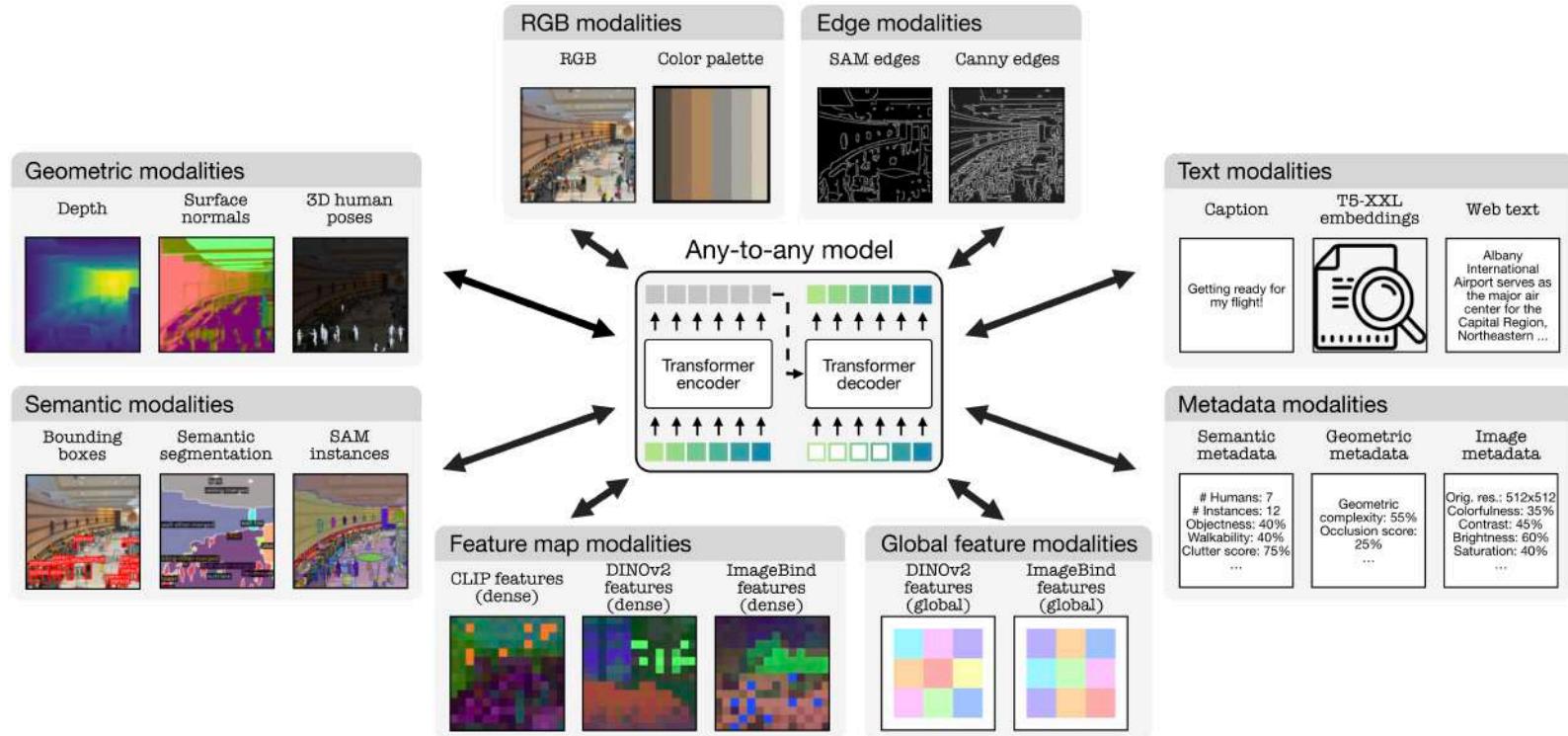
- Idea: Tokenize detection / segmentation / keypoints / etc as “text”



- Idea: Any-to-any prediction in unified representation space for many tasks through tokenization

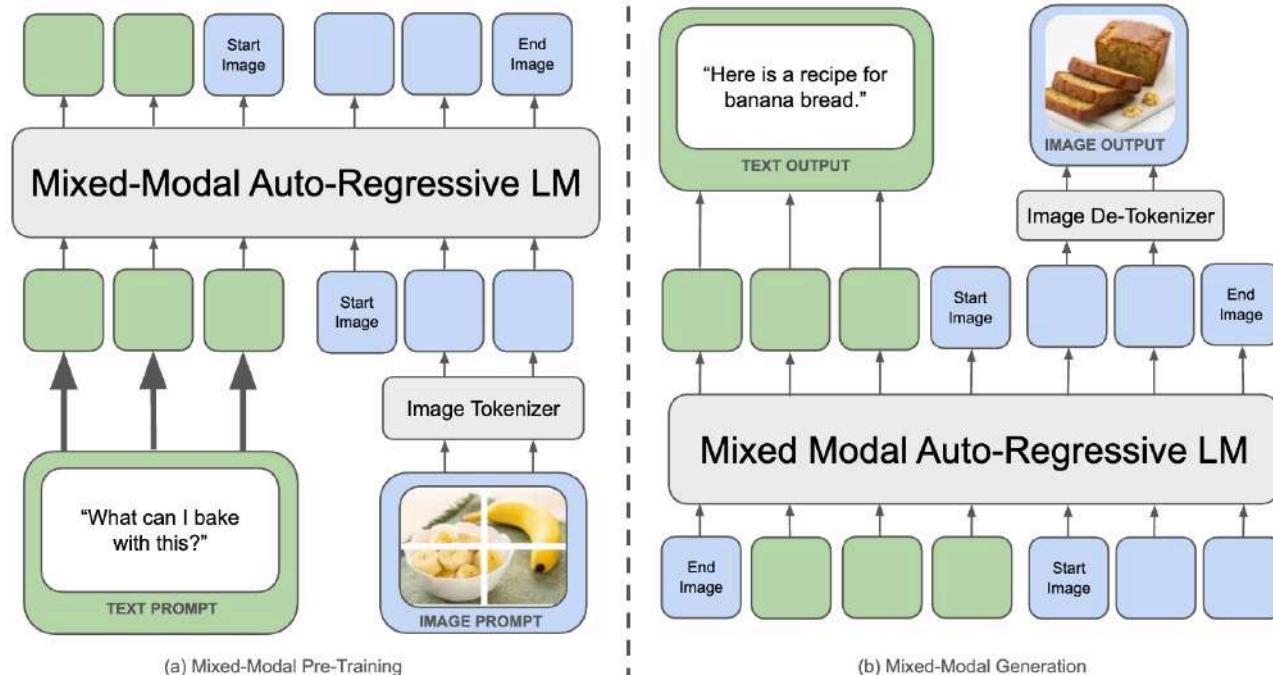


- Idea: Any-to-any prediction in unified representation space for many tasks through tokenization



Credit: 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann et al. 2024

- Idea: AR model predicting both text and image tokens



Enjoy the Course!

Amir Zamir (amir.zamir@epfl.ch)

Rishabh Singh (rishabh.singh@epfl.ch head TA)

Zhitong Gao (zhitong.gao@epfl.ch)

Roman Bachmann (roman.bachmann@epfl.ch)

<https://vilab.epfl.ch/>