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1. Dietke et al., Retrospectives on the Embodied Al workshop, 2022



=PFL Embodied Al

Navigation
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=L Navigation

Goal

“Find a bed”
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=L Navigation 5

PointNav ObjectNav ImageNav

Depth

Depth

Sensors

Target “Find me a bed”

GPS
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=L Navigation

Reinforcement learning in Navigation

state
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Agent

.. | Environment ]4—

Agent

Action, A

Forward, Backward
RotateLeft, RotateRight

Environment

Reward, R;
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=L Navigation

Reinforcement learning in Navigation
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=L Navigation

Reinforcement learning in Navigation

Reward, Rt
>
Agent
g R _J 25, ifreach goal Terminal
stale} |reward action SUCCESS ™ Y 0,  otherwise Reward
S R, A,

LAY ¢ __
<o Environment ]4— Rytacr = = 0.01 Reward
’ R ogress = — distance(pos, posg,q;) Shaping

Environment
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Navigation

Reinforcement learning in Navigation

Target : Desk

Reward, R;

T=1

Rsuccess 0 Rslack —0.01
Rprogress =-=3

Ry, =0+-0.01+-5
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=PFL Navigation

Reinforcement learning in Navigation
Target : Desk

Reward, R;

T=2

Rsuccess 0 Rslack —0.01
Rprogress = -3

RT:Z — O + —001 + —3
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Navigation

Reinforcement learning in Navigation

Target : Desk

Reward, R;
T=3
R

Success

R =—1

progress

- 25 Rslack - — 001

Ry_y=0+—-0.01+—1
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Navigation

Reinforcement learning in Navigation

Target : Desk

Reward, R;

In Summary,

Ry, = —5.01 }I{;
Ry = —3.01 A ;>I<§
Ry = 1.49 A, A,
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Navigation

Reinforcement learning in Navigation

Habitat ProcTHOR

p

Gibson
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=L Navigation
DD-PPO: Distributed Decentralised PPO1

Performance on PointGoal Navigation
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1. Wijmans et al. DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion frames

B CS-503
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=L Navigation
DD-PPO: Decentralised Distributed PPO1

RGB and GPS+Compass

1. Wijmans et al. DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion frames

B CS-503
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https://www.youtube.com/watch?v=wNDcvomBRt8

=L Navigation

Poliformer: Scaling On-policy RL with Transformers!?

B CS-503

Continual Improvement with Scale

Hundreds of Parallel Rollouts

2838

o

N W bH
o O

10M 100M 700M
Training steps

Success Rate (%) on CHORES (val)

1. Zeng et al. PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators.
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=L Navigation

B CS-503

Poliformer: Scaling On-policy RL with Transformers!?

Transformer-based Policy with Visual Foundation Model

I =
STATE TOKEN 5 5 Causal Transformer Decoder
= Y © P - )
il vision | | E8 e
= | Transformer | L & KV-cache g _
29 |~ £8
Se i E w 23
archfor s Goal Encoder | F & . =
asofa s 1 . - : P
3 A e R S

Hundreds of Millions of Model Parameters

I Value | IAction \

1. Zeng et al. PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators.
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=L Navigation

Poliformer: Scaling On-policy RL with Transformers?

1. Zeng et al. PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators.

B CS-503
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PFL Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents?

PointNav Blind PointNav
GPS
Sensors 1% g
Target ? <g>
S

GPS

1. Wijmans et al. Emergence of Maps in the memory of blind agents.

B CS-503
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=L Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents?

1. Wijmans et al. Emergence of Maps in the memory of blind agents.

B CS-503
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=L Blind Navigation Agents
Cognitive Maps (1948)




7. Blind Navigation Agents ”

Emergence of Maps in the memories Blind Navigation Agents?

= Trained Blind Agent have better memory of free space in the environment.

124% 32.4%

3 S UntrainedAgentMemory

TrainedAgentMemory - y
Ground Truth Prediction Ground Truth Prediction
(2] (=] ‘ ‘
[—f;l - D Nan-nawgabie . Navigabile

0.2 0.4 0.6 0.8
Map Prediction Accuracy (loU)

1. Wijmans et al. Emergence of Maps in the memory of blind agents.
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=L Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents?

Agent Ne‘[workA :

A

o T a ;

1. Wijmans et al. Emergence of Maps in the memory of blind agents.

B CS-503
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=L Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents?

= Transfer memory from an trained agent, to an untrained one.

D¢

Agent Network Stop Gradient ~_Probe NetworkP
A A

ok = s ; I 04 )

T |

1. Wijmans et al. Emergence of Maps in the memory of blind agents.

B CS-503
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=L Blind Navigation Agents

Emergence of Maps in the memories Blind Navigation Agents?

1. Wijmans et al. Emergence of Maps in the memory of blind agents.

B CS-503
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=P*L RL 1s not all you need

B CS-503

= Reward engineering is hard for complex
tasks.

SE—

Agent

1+l (
.. | Environment ]4—

action
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=P*L RL 1s not all you need ’

= RL is sample inefficient. | Agent
= Millions of interactions for a task. state| |reward sotion
s, | |[R
H R'_‘ - ™ Ar
< Environment [e——
Continual Improvement with Scale Hundreds of Parallel Rollouts
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=PFL. Recent success In NLP / Vision

Foundation Models

o~ % .
zemlinl



=PFL. Recent success In NLP / Vision

Foundation Models - Two key components

emini

Large scale data Architecture

B CS-503
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=PFL. ChatGPT for Robotics

Foundation Model for Robotics

B CS-503

Instruction

[ Pick appks from top crawer end place on countar ]

Images

Intemet-Scale VQA + Robot Action Data

Q: What is happening
in the imaga?

Q: Que puis-je faire avec
ces objets?

o aiE g -

Q: What should the robot
do to <task>?

~

A grey donkey wﬂ(s—)
down the streat.

ATranslation = 0.1, <0.2, 0]
ARetation = [10], 257 -7°]

o
(' RT-1 |
\ 8Hz /
N\ /
FiLM e
EfficientNet TokenLearner Transformer
= ~
a =
- L B

Vision-Language-Action Models for Robot Control

2 Whare ahouid the robat
0 o dhain 7 K RT-2 Large Language Model

e —

o

beer m! =

Co-Fine-Tuna

AT«(01,02 09
Ar-id 28t

Robot Action

Tnkcnu e

Deploy i

Closed-Loop
Robot Control

Put the strawbamy

I Sy comect bowl

Pick otrect (el i Memn!
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=PFL Ecological Approach ’

* Gibson: “Ask not what's inside
your head, but what is your
head inside.”
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=PFL Visual Sensors in Computer Vision and Nature

Computer Vision status quo Nature (simple eyes)
» High-resolution Camera e Simple low-resolution eyes
e |Intuitive design (by humans) * Optimized design (via evolution)
Qualitative comparison of Distributed Design of
! eyes resolutions: Primitive Eyes of a Scallop
Muman Cat

Camera
(e.g., 128x128 = 16,384)

Pr

B CS-503

Visual Acuity and the Evolution of Signals, Caves et al. 2018.
Slide Credit: Visual Morphology



https://visual-morphology.epfl.ch/

=PFL. How far can a 1-pixel camera go? -

= \We use simple photoreceptor sensors (<1% of a camera resolution).

s Camera
e

Camera Photoreceptor
(e.g., 128x128 = 16,384) (1x1 =1)
l Photoreceptors 4 =
Hi a
- 2 = ,' OJ ] 4’/
| {‘ ::::E::HE: 3‘

B CS-503

Slide Credit: Visual Morphology



https://visual-morphology.epfl.ch/

=PFL. How far can a 1-pixel camera go?

* Can simple photoreceptor sensors solve vision tasks?

 What is the role of their design?

* Develop a computational design optimization method.

48
; (yaw, pitch, roll)
- o (33:2)
Camera Photoreceptor
(e.g., 128x128 = 16,384) (1x1=1)
l Vision tasks: Visual sensors design.
. e.g., visual navigation.

:‘;EE::_::'“ TETTTI T
Slide Credit:
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https://visual-morphology.epfl.ch/

=PFL. How far can a 1-pixel camera go?

 Can simple photoreceptor sensors solve vision tasks?

 What is the role of their design?

* Develop a computational design optimization method.

‘<i-
“** // (yaw, pitch, roll)
” o (@,.2)
Camera Photoreceptor
(e.q., 128x128 = 16,384) (1x1=1)
HET N Vision tasks: Visual sensors design.
' . e.g., visual navigation.
"y

Pl i
Slide Credit:
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https://visual-morphology.epfl.ch/

=PFL Visual Navigation using Photoreceptors :

Visual Navigation Task:

Task: navigate to the B ' N ' MatterPort3D Scans of Real-

target in an unseen World Apartments
environment

B CS-503

Slide Credit: Visual Morphology



https://visual-morphology.epfl.ch/

=PFL Visual Navigation using Photoreceptors

= A handful of PRs can be enough to solve visual navigation meaningfully well.

Observation:
32 Photoreceptors

Camera View
(for visualization only)

Top-down map:
°: Start Position

: Goal Position

50

e —

D0

40

30

20

10

-nﬁ :

Success Rate on Unseen Scenes
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=PFL Simple Photoreceptors in the Real World

= Simple photoreceptors show non-trivial generalization to the real world.

Robot Camera View

Visual Observation: Third-Person View:
(for visualization only)

64 Photoreceptors (for visualization only)

Slide Credit: Visual Morphology Credit: Jason Toskov for setting up and running this experiment.

B CS-503


https://visual-morphology.epfl.ch/

=PFL - Continuous Control with Photoreceptors ?

= Example of the Walker: Walk task solved with 4 photoreceptors.

Placement of
Photoreceptors:

Slide Credit: Visual Morphology
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0
2]
]
|


https://visual-morphology.epfl.ch/

=PFL. How far can a 1-pixel camera go?

 Can simple photoreceptor sensors solve vision tasks?

 What is the role of their design?

 Develop a computational design optimization method.

f (2,9, 2)
Camera Photoreceptor ov
e.g., 126x128 =16,384)  (1x1 = 1)

l

O

", (yaw, pitch, roll)

Solve vision tasks,
e.g., visual navigation.

Visual sensors design.

B CS-503

Slide Credit: Visual Morphology



https://visual-morphology.epfl.ch/

=PFL Designing Visual Sensors “

B CS-503

= Design parameters: position (on the agent’s body), orientation, FoV

Visual Sensor Design: Design Types:

* '.# Random design sampled uniformly from

it ) the design space.

2/ (z,y, 2) . . . -
* @ Computational design optimized for a
fo* specific body, environment, and task.

* (0 Intuitive design engineered by humans

(via a human survey).
0 = |z,y, z, yaw, pitch, roll, fov]

Slide Credit:


https://visual-morphology.epfl.ch/
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L Does the design matter?

= The design plays a crucial role in the effectiveness of simple visual sensors.

Reward

Agent’s body:

Reacl
1000

800
Environment:
600

400

200

Task: visual navigation

Optimal Design:

(yaw, pitch, roll)

) (x,y, 2)

Slide Credit: Visual Morphology

TargetNav
© (¢]
@
@ ®
)
° (e}
@
2 4
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https://visual-morphology.epfl.ch/

=PFL . Computation Design Optimisation

= We jointly optimize both the control and design policy.

Renderer

7-‘-¢ ~ 9_, Simulator & 7T’LU . R(T)

Vs logmy(T)R(T) Vlogmy(T)R(T)

B CS-503

Slide Credit: Transform2Act: Learning a Transform-and-Control Policy for Efficient Agent Design, Ye et al., 2022,
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https://visual-morphology.epfl.ch/

=L Computation Design Optimisation ’

= Examples designs for navigation tasks.

Top View

Front View

Design After Optimization

Design Optimization PointGoalNav (4x4 grid) SPL = 0.51

for PointGoalNav

Top View

Initial Design (Random)
PointGoalNav (4x4 grid) SPL = 0.39
TargetNav (8x8 grid) Success = 0.29

Design After Optimization

Design Optimization )
TargetNav (8x8 grid) Success = 0.32

for TargetNav

B CS-503

Slide Credit: Visual Morphology



https://visual-morphology.epfl.ch/

=PFL. How far can a 1-pixel camera go?

. . . Project Page:
= Simple photoreceptors are effective visual sensors. a1 o]
= Design is essential for the effectiveness of photoreceptors. : N
= Computational Design Optimisation using Reinforcement learning.

Success Rate on Test Scenes

(yaw, pitch, roll)

. %) o .
10 ,‘&0\1

Camera Photoreceptors Blind

N

B CS-503

Slide Credit:


https://visual-morphology.epfl.ch/
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Questions?

https://vilab.epfl.ch/




