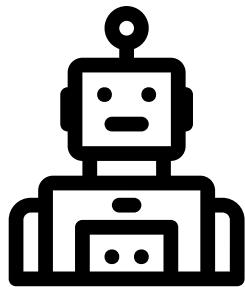


RL Applications

Kunal Pratap Singh

27/03/2025

Navigation



Goal

“Find a bed”

PointNav

RGB

Depth

GPS

ObjectNav

RGB

Depth

ImageNav

RGB

Depth

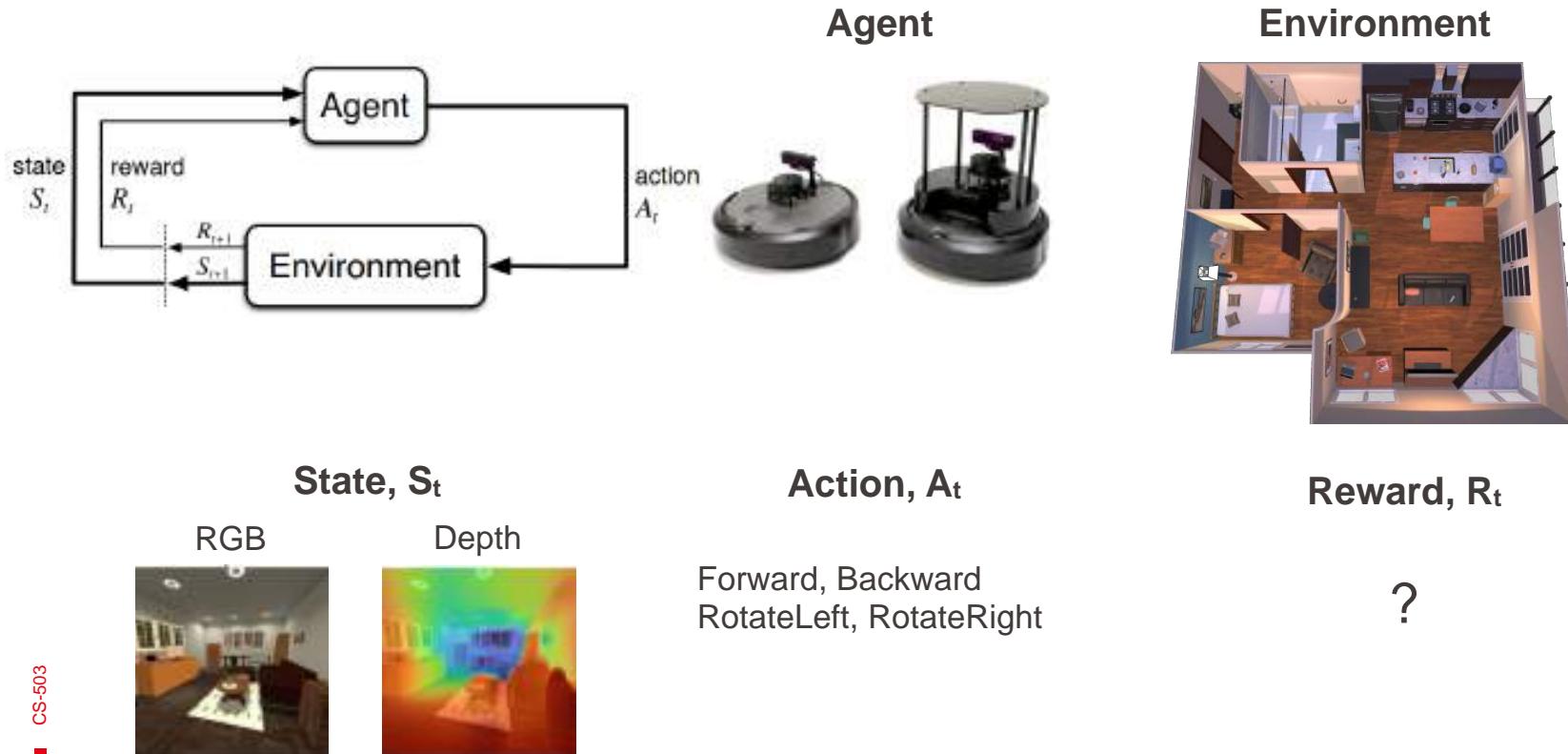
Sensors

GPS

Target

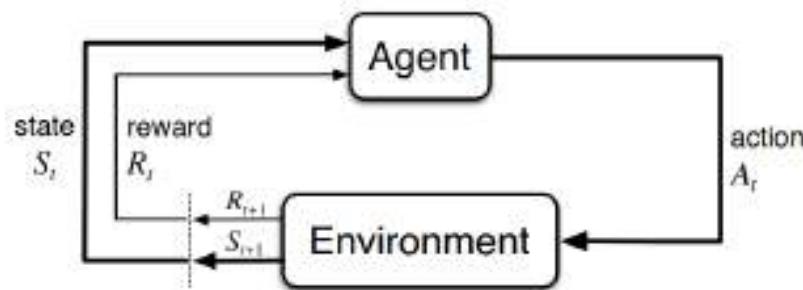
“Find me a bed”

Reinforcement learning in Navigation



Reinforcement learning in Navigation

Reinforcement learning in Navigation

**Reward, R_t**

$$R_{success} = \begin{cases} 2.5, & \text{if reach goal} \\ 0, & \text{otherwise} \end{cases}$$

Terminal Reward

$$R_{slack} = -0.01$$

$$R_{progress} = -\text{distance}(pos_t, pos_{goal})$$

Reward Shaping

Agent**Environment****Target**

Reinforcement learning in Navigation

Reward, R_t $T = 1$ $R_{success} = 0 \quad R_{slack} = -0.01$ $R_{progress} = -5$ $R_{T=1} = 0 + -0.01 + -5$

Reinforcement learning in Navigation

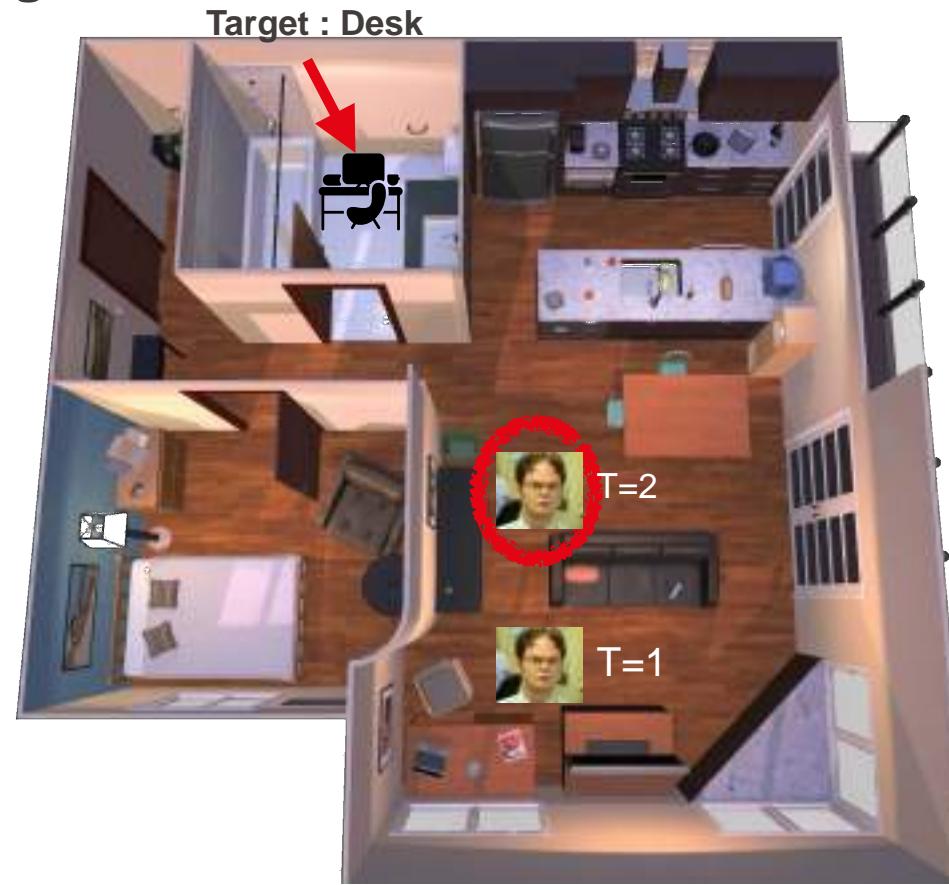
Reward, R_t

$T = 2$

$R_{success} = 0 \quad R_{slack} = -0.01$

$R_{progress} = -3$

$R_{T=2} = 0 + -0.01 + -3$



Reinforcement learning in Navigation

Reward, R_t $T = 3$

$$R_{success} = 2.5 \quad R_{slack} = -0.01$$

$$R_{progress} = -1$$

$$R_{T=3} = 0 + -0.01 + -1$$

Reinforcement learning in Navigation

Reward, R_t

In Summary,

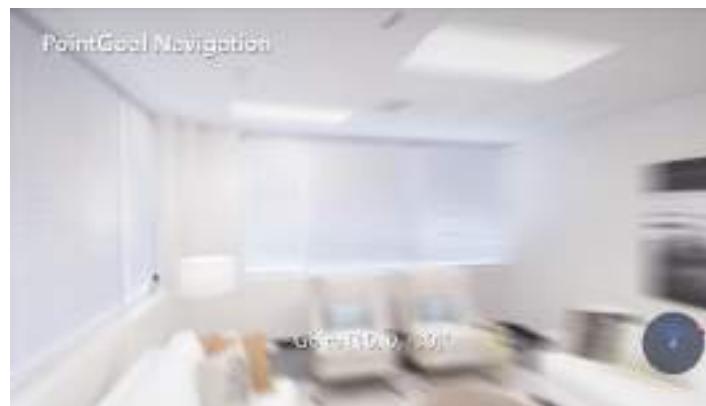
$$R_{T=1} = -5.01$$

$$R_{T=2} = -3.01$$

$$R_{T=3} = 1.49$$

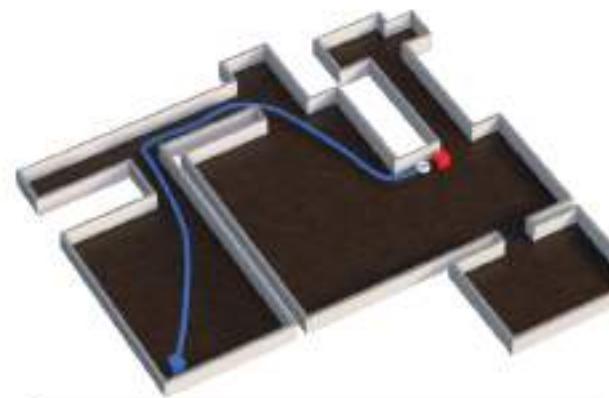
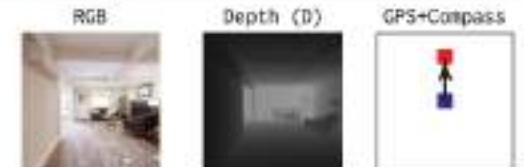
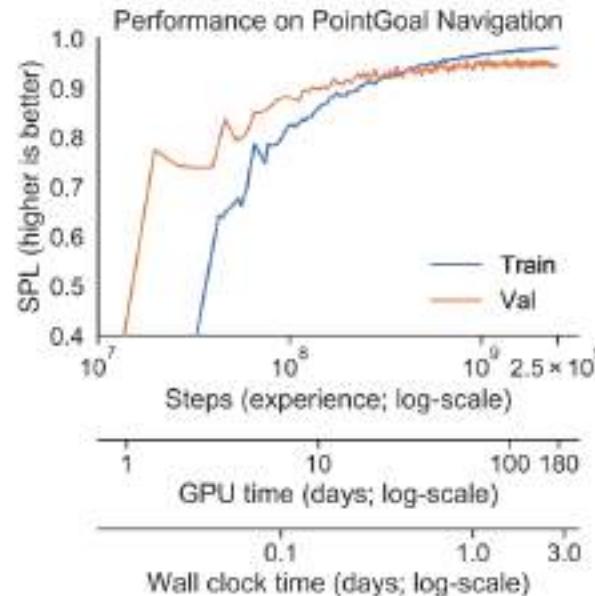
Reinforcement learning in Navigation

Habitat



ProcTHOR

Gibson

DD-PPO: Distributed Decentralised PPO¹

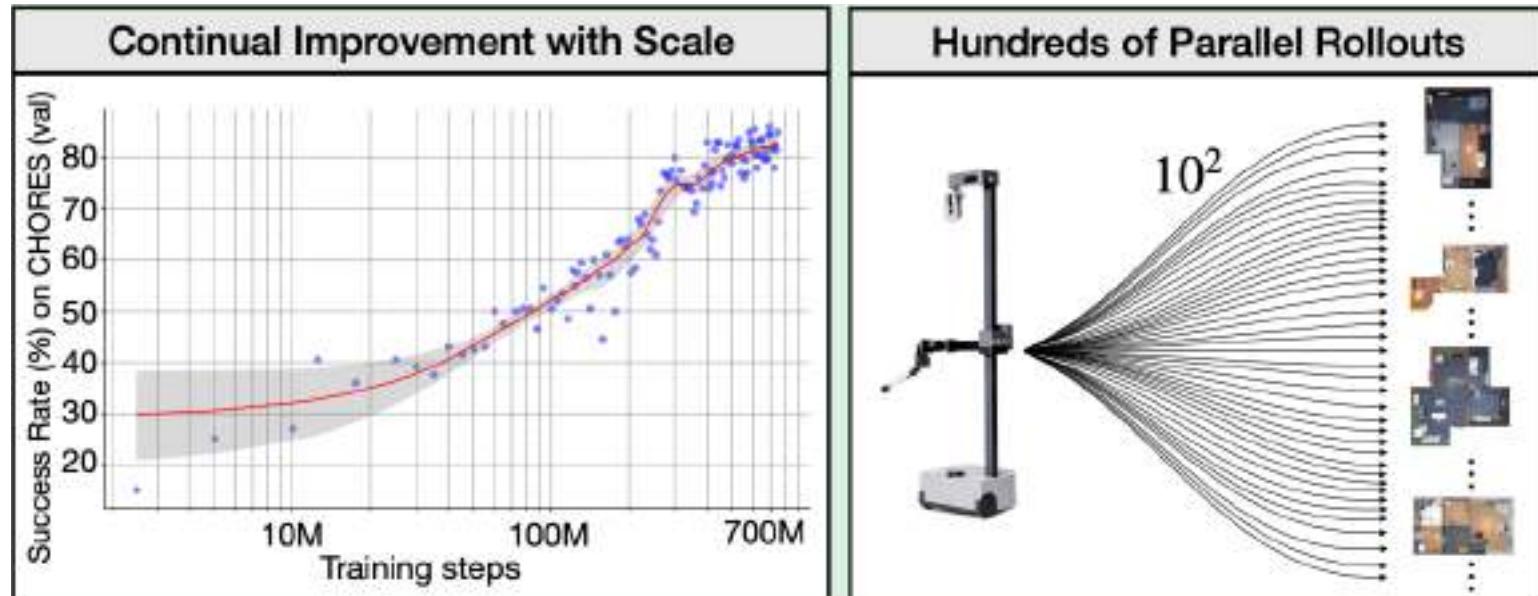
1. Wijmans et al. DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion frames

DD-PPO: Decentralised Distributed PPO¹

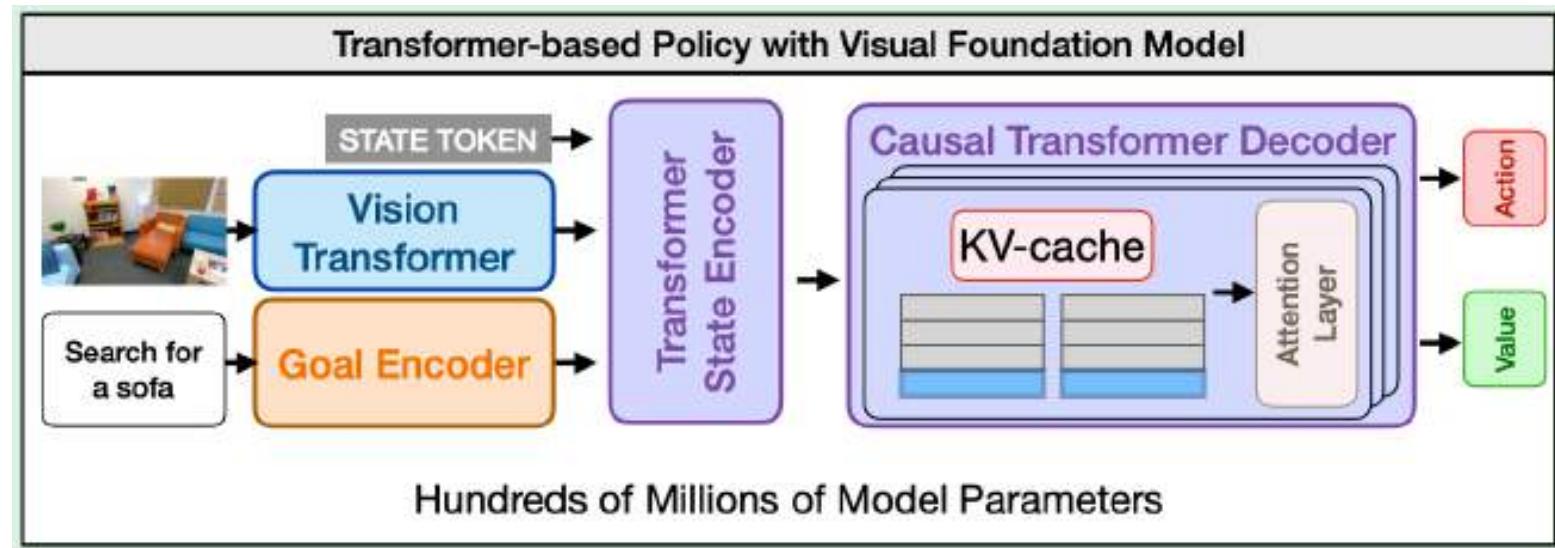
RGB and GPS+Compass

Top Do

1. Wijmans et al. DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion frames

Poliformer: Scaling On-policy RL with Transformers¹

1. Zeng et al. PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators.

Poliformer: Scaling On-policy RL with Transformers¹

1. Zeng et al. PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators.

Poliformer: Scaling On-policy RL with Transformers¹

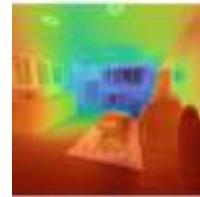
1. Zeng et al. PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators.

Emergence of Maps in the memories Blind Navigation Agents¹

PointNav

RGB

Depth



GPS

Blind PointNav

GPS

GPS

Sensors

Target

GPS

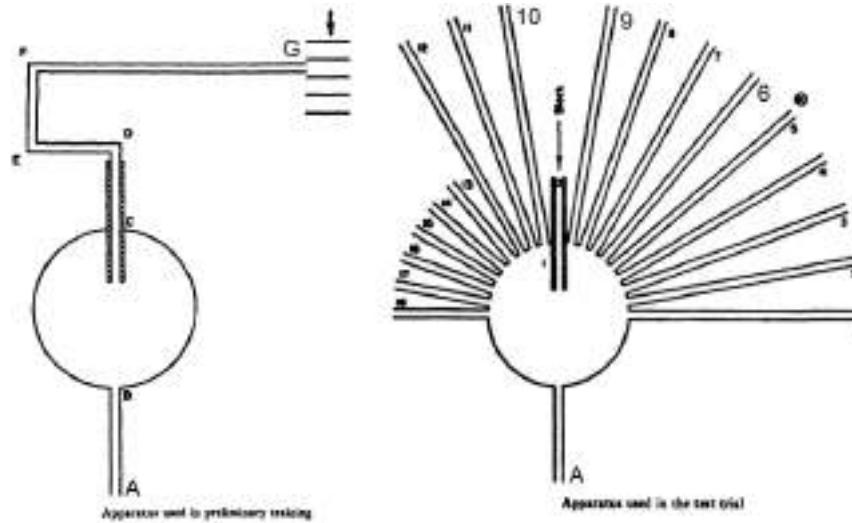
Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents¹

1. Wijmans et al. Emergence of Maps in the memory of blind agents.

Blind Navigation Agents

Cognitive Maps (1948)

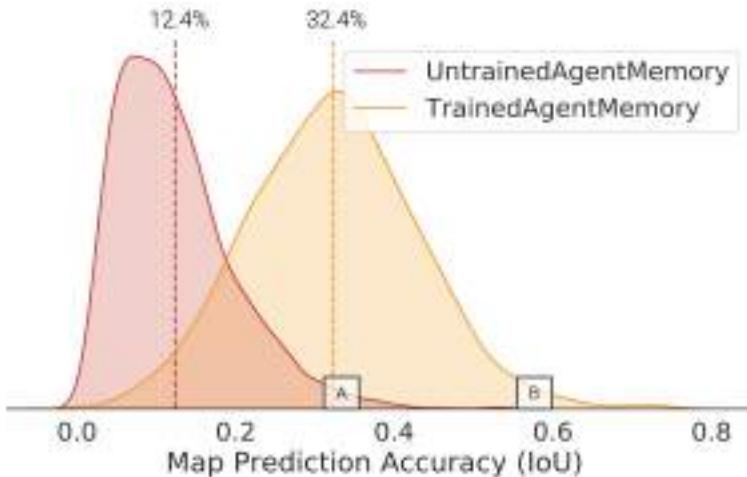
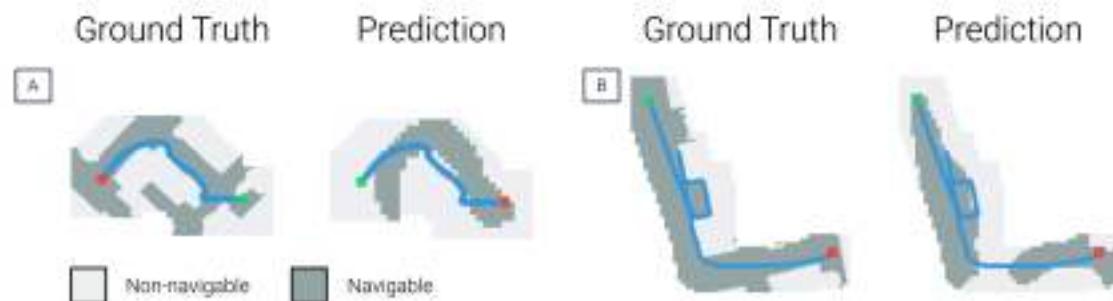


(From E. C. Tolman, B. F. Ritchie and D. Koffel, Studies in spatial learning. I. Orientation and short-cut. *J. exp. Psychol.*, 1946, 36, p. 17.)

Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents¹

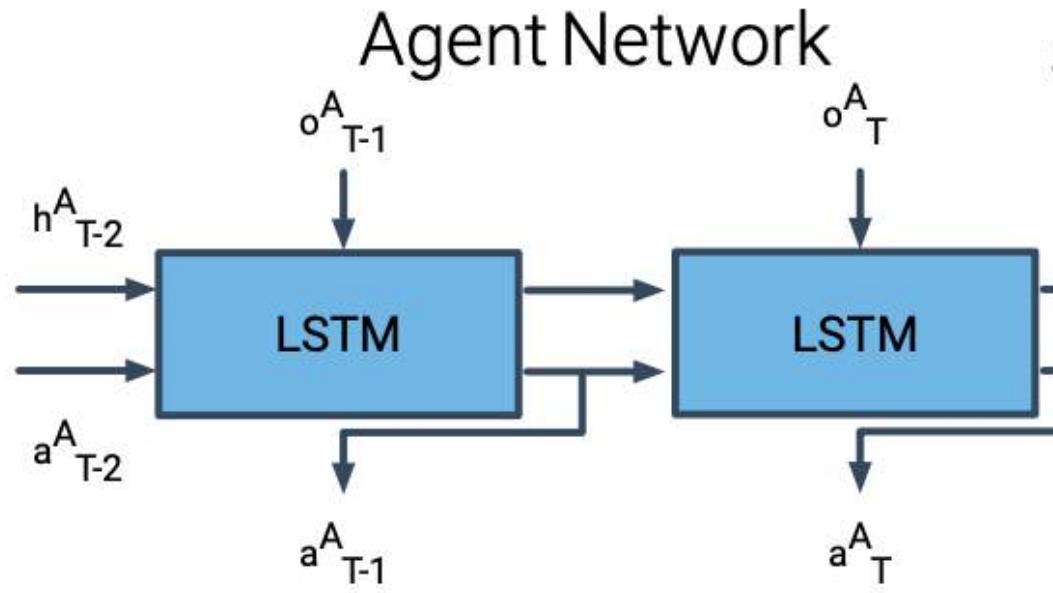
- Trained Blind Agent have better memory of free space in the environment.



1. Wijmans et al. Emergence of Maps in the memory of blind agents.

Blind Navigation Agents

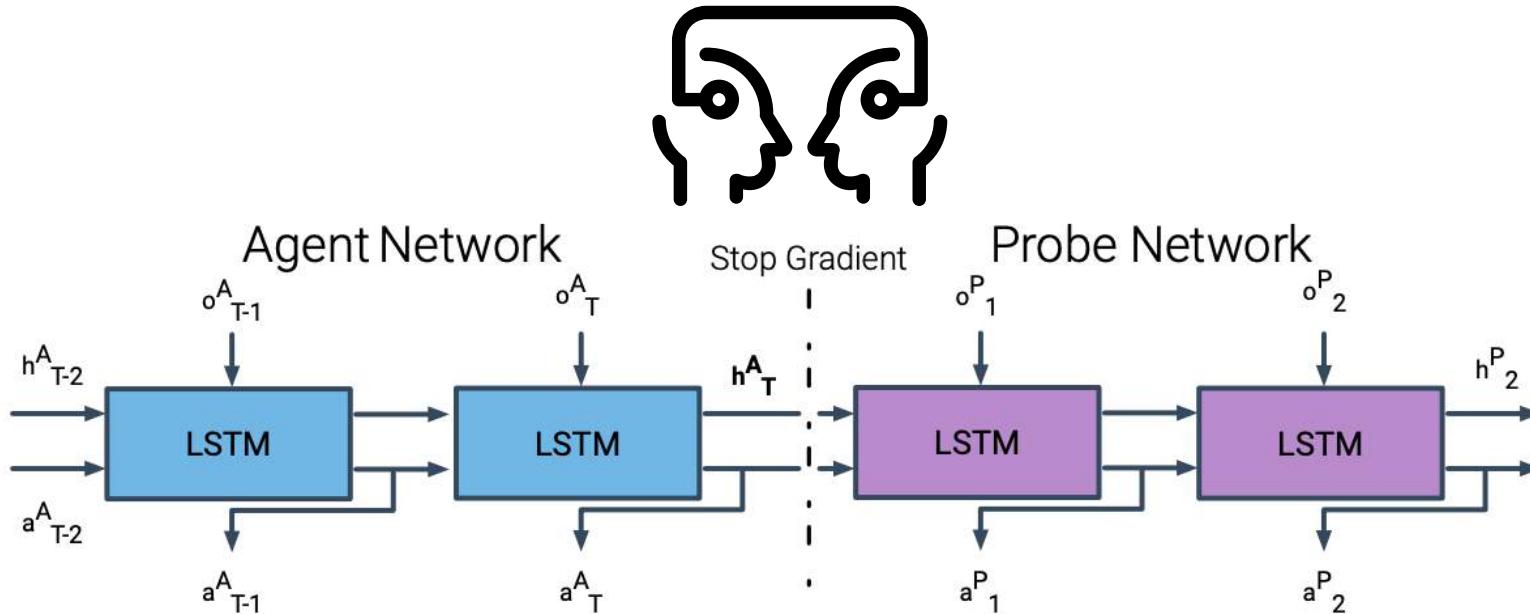
Emergence of Maps in the memories Blind Navigation Agents¹



1. Wijmans et al. Emergence of Maps in the memory of blind agents.

Emergence of Maps in the memories Blind Navigation Agents¹

- Transfer memory from an trained agent, to an untrained one.



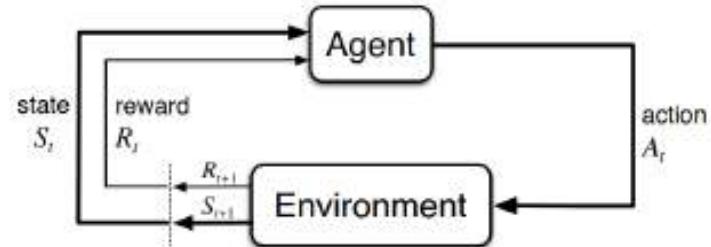
1. Wijmans et al. Emergence of Maps in the memory of blind agents.

Emergence of Maps in the memories Blind Navigation Agents¹

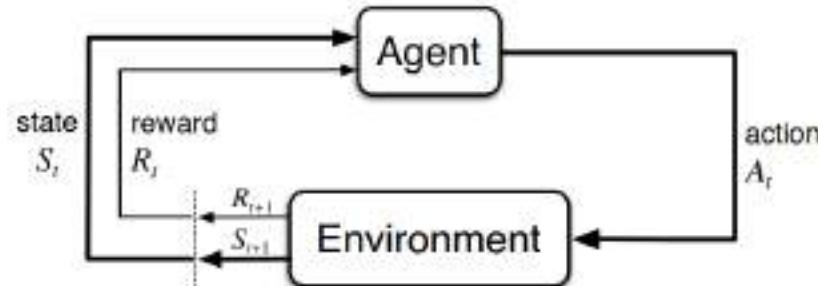
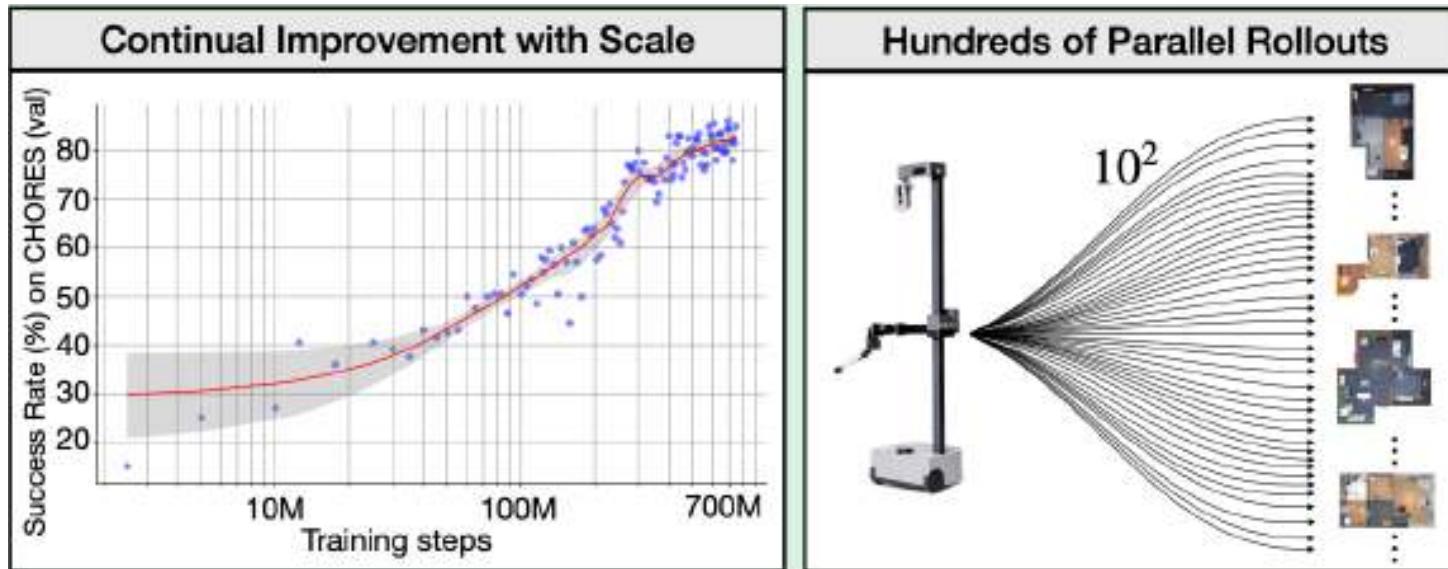


1. Wijmans et al. Emergence of Maps in the memory of blind agents.

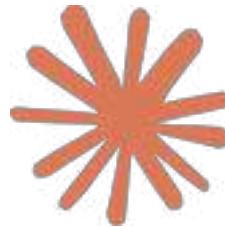
- Reward engineering is hard for complex tasks.



- RL is sample inefficient.
- Millions of interactions for a task.



Foundation Models

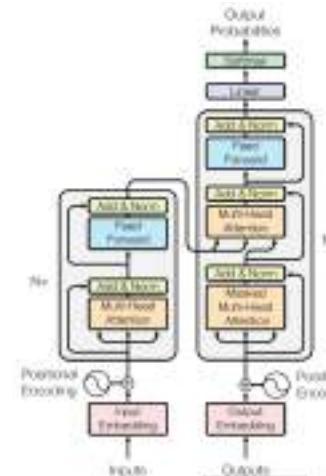


Foundation Models - Two key components

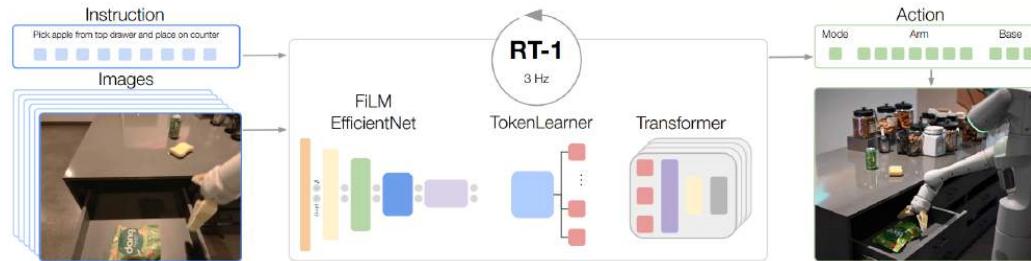
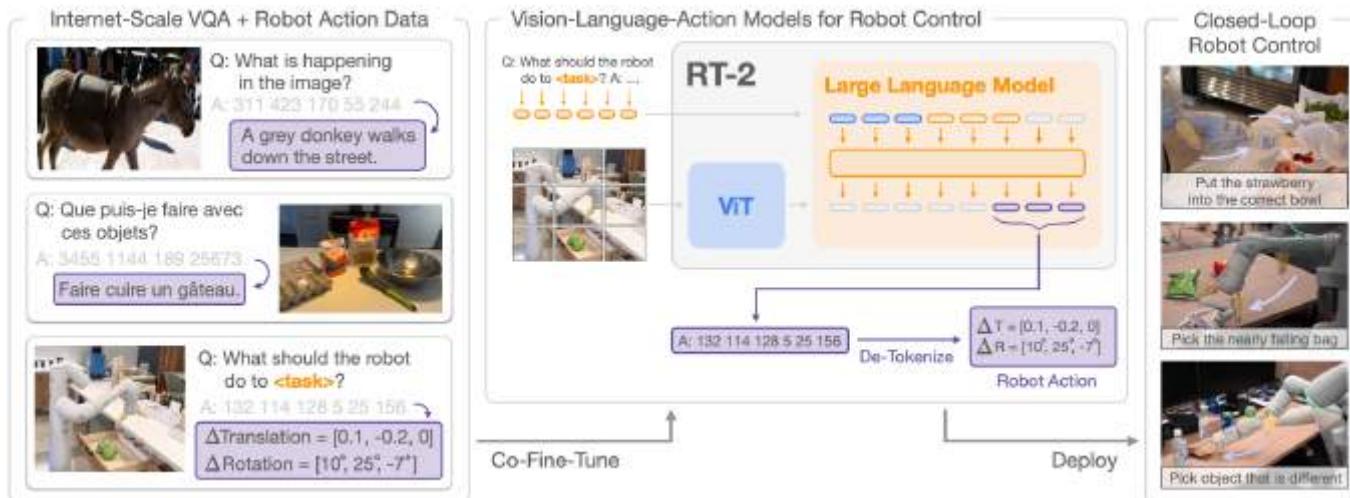
Gemini

Large scale data

Architecture



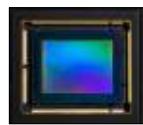
Foundation Model for Robotics



- Gibson: “Ask not what's inside your head, but what is your head inside.”

Computer Vision *status quo*

- High-resolution Camera
- Intuitive design (by humans)



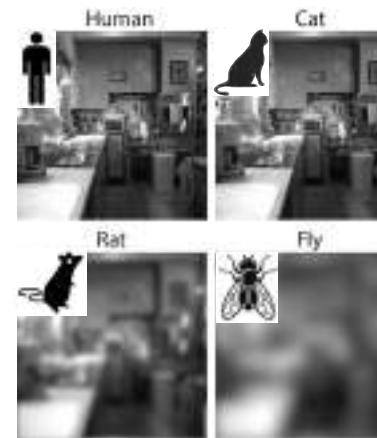
Camera

(e.g., $128 \times 128 = 16,384$)

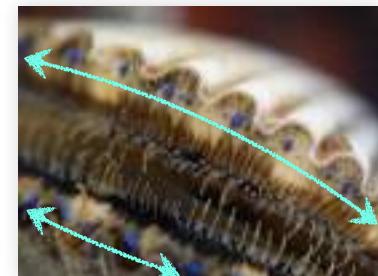
Nature (simple eyes)

- Simple low-resolution eyes
- Optimized design (via evolution)

Qualitative comparison of eyes resolutions:



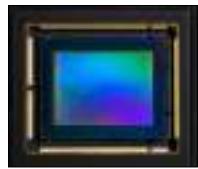
Distributed Design of Primitive Eyes of a Scallop



Visual Acuity and the Evolution of Signals, Caves et al. 2018.

How far can a 1-pixel camera go?

- We use simple photoreceptor sensors (<1% of a camera resolution).

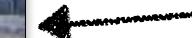


Camera

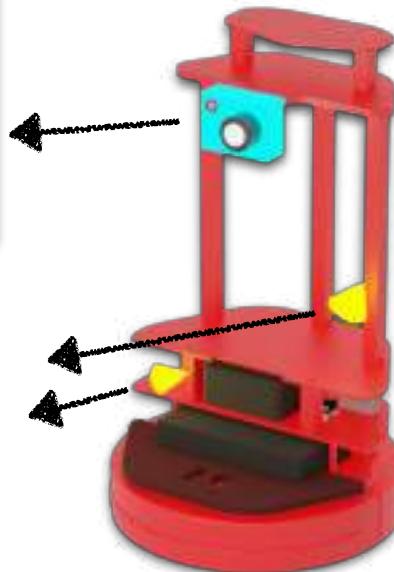
(e.g., $128 \times 128 = 16,384$)

Photoreceptor
($1 \times 1 = 1$)

Camera

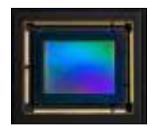


Photoreceptors



How far can a 1-pixel camera go?

- Can simple photoreceptor sensors solve vision tasks?
- What is the role of their design?
- Develop a computational design optimization method.



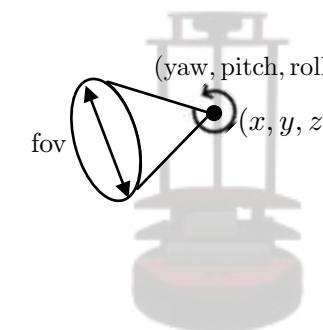
Camera

(e.g., $128 \times 128 = 16,384$)

Photoreceptor

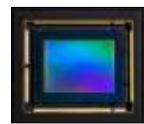
($1 \times 1 = 1$)

Vision tasks:
e.g., visual navigation.



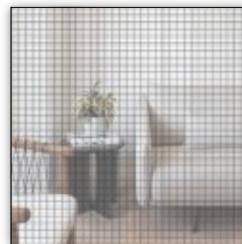
Visual sensors design.

- Can simple photoreceptor sensors solve vision tasks?
- What is the role of their design?
- Develop a computational design optimization method.



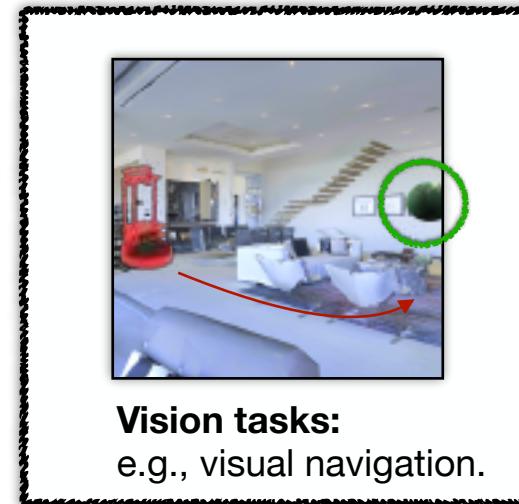
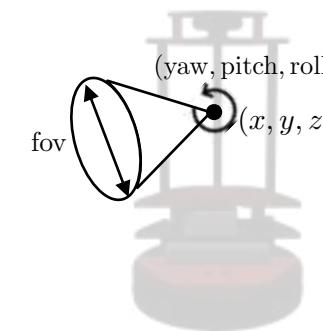
Camera

(e.g., $128 \times 128 = 16,384$)



Photoreceptor

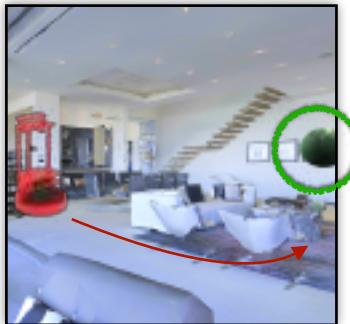
$(1 \times 1 = 1)$



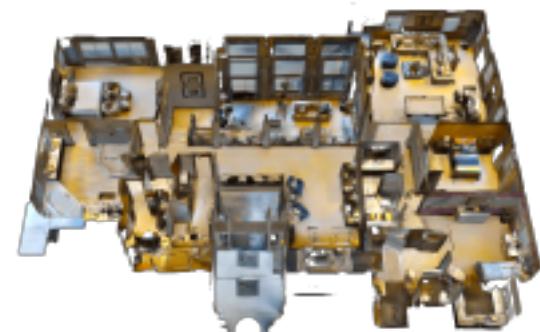
Visual sensors design.

Visual Navigation Task:

Task: navigate to **the target** in an unseen environment

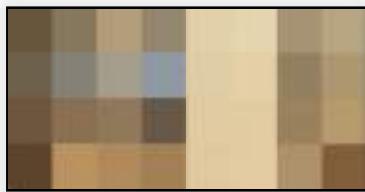


MatterPort3D Scans of Real-World Apartments



- A handful of PRs can be enough to solve visual navigation meaningfully well.

Observation:
32 Photoreceptors



Camera View
(for visualization only)

Top-down map:
📍 : Start Position ⭐ : Goal Position

Success Rate on Unseen Scenes

EPFL Simple Photoreceptors in the Real World

38

- Simple photoreceptors show non-trivial generalization to the real world.

Visual Observation:
64 Photoreceptors

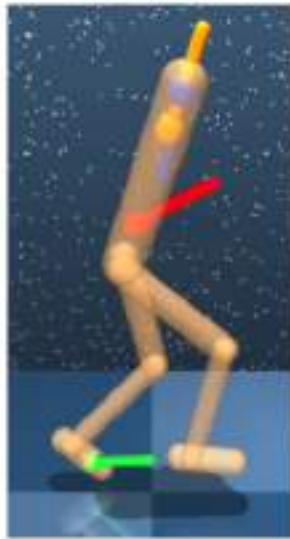


Third-Person View:
(for visualization only)

Robot Camera View
(for visualization only)

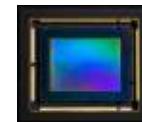
- Example of the Walker: Walk task solved with 4 photoreceptors.

Placement of
Photoreceptors:

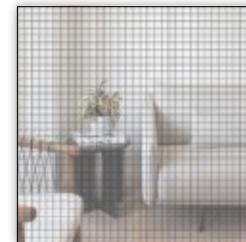


- Can simple photoreceptor sensors solve vision tasks?
- **What is the role of their design?**
- Develop a computational design optimization method.

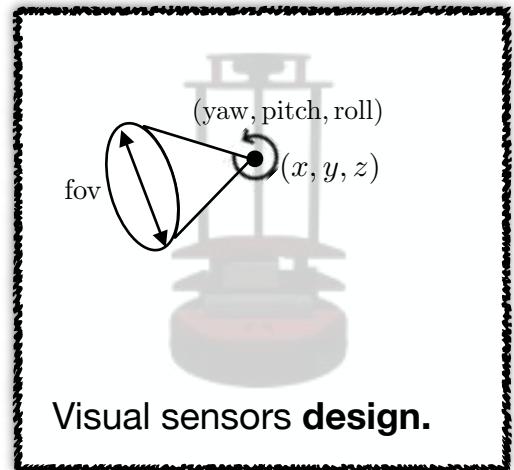
Solve **vision tasks**,
e.g., visual navigation.



Camera
(e.g., $128 \times 128 = 16,384$)

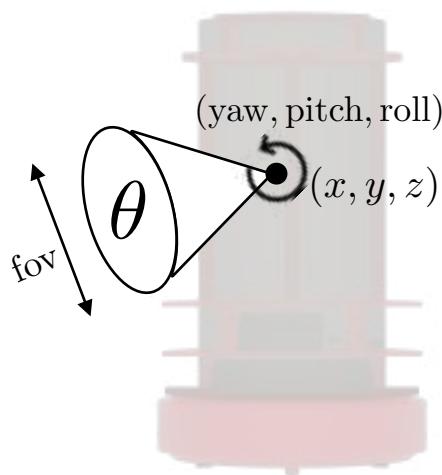


Photoreceptor
($1 \times 1 = 1$)



- **Design parameters:** position (on the agent's body), orientation, FoV

Visual Sensor Design:

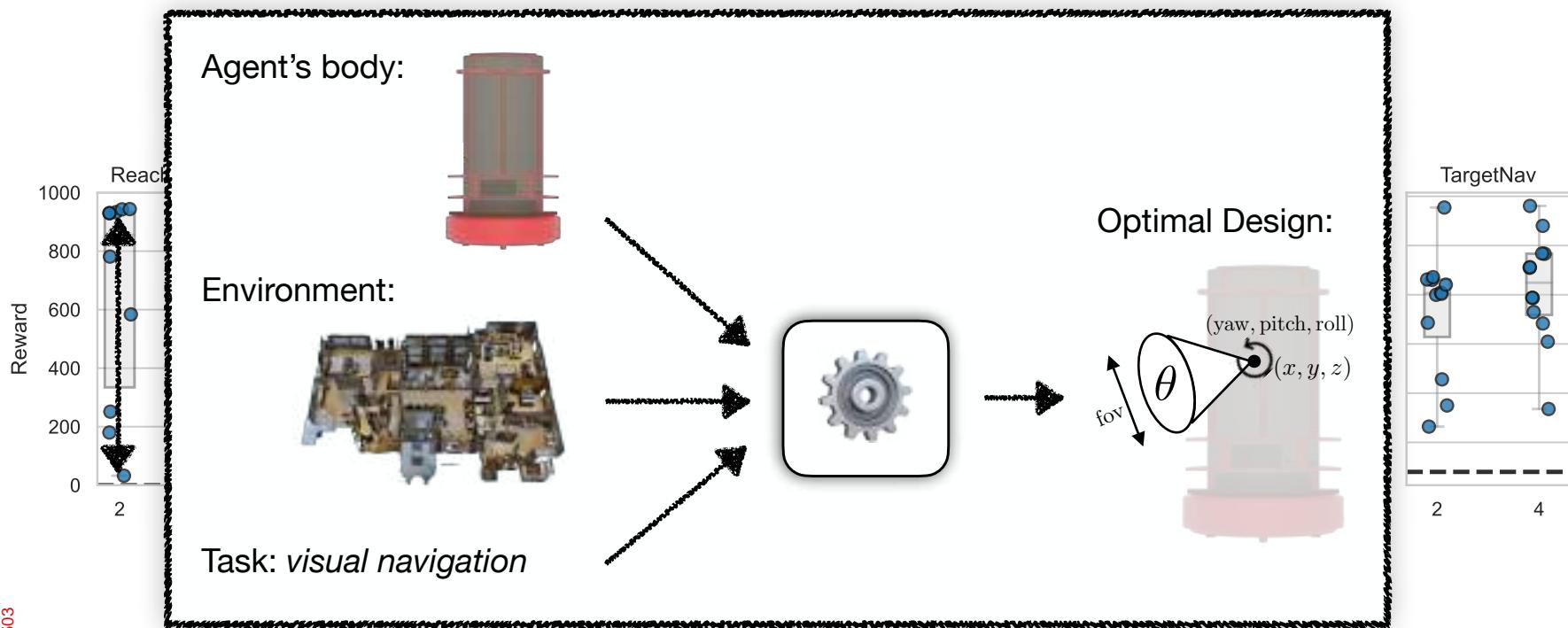


Design Types:

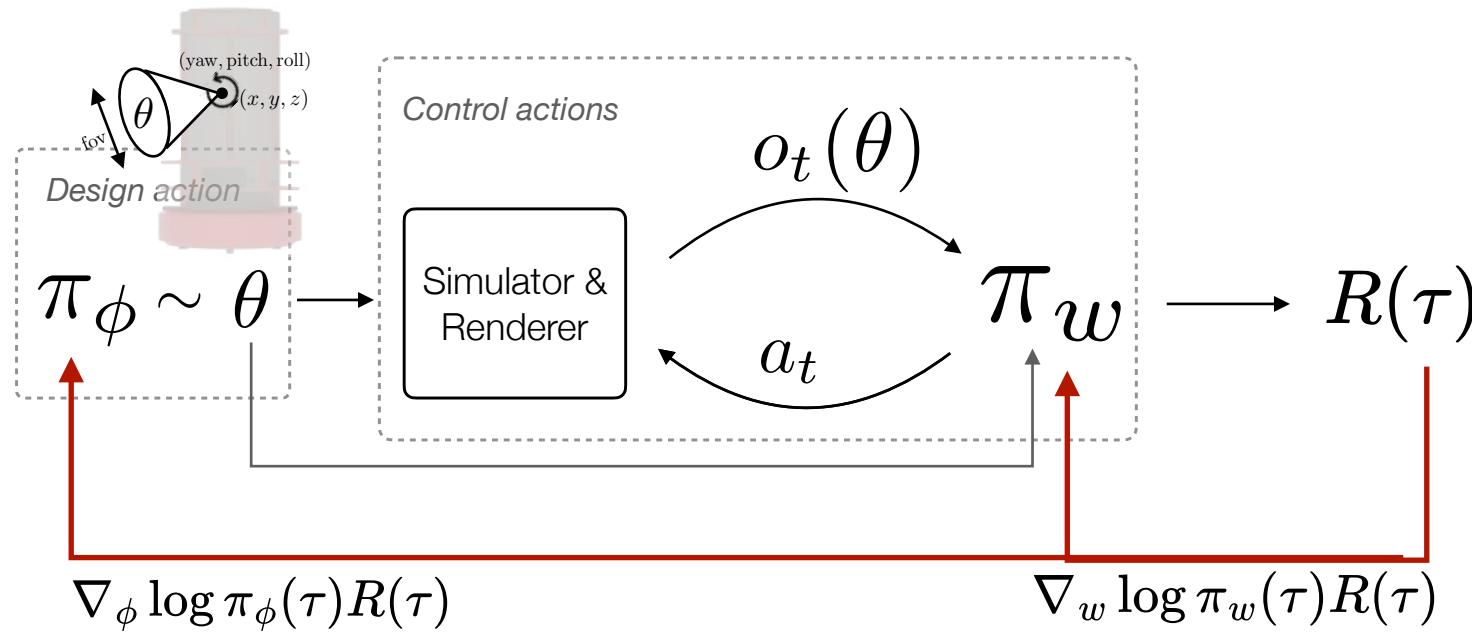
- 🎲 Random design sampled uniformly from the design space.
- 🎓 Computational design optimized for a specific body, environment, and task.
- 🤓 Intuitive design engineered by humans (via a human survey).

$$\theta = [x, y, z, \text{yaw, pitch, roll, fov}]$$

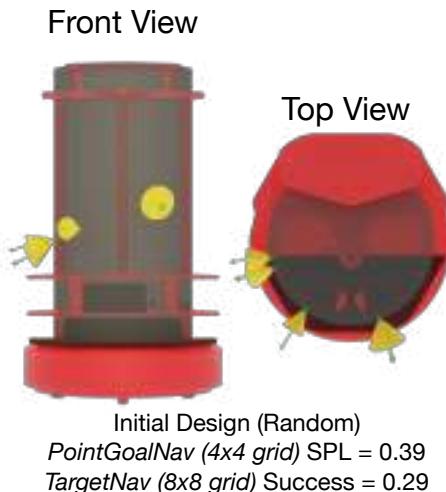
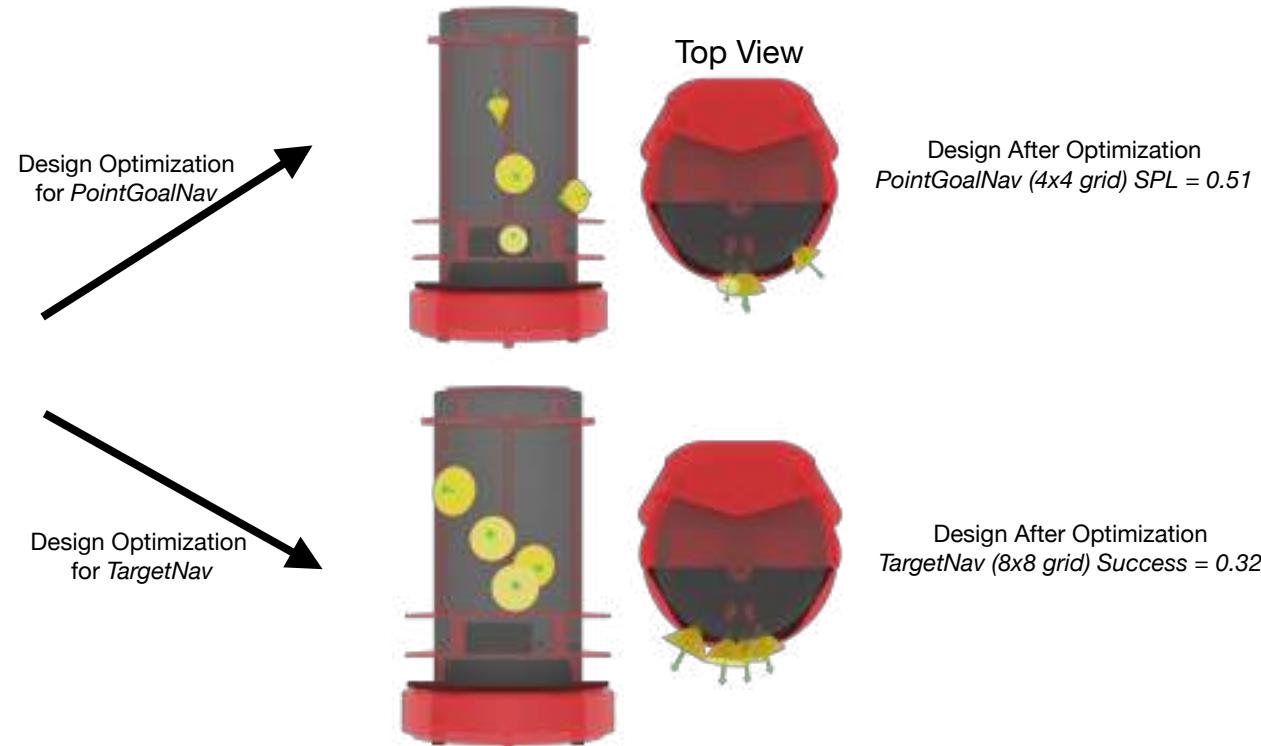
- The design plays a crucial role in the effectiveness of simple visual sensors.



- We jointly optimize both the control and design policy.

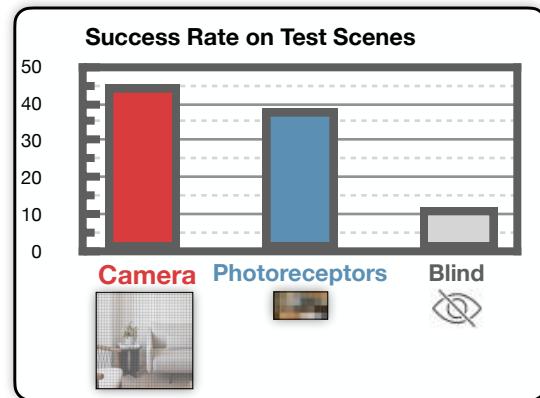
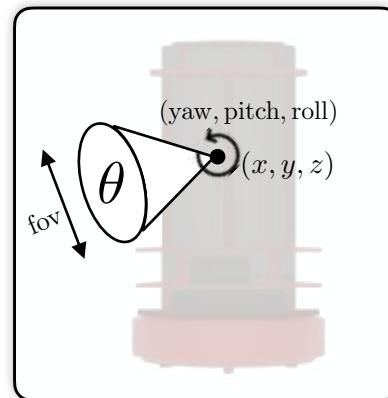
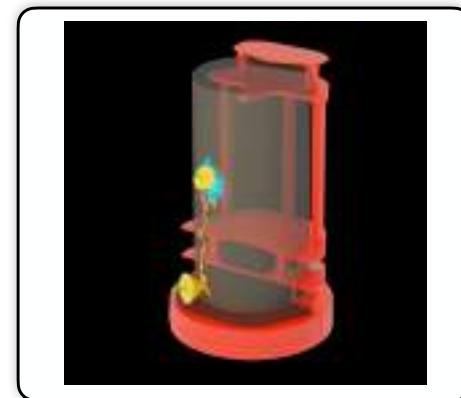


- Examples designs for navigation tasks.



- Simple photoreceptors are effective visual sensors.
- Design is essential for the effectiveness of photoreceptors.
- Computational Design Optimisation using Reinforcement learning.

Project Page:



Questions?

<https://vilab.epfl.ch/>