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Vision In-the-loop

Perception

Sensory Observation

Control

Actions

3D curvature

room layout

2D segment.

occlusion edges

object classic.

surface normals

vanishing points

2.5D segment.

2D texture edges

reshading

Agent in the 
World
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¯ (1) visual navigation 

¯ (2) rearrangement 

¯ (3) embodied vision-and-language

Common Tasks 
(~so far)

6

Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Sensorimotor 
Contingency

7

David Ha 2022. Erismann & Kohler 1931. Stratton 1897. 
Paul Bach-y-rita (1934-2006) (the father of sensory substitution. 
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Beal 2006
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¯ Is the fish intelligent? 

¯ Where is the intelligence?

9Dead Fish Swimming

Flexible/Fast  
Changing  

Parameters

Rigid/Slow  
Changing  
Parameters

Brain Body

Morphology
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10Automatic Design of 
Morphologies

¯Evolving Virtual Creatures, 
Sims 1994
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Human Hawks, falcons, etc.

Acuity zones/Fovea
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Designing the 
morphology 

12
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Visual Sensing 
15

Visual Acuity and the Evolution of Signals, Caves et al. 2018.https://visual-morphology.epfl.ch/

https://visual-morphology.epfl.ch/
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olfactory

19

¯ Almost never unimodal/vision-only. 

Ed Yong 2022

¯ “In the 1930s, Union Oil Company discovered that adding ethyl 
mercaptan, a strong-smelling chemical that smells like rotting cabbage or 
eggs, to natural gas pipelines could help them find leaks by 
monitoring vulture activity.”
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¯ Chemical sensing

Other modalities: 
olfactory

20

Molly Sargen, Bonnie Bassler
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Vision: “ba” 
Audio: “ba”

"McGurk Effect”. Hearing lips and seeing voices, McGurk & MacDonald, Nature 1976 . 

Vision: “va” 
Audio: “ba”

Multimodality
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"McGurk Effect”. Hearing lips and seeing voices, McGurk & MacDonald, Nature 1976 . 

Multimodality
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¯ Ian Waterman 

¯ feedback 

¯ multimodality

Multimodality 23

Swain, K. (2017). The phenomenology of touch. The Lancet Neurology. 
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For sensory fusion / better inference

Apple

Roles of Multimodality in Learning
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For sensory fusion / better inference

Apple

For self-supervision

Cross-Modal Learning

Roles of Multimodality in Learning
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Multimodality 26

Smith, L., & Gasser, M. The development of embodied cognition: Six lessons from babies. Artificial life 2005. 

¯ “Six Lessons from Babies”, Smith&Gasser’05: 

¯ Babies’ experience of the world is profoundly multimodal.  

¯ Infants spend hours watching their own actions. 

¯ Multiple overlapping and time-locked sensory systems enable the 
developing system to educate (“supervise”) itself.

Cross-Modal Learning
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Core function: Predict anything from anything 27

RGB Image Depth 3D Surface normals Object detection

Text CLIP features more

…

Segmentation

apple

Table

The world
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…

Any-to-Any 
Multimodal 

Model 

…

Core function: Predict anything from anything

The world
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29VLM (Vision-Language Model)
~ (RGB-Text chatbot)

Flamingo,, Alayrac et al, 2022.
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Flamingo,, Alayrac et al, 2022.

VLM (Vision-Language Model)
~ (RGB-Text chatbot)
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Flamingo,, Alayrac et al, 2022.

VLM (Vision-Language Model)
~ (RGB-Text chatbot)
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Flamingo,, Alayrac et al, 2022.        LLaVA, Liu et al, 2023

VLM (Vision-Language Model)
~ (RGB-Text chatbot)
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33Cross-Modal Masked Modeling

[Masked Autoencoders Are Scalable Vision Learners. He et al. 2021]

Input Output Ground truth
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34Cross-Modal Masked Modeling

MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
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35Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders

MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING
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MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING

Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders
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MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING

Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders
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MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING

Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders
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MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING

Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders
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MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING

Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders
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MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

CROSS-MODAL MASKING

Cross-Modal Masked Modeling
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders
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42Sampling modalities

MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

³=1 ³=3 ³=7³=0.2
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43Modality-Agnosticity 

MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
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44Cross-modal probing

MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022
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https://multimae.epfl.ch/ 

https://multimae.epfl.ch/


46

4M: 
Massively Multimodal 
Masked Modeling

Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023.

¯ Re-designed architecture: format compatibility, tokenization, randomized token subset training. 

¯ Scaled up: tens of modalities. Data and model size to billions scale. Training length trillions of tokens.

https://4m.epfl.ch/ 

https://4m.epfl.ch/
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48Out-of-the-box multi-task model

CLIPDepthSemantic Seg.Bounding BoxesCaption

MetadataImageBindDINOv2Human posesSurface Normals

Query image

Color PaletteSAM instancesSAM EdgesTexture Edges



49Out-of-the-box multi-task model

CLIPDepthSemantic Seg.Bounding BoxesCaption

MetadataImageBindDINOv2Human posesSurface Normals

Query image

Color PaletteSAM instancesSAM EdgesTexture Edges



50Out-of-the-box multi-task model

CLIPDepthSemantic Seg.Bounding BoxesCaption

MetadataImageBindDINOv2Human posesSurface Normals

Query image

Color PaletteSAM instancesSAM EdgesTexture Edges
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53Any-to-Any 
generation 

Input Prediction



54Probing the learned 
model



55Probing the learned 
model



56Probing the learned 
model
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Caption input

a photo of a 
bedroom, studio 
light 

Bounding box input

Frame-by-frame  
Predictions

Probing the learned 
model
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Bounding box input

Probing the learned 
model



59Probing the learned 
model

RGB prediction
RGB prediction    (with 

polygon overlay)Changing SAM polygon input

Fixed caption                     
a framed painting of 
mountains inside a 
bedroom

color palette



60Grounded generation 
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Classifier-free diffusion guidance. Ho and Salimans. ArXiv 2022.

Caption input

Depth

Fixed weight

�  2.0

Varying  
weight

Stronger geometric 
conditioning

an oil painting of 
a blue flower

Negative geometric 
conditioning

Weak geometric 
conditioning

multi-modal guidance & weighting
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Classifier-free diffusion guidance. Ho and Salimans. ArXiv 2022.

multi-modal guidance & weighting



Multimodal retrieval

a bird9s eye view
of sunset shores

beach hotel

Top-3 RetrievalsQuery
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neuschwanstein

castle
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brightness: 30/255

a fancy mansion

brightness: 200/255
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brightness: 200/255
walkability: 75%

Top-3 RetrievalsQuery
Any-to-RGB retrieval Any-to-any retrieval Multimodal retrieval

Top-3 RetrievalsQuery
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Top-3 RetrievalsQuery

Multimodal retrieval



65LLM Co-Training/Representation

Fine-grained multimodal conditioning control

Probing with grounded generation

Steerable multimodal data generation from metadata

Caption input: a metallic blue sphere to the left of a yellow box made of felt

Caption input:
two football
players warming
up on the pitch

Caption input:
a picture of two
astronauts in a
lush jungle

Caption input:
a painting of two
greek philosophers
walking on an old
street

Caption input:
a painting of two
clowns walking on
the street with
skyscrapers

Caption input:
a colorful painting
of bride and
groom walking
down the aisle

Caption input:
an oil painting of
two shepherds on
a mountain
meadow

Caption input:
a sketch of business
people walking in the
corridor of a modern
o٠恩ce building

Caption input:
a minimalist
sketch of two stick
昀؀gures

Polygon input RGB generation Caption
input RGB generation

Caption
input:
a picture of
a Swiss
mountain
scene

Caption
input
a bowl of
soup on a
wooden
table

SAM edges
input

a winter
ride with
family

riding a
blue car at
sunset

a historical
photo of a
classic car

Metadata
input:

Human pose
input:

Walkability # humans # SAM
instances

Occlusion
score

Original
resolution Contrast

10%

40%

80%

1

4

20

3

30

200

10%

25%

85%

64x64

256x256

2048x2048

15%

60%

90%

Caption input: a blue semi-truck and its trailer jumping over a row of motorcycles

Caption input: a black background with a large yellow circle and a small red square Caption input: a green pepper to the left of a red pepper

4M-7 (from caption)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-21 shows improved text understanding capabilities



66LLM Co-Training/Representation

Fine-grained multimodal conditioning control

Probing with grounded generation

Steerable multimodal data generation from metadata

Caption input: a metallic blue sphere to the left of a yellow box made of felt
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a picture of two
astronauts in a
lush jungle

Caption input:
a painting of two
greek philosophers
walking on an old
street

Caption input:
a painting of two
clowns walking on
the street with
skyscrapers

Caption input:
a colorful painting
of bride and
groom walking
down the aisle

Caption input:
an oil painting of
two shepherds on
a mountain
meadow

Caption input:
a sketch of business
people walking in the
corridor of a modern
o٠恩ce building

Caption input:
a minimalist
sketch of two stick
昀؀gures

Polygon input RGB generation Caption
input RGB generation

Caption
input:
a picture of
a Swiss
mountain
scene

Caption
input
a bowl of
soup on a
wooden
table

SAM edges
input

a winter
ride with
family

riding a
blue car at
sunset

a historical
photo of a
classic car

Metadata
input:

Human pose
input:

Walkability # humans # SAM
instances

Occlusion
score

Original
resolution Contrast

10%

40%

80%

1

4

20

3

30

200

10%

25%

85%

64x64

256x256

2048x2048

15%

60%

90%

Caption input: a blue semi-truck and its trailer jumping over a row of motorcycles

Caption input: a black background with a large yellow circle and a small red square Caption input: a green pepper to the left of a red pepper

4M-7 (from caption)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-7 (from caption) 4M-21 (from caption) 4M-21 (from T5-XXL emb.)

4M-21 shows improved text understanding capabilities
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Fine-grained multimodal conditioning control

Probing with grounded generation

Steerable multimodal data generation from metadata
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https://4m.epfl.ch/ 

https://4m.epfl.ch/
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Normals 

specialist

Depth 

specialist

Segmentation

specialist

CLIP

Detection 

specialist" Start from image-text pairs


" Use pseudo labeling networks to 
generate aligned binding data

Caption

dog on a walk 

with guardian

RGB
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https://omnidata.vision/demo/

Omnidata, ICCV’21.  
3D Common Corruptions CVPR’22.
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73Quantitative comparisons

Out-of-the-box evaluation

• The multitask learning aspect works well-> 
one effective network for 100s of tasks.
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Out-of-the-box evaluation

Multimodal transfer

Unimodal transfer

• Long-way to go in terms of transfer/emergence.

• The multitask learning aspect works well-> 
one effective network for 100s of tasks.

Quantitative comparisons
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looking correct vs being correct 75

4M with co-training with LLM/T54M without co-training with LLM/T5

Text Prompt: a giant gorilla at the top of the Empire State building.
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Cross-Modal Learning
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Multimodality as self-Supervision 77

Cross-Modal Learning

Learn from the entire world/internet 
with few modalities

Learn from the test space only 
with rich modalities 

¯ Limit the world to the test space and 
“overfit” to it. 

¯ Can we perfectly solve vision there?
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• Test-Space Training (TST): Investigates the role of  

• 1) specialization, in contrast to generalization.  

• 2) internet data in training (multimodal) FMs. 



Test-Space Training

1. Data Collection

Multimodal Data

Test Space

2. Pre-training

Self Supervised 

Pre-training

Test Space

4. Deployment3. Transfer

External Dataset

Transferring  

(the Pre-trained 

Model)

Detection 

Transferred 

Model

Semantic 
Segmentation

Object 
Detection

Image 
Captioning

Test Space

(
A room with a white 

armchair and pillow 

positioned in the corner, 

a plant on a small stand 

beside it, and a large 

mirror on the right wall.


Captioning 

Transferred 

Model

Segmentation 

Transferred 

Model

Multimodal Sensory Data Additional (Optional) modalities



Experimental results 
In Scannet++, Replica, THOR

On semantic segmentation, detection, captioning.

80

Scannet++1

1. Yeshwanth et al. 2023
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Semantic Segmentation  
Vs. internet-based generalists 

Input Ground Truth Test-Space Training (Ours)

4M-21DINOv2 CLIP
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Semantic Segmentation  
Vs. task specialists 

Test-Space Training (Ours) Mask2FormerGround TruthInput
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Input Ground Truth Test-Space Training (Ours) CLIP

4M-21 ViTDet Scratch DINOv2

Detection



Quantitive comparison  
Semantic Segmentation

" TST outperforms internet based generalists[1,2,3], and task specialists[4,5].

CLIP1 DINOv22 4M-213 Task 
Specialist4

TST-MM

m
Io

U

5

12

19

26

33

40
Replica

1. Radford et al. 2021(
2. Squab et al. 2023(
3. Bachmann*, Kar*, Mizrahi* et al. 2024 (
4. Cheng et al, 2022
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Scannet++



Adaptation
Adapt a pre-trained generalist vs. train from scratch 
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65

Semantic Segmentation Object Detection Image Captioning

4M-211 TST-MM (
(Adapted from 4M-211)

TST-MM (
(from scratch)

1. Bachmann*, Kar*, Mizrahi* et al. 2024



Analysis

Analysis 1. Is “specialization” actually happening? 
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35.86 29.32

Pre-training

87

(Semantic Segmentation mIoU)

Analysis

Analysis 1. Is “specialization” actually happening? 
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Analysis

Analysis 2. Specialization-generalization tradeoû

`Pre-training

Training spaces Test spaces



Analysis

Analysis 3. How much external data is the test-space data worth?

89

Pre-training

Test-Space Training

Pre-training

External data (
IID non-test spaces



Analysis

Analysis 4. What about other self-supervised objectives? 

1. Data Collection
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Model
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1. Data Collection

Multimodal Data

Test Space

2. Pre-training

Self Supervised 

Pre-training

Test Space

4. Deployment3. Transfer

External Dataset

Transferring  

(the Pre-trained 

Model)

Detection 

Transferred 

Model

Semantic 
Segmentation

Object 
Detection

Image 
Captioning

Test Space

(
A room with a white 

armchair and pillow 

positioned in the corner, 

a plant on a small stand 

beside it, and a large 

mirror on the right wall.


Captioning 

Transferred 

Model

Segmentation 

Transferred 

Model

Multimodal Sensory Data Additional (Optional) modalities

Pre-training

Evaluate
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47.7

46

46.8

TST-DINO

42.68

41.71

36.27

40.12

Evaluate

Pre-training

TST-MAE

Analysis

Analysis 4. What about other self-supervised objectives? 
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Imagebind Detection

Dropped modality

RGB (
only

Depth CLIP    Semantic (
  Segmentation

Surface (
Normals

Canny (
Edges

RGB-Only TST-MM (
drop 1 modality

Analysis

Analysis 5. Is one modality doing most of the job? 



Test-Space Training (
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Kunal Pratap Singh*, Ali Garjani*, (
(
Muhammad Uzair Khattak, Rishubh Singh, Jason Toskov, (
(
Andrei Atanov, O�uzhan Fatih Kar, Amir Zamir (
(

*Equal Contribution

Self-Supervised Specialization of Vision 
Models to the Test Environment

Input Test-Space Training

Pre-

training

Test-Space Training Test Space
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Tokenization
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Tokenization



Token-based generation
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Common way to perform generation:

Stage 1: Train tokenizer with autoencoding objective

Image

Tokenize Detokenize

Reconstruction

Tokens



Token-based generation
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Common way to perform generation:

Stage 1: Train tokenizer with autoencoding objective

Image

Tokenize Detokenize

Reconstruction

Tokens

Stage 2: Perform next-token prediction on image tokens

Flatten
?

Next-token prediction



Token-based generation
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Common 2D grid tokenizers images represented with a fixed number of tokens, 
regardless of complexity.

Raster 2D-grid 
tokens with 
autoregressive 
decoding

Flexible-length 
1D token 
sequences with 
autoregressive 
decoding

... ... ... ... ... ... ... ...

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

...

FlexTok

golden retriever

golden retriever

Raster 2D-grid 
tokens with 
autoregressive 
decoding

Flexible-length 
1D token 
sequences with 
autoregressive 
decoding

... ... ... ... ... ... ... ...

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

...

FlexTok

golden retriever

golden retriever

e.g. 256x256 pixels e.g. 256x256 pixels

e.g. 16x16 tokens e.g. 16x16 tokens



Token-based generation
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Common 2D grid tokenizers images represented with a fixed number of tokens, 
regardless of complexity.

Raster 2D-grid 
tokens with 
autoregressive 
decoding

Flexible-length 
1D token 
sequences with 
autoregressive 
decoding

... ... ... ... ... ... ... ...

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

...

FlexTok

golden retriever

golden retriever

Autoregressive generation is performed ~patch-by-patch.

Raster 2D-grid 
tokens with 
autoregressive 
decoding

Flexible-length 
1D token 
sequences with 
autoregressive 
decoding

... ... ... ... ... ... ... ...

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

...

FlexTok

golden retriever

golden retriever

Raster 2D-grid 
tokens with 
autoregressive 
decoding

Flexible-length 
1D token 
sequences with 
autoregressive 
decoding

... ... ... ... ... ... ... ...

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

...

FlexTok

golden retriever

golden retriever
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Abstraction — Compression
Do we need to model every detail, all the time?



FlexTok overview
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Classical 2D grid tokenizers

Tokens represent 
local image 
information



FlexTok overview
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Classical 2D grid tokenizers

Tokens represent 
local image 
information

FlexTok 1D flexible length tokenizer

High-level 
semantics

Details



FlexTok method
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Overview

ViT Encoder with
Registers

Recti昀؀ed Flow
Decoder

1 2 M M
VAE latents Noised latents

Predicted 昀؀ow

Registers

Quantization
(FSQ)

Nested
dropout

1 2 3 4

1 2

Stage 1

FlexTok tokenizer training



FlexTok method
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Overview

ViT Encoder with
Registers

Recti昀؀ed Flow
Decoder

1 2 M M
VAE latents Noised latents

Predicted 昀؀ow

Registers

Quantization
(FSQ)

Nested
dropout

1 2 3 4

1 2

Stage 1

FlexTok tokenizer training

"a blue
porsche"

AR
Transformer

1S 2 3

21 3 4
Autoregressive generation


using FlexTok tokens

Stage 2



FlexTok method
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Stage 1: Tokenizer training

ViT Encoder with
Registers

Recti昀؀ed Flow
Decoder

1 2 M M
VAE latents Noised latents

Predicted 昀؀ow

Registers

Quantization
(FSQ)

Nested
dropout

1 2 3 4

1 2



FlexTok reconstruction

256 tokens128 tokens64 tokens32 tokens16 tokens8 tokens4 tokens2 tokens1 token Original RGB

106

Specify a coarse-to-fine "visual vocabulary"



256 tokens128 tokens64 tokens32 tokens16 tokens8 tokens4 tokens2 tokens1 token Original RGB

FlexTok reconstruction

107

Specify a coarse-to-fine "visual vocabulary"



256 tokens128 tokens64 tokens32 tokens16 tokens8 tokens4 tokens2 tokens1 token Original RGB

FlexTok reconstruction

108

Specify a coarse-to-fine "visual vocabulary"



Autoregressive generation
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1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

golden retriever
(207)

volcano
(980)

flamingo
(130)

Class-to-image



Autoregressive generation
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"A cutting board
topped with

bread, meat and
vegetables."

"A blue Porsche
356 parked in

front of a yellow
brick wall"

"a corgi's head
depicted as an
explosion of a

nebula"

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

Text-to-image



Autoregressive generation
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Adaptive conditioning alignment

FlexTok + 1.3B AR (IN1K) FlexTok + 3B AR (DFN) 2D Grid Tok + 3B AR (DFN)
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"a corgi's head
depicted as an
explosion of a

nebula"

1 token 2 tokens 4 tokens 8 tokens 16 tokens 32 tokens 64 tokens 128 tokens 256 tokens

flamingo
(130)



Autoregressive generation
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Adaptive conditioning alignment

1 2 4 8 16 32 64 128 256

Number of tokens

50

60

70

80

T
o

p
-1

 
a

c
c

. 
o

n
 g

e
n

. 
 

IN
1

K

1 2 4 8 16 32 64 128 256

Number of tokens

24

26

28

30

32
C

L
IP

S
c

o
re

 
(C

O
C

O
)

Genera t ion  Spec i f i c i t y

FlexTok + 1.3B AR (IN1K) FlexTok + 3B AR (DFN) 2D Grid Tok + 3B AR (DFN)

56 1 2 4 8 16 32 64 128 256

Number of tokens

0

2

4

6

8

10

g
F

ID
 (

IN
1

k
 t

ra
in

 5
0

k
)

0

5

10

15

20

g
F

ID
 
(C

O
C

O
 v

a
l 

3
0

k
)

Genera t i on  Qua l i t y
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flamingo
(130)



113

Autoregressive generation
Image generation with simple and complex prompts
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Autoregressive generation
Image generation with simple and complex prompts



Scaling autoregressive generation
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AR Size : 49M 85M 201M 393M 679M 1.33B

" Prediction quality for first ~8 tokens is independent of model size


" Scaling AR model improves quality and alignment when predicting >32 tokens



Roman Bachmann1,2*, Jesse Allardice1*, David Mizrahi1*, Enrico Fini1, O�uzhan 

Fatih Kar2, Elmira Amirloo1, Alaaeldin El-Nouby1, Amir Zamir2, Afshin Dehghan1

1Apple,  2EPFL

 *Equal contribution

FlexTok Resampling Images into 1D Token 
Sequences of Flexible Length

Summary:


" FlexTok: 1D flexible-length tokenizer


" Specify "visual vocabulary", enabling coarse-to-fine generation


" Adaptive: Number of tokens to predict depends on complexity


" Future directions into flexible temporal and multimodal 
compression, as well as long-term reasoning in abstract spaces

http://flextok.epfl.ch
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Benchmarking popular multimodal FMs
How well does GPT-4o understand vision?

117

https://fm-vision-evals.epfl.ch/ 
How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks, 
Ramachandran, Garjani, Bachmann, Atanov *,  Kar *, Zamir *. arxiv 2025.  

GPT-4o predictions

https://fm-vision-evals.epfl.ch/
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How to extract a non-textual task from chatbots?
e.g., semantic segmentation from chatGPT?

118

Superpixel 1 Multi-Scale Pyramid

Sky

Superpixel 1  
Predicted Class

MFM

Superpixelate

Input Image

Specify the class of the 

object in this superpixel

Input Prompt

Superpixel 2 Multi-Scale Pyramid

Locomotive

Superpixel 2  
Predicted Class

MFM
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Predictions 
(GPT-4o)
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The results 121

Key Takeaways 

• Not state-of-the-art but respectable 

generalists.

• Stronger at semantic tasks than 

geometric tasks.

• GPT-4o outperforms other models across 

most tasks. 

Classification(

(Accuracy±)

Object (
Detection(

(AP@0.5±)

Segmentation(

(mIoU±)

Grouping (

(mIoU±)

Depth (

(   ±)

Surface (
Normals (

(   ±)

33

67

100

GPT-4o

Gemini 1.5 Pro

Claude 3.5 Sonnet

Qwen2-VL 72B

Llama 3.2

State-of-the-Art

State-of-the-Art + Chain

Ã 0.95

0.72

0.48

0

0.4

0.8

75

50

25

28

57

85

33

67

100

Ã

https://fm-vision-evals.epfl.ch/ 
How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks, 
Ramachandran, Garjani, Bachmann, Atanov *,  Kar *, Zamir *. arxiv 2025.  

121

https://fm-vision-evals.epfl.ch/
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Summary 122

Image
metadata

Orig. res.: 512x512
Colorfulness: 35%
Contrast: 45%
Brightness: 60%
Saturation: 40%

&

RGB

Depth

Semantic
segmentation

CLIP features
(dense)

Surface
normals

DINOv2
features
(dense)

Canny edges

Bounding
boxes

Color palette

ImageBind
features
(dense)

SAM
instances

SAM edges

3D human
poses

Semantic
metadata

# Humans: 7
# Instances: 12
Objectness: 40%
Walkability: 40%
Clutter score: 75%

&

Geometric
metadata

Geometric
complexity: 55%
Occlusion score:

25%
&

DINOv2
features
(global)

ImageBind
features
(global)

Web text

Albany
International

Airport serves as
the major air
center for the
Capital Region,
Northeastern ...

Caption

Getting ready for
my 昀؀ight!

T5-XXL
embeddings

Transformer
encoder

Transformer
decoder

Geometric modalities

Semantic modalities

Feature map modalities

Text modalities

Metadata modalities

RGB modalities Edge modalities

Global feature modalities

Any-to-any model

• 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023. 
• MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022 
• 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.
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Summary 123

¯ A scalable versatile               multi-
modal/Multi-task foundation model 

¯ Ultimate goal: a grounded world 
model. A “foundation”.

• Craik, Kenneth. The nature of explanation. Vol. 445. CUP Archive, 1967.

• 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023. 
• MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

Image
metadata

Orig. res.: 512x512
Colorfulness: 35%
Contrast: 45%
Brightness: 60%
Saturation: 40%

&

RGB

Depth

Semantic
segmentation

CLIP features
(dense)

Surface
normals

DINOv2
features
(dense)

Canny edges

Bounding
boxes

Color palette

ImageBind
features
(dense)

SAM
instances

SAM edges

3D human
poses

Semantic
metadata

# Humans: 7
# Instances: 12
Objectness: 40%
Walkability: 40%
Clutter score: 75%

&

Geometric
metadata

Geometric
complexity: 55%
Occlusion score:

25%
&

DINOv2
features
(global)

ImageBind
features
(global)

Web text

Albany
International

Airport serves as
the major air
center for the
Capital Region,
Northeastern ...

Caption

Getting ready for
my 昀؀ight!

T5-XXL
embeddings

Transformer
encoder

Transformer
decoder

Geometric modalities

Semantic modalities

Feature map modalities

Text modalities

Metadata modalities

RGB modalities Edge modalities

Global feature modalities

Any-to-any model
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Summary 124

¯ A scalable versatile               multi-
modal/Multi-task foundation model 

¯ Ultimate goal: a grounded world 
model. A “foundation”. 

¯ (Long-form) Video understanding

• 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023. 
• MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022 
• 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.

Shen et al., 2023
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Summary 125

¯ A scalable versatile               multi-
modal/Multi-task foundation model 

¯ Ultimate goal: a grounded world 
model. A “foundation”. 

¯ (Long-form) Video understanding 

¯ Learning in higher-level spaces

• 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023. 
• MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022 
• 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.
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Summary 126

¯ A scalable versatile               multi-
modal/Multi-task foundation model 

¯ Ultimate goal: a grounded world 
model. A “foundation”. 

¯ (Long-form) Video understanding 

¯ Learning in higher-level spaces 

¯ Physical/MM self-supervision

• 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023. 
• MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022 
• 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.
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Summary 127

¯ A scalable versatile               multi-
modal/Multi-task foundation model 

¯ Ultimate goal: a grounded world 
model. A “foundation”. 

¯ (Long-form) Video understanding 

¯ Learning in higher-level spaces 

¯ Physical/MM self-supervision 

¯ Multimodal in-context learning 

¯ Reasoning 

¯ Co-training  

¯ Inducing emergence

• 4M: Massively Multimodal Masked Modeling, Mizrahi, Bachmann, Kar, Yeo, Gao, Dehghan, Zamir. NeurIPS 2023. 
• MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022 
• 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities, Bachmann, Kar, Mizrahi, et al., 2024.



https://4m.epfl.ch/ 

https://flextok.epfl.ch/ 

https://fm-vision-evals.epfl.ch/ 

https://amirzamir.com/ 
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