'~ Foundations of Deep
- Reinforcement Learning

A brief introduction to modern RL

Jason Toskov

o
IS)
@
=
O
O
]

m
-U
i
r

| ecture Outline
= The problem

e Reinforcement learning
= The formalization
« Markov decision processes (MDP)
 The MDP optimization target
= Solving an MDP
» Policy gradient
« REINFORCE

How do we teach a robot to solve a rubiks cube? e TRPO
(Sped up by 5x)
e PPO

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

e Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

» Q-learning
= Function approximation methods

« DON

» Policy gradient

« TRPO/PPO

i

=PFL Definition

= Reinforcement learning:

e Learning what to do in a situation to
maximize some reward signal

=PFL Reinforcement
Learning (RL)

= Simplified setup:

’_{Agent}
state reward action
S, R, A,
4 RNI f
_S.. | Environment J<

.

=L Reinforcement
Learning (RL)

= The setup:
e An agent

state

5 agont

reward

A

\.

Environment J<—

action
A,

=PFL Reinforcement
Learning (RL)

= Agent: Dog

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:
e An agent takes an action

state

'_I Agent |

reward

g ' e

\.

Environment J<—

action
A,

=PFL Reinforcement
Learning (RL)

= Agent: Dog

= Action: Moves legs

=PFL. Reinforcement

B COM-304

Learning (RL)

= The setup:

e An agent takes an action in the
environment.

state

'_I Agent |

reward

g ' e

\

RH [~

Environme

T

11

action
A,

m

9

d Mi

B CS-503: Visual Intelligence: Machines an

Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs

= Environment: The room

m

0
"

B COM-304

Reinforcement
Learning (RL)

= The setup:

e An agent takes an action in the
environment.

* The environment gives us a new
state

state
S,

'_I Agent |

reward

g ' e

\.

Environment J<—

13

action
A,

=PFL Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs

= Environment: The room

d Mi

room

e: Machines an

B CS-503: Visual Intelligenc

= State: The dogs location in the

14

m
"

B COM-304

Reinforcement
Learning (RL)

= The setup:
e An agent takes an action in the > Agent :
environment. state| Vroward e
« The environment changes to a V& A,
new state and gives a reward. — 5.1 Enviionment J,_

\

=PFL Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs

= Environment: The room

d Mi

= State: The dogs location in the
room

e: Machines an

» Reward: The treat in the bowl

B CS-503: Visual Intelligenc

16

m
"

B COM-304

Reinforcement
Learning (RL)

= The setup:
e An agent takes an action in the > Agent :
environment. — | — T i
- The environment changes to a S 18 . A,
new state and gives a reward. —:T Environment J._
« The agent will try to act to s

maximize the reward it gets in a
rollout.

=PFL Reinforcement
Learning (RL)

= Agent: Dog
= Action: Moves legs
= Environment: The room

= State: The dogs location in the
room

= Reward: The treat in the bowl

= Rollout: One dog's attempt to
get the treat

B CS-503: Visual Intelligence: Machines and Minds

[
[eo)

Zamir

m
"

B COM-304

Reinforcement
Learning (RL)

= The setup:
e An agent takes an action in the > Agent :
environment. . | — <> e
« The environment changes to a U, A,
new state and gives a reward. —_ 5. Environment J,_
« The agent will try to act to s
maximize the reward it gets in a
rollout.

» Learned through trial and error.

=PFL Trial-and-error Learning

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

« Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

» Q-learning
= Function approximation methods

« DON

» Policy gradient

« TRPO/PPO

21

=L Simplifying further | Agent

state reward action

é' RHI d J
= Assume: <S LEnvnronment J<—

 Observable state

e Markov property

]P)[Sneg;t‘scurrent] —]P)[Snea:tlscurrent & Spast]

(P[S,_{_llS(] —_]P[S{—i-llsh S!—lr “eny Sl])

=PFL Markov Property

= Markovian problems

X X ©®

Tic-Tac-Toe Chess

=PFL Markov Decision ~ Agent |

B COM-304

—)
Processes (MDP) s |over

‘SI R: A,

RHI d :
PRI Environment
i \

= MDP: Mathematically idealized version of the general RL problem

Transition function
Finite set of states P =P(s;,, |5, a) Discount factor

. T 7
(S, A, P,R,)

/

Finite set of actions Reward function

l])(\,_. 1 1, .‘i’l)
(Also has a horizon H)

24

=L Grid World MDP
Example

= 4%4 environment
« Agent = %

» Goals = i@ and é&

(S, A, P,R,v)

_— Reachable

>
| 1)
e YN

=PFL State space

(DA, P,R,)
= 5 unigue states
S1 52 53
& 4 46444 HB A 4688
O & & T & 4 & &
SO &0 &% &6
& 4 4446 SHAHSE 4486

Start state Terminal state /

=L Action space

= 4 unigue actions

&

&

2
A £ .g.

&

&

aolale

<‘S7@Pv R, 7>

Up

|

o

Left «—— ' ® —»nght

'

Down

=PFL Transition Model
@R,y

= The Markov Process
& & &
(k—::—)

*

SIS | G
N =

&0

aolale

&
&

Left/Down

=PFL Transition Model

= The Markov Process

Up

Down
Down Down

Left

Right

Left/Down

Transition function (Deterministic so Pr=1)

=PFL Transition Model
(S, AP)R,~)

= Environments can be non-deterministic
I & 7| N
A ’14" P (DL, s)=07

A
e P

“Pr(é% ||,s)=0.2

=Pr(o||,s)=0.1

-10

-10

-10

+1(+10

-10

-10{-10

Left/Down
R=-10

=PFL. Rewards

<87 A, P7®7>

= Return = function of rewards, measures performance of agent over
rollout

= Simplest case: sum of rewards

Gt :Rt+Rt+1+...+RH

H
— Z R,
k=t

B COM-304

32

=PFL Discount Factor

(S, A, P, R()

= Inmediate rewards > potential future rewards

= What if H= o ?

-10

-10

-10

-10

-104
-1&-%1210

-10

-10

-10

-10

» Reward —

=PFL Discount Factor

B COM-304

(S, A, P, R()

= Solution: discount future rewards
H
2 L k—1
Gi=R+7Ri1 + 7" Ryyo + ... = E v " Ry,
k=t

= Discount y (0 <y < 1) balances value of immediate and future reward

-10(-10{-10|-10 -10{-10|-10(-10

11‘?} -10 -10#' -10
10M-1#10]-10 -10|4Y=»10/-10

-10(-10{-10|-10 -10(-10(-10|-10

Optimal ify =1 Optimal ify <1

34

=PFL Policy

B COM-304

= Policy m maps states to actions.

A; N~ 7T(CLt|8t)

-10

-10

-10

-10

-10

=

-10

-10

%

P10

-10

-10

-10

-10

-10

A good policy

-10

-10
=2

-10

-10

-10

-10

-10

+

+10

-10

-10

-10

-10

-10

A bad policy

35

H
PFLAgent's Goal G =Ri+7Rui+ 7 Rua+ =S AR
k=t

= Learn the optimal policy m*(als) that maximizes return

= Mathematically:

max & [GO | 7T]

T

B COM-304

. MDP Limitations “

= MDPs are a big abstraction.

Sensors Actions

>| Agent ’l

state reward action
Sl R 7 AI

EI RHI [E 2
: Fiet nvironment

But MDPs make RL problems solvable!

Memory L Objectives

B COM-304

=L Solving RL ’
Problems

= Define RL problem — convert problem to MDP — solve MDP

Béactive skills and object interaction:
Kicking a moving tall

DoTA2 (AlphaStar) Robot Soccer (OP3)

B COM-304

Backgammon

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

e Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

» Q-learning
= Function approximation methods

« DON

» Policy gradient

« TRPO/PPO

39

=PFL Value Function

= Value Function: How good is s under 17 ?

VT(s) =E|G; |7, s = s

= Optimal Value Function: How good is s under the optimal 7* ?

| V*(S) — I1laXx 1, [Gt | m, St — S]

=fL Computing the
Value function

= Assume 17* is deterministic, y = 0.9, H = 100

s 0.0 0.1 <09
2 [10.5
t [1x0.9 910,95 B0 9 M1 x0.9'

B COM-304

=PFL Computing the

B COM-304

Value function

= Assume 17* is deterministic, y = 0.9, H = 100

3 [yxVv(2,3)[8yxV(3,3)fyxV(4.3)

2

=fL Computing the
Value function

= Assume 17* is deterministic, y = 0.9, H = 100

=fL Computing the
Value function

= What if the dynamics are noisy?
« Assume 17*, actions successful with probability 0.8, y = 0.9, H = 100

V*(3,3) = 0.8 x 0.9 x \/*(4,3)
+0.1 % 0.9 x V*(3,2)
+0.1 % 0.9 x V*(2,3)

= In general:

TODO: Optimality egn

B COM-304

=L Bellman Equations

= Bellman optimality equation for V*

V¥ (e) =max Z P(s'|s,a)[R(s,a,s) +~yV*(s')]

g’ dynamics x [reward + discount x value of next state]

= Bellman equation for V"

ZTU ZP |s (1)[/?(5 a,s) +yV’ ()]

Averaged over policy

=PFL Action-Value

B COM-304

Function

= Action-Value Function:

46

How good is s under 1, first taking action a ?

(" (5, 8) =

L |Gy |, 84 = 8,a; = a

= Optimal Action-Value Function: How good is s under the optimal r7*, first

taking action a ?

Q*(s,a) = maxE |G, |7, s, = s,a; = q]

w

=P*L Bellman Equations

= Bellman optimality equation for Q*

(s,a) ZP |s,a)[R(s', a,s) +ymax Q*(s", a’)]

(I
s’ dynamics x [reward + discount x best action-value of next state]

= Bellman equation for Q"

Q s, a) ZP 'Is,a)[R(s", a,8) + V7 (s')]

rn

'-

"L Policy Evaluation)

= Start with V' (s) =0 for all s
= Until converged:

e For each s € S:

<—Z7ra ZP "|Is,a)[R(s",a,s) +~yVT™(s")]

fl'l

- Policy Evaluation

VALUES AFTER O

ITERATIONS

l"l'l

'—

"L Policy Evaluation

<—Z7r al: ZP(S,IS a)[R(s',a,s) +~V7™(s")]

VALUES AFTER 1 ITERATIONS

l'l'l

,—

"L Policy Evaluation

<—Z7r al: ZP(S,IS a)[R(s',a,s) +~V7™(s")]

VALUES AFTER 2 ITERATIONS

=L Policy Evaluation

V(s) « 3 n(als) 3 P(s'ls, a)[R($', 0, 8) + V(8

VALUES AFTER 3 ITERATIONS

=PFL Policy Evaluation

‘/rﬂ(s) > W Z 71'((1,.'5) Z P(S,Is.*. a’) [R(S,: a, 5) + Af‘/ﬂ(sl)]

VALUES AFTER 4 ITERATIONS

=L Policy Evaluation

V7(s) « Z 7(als) Z P(s'|s,a)[R(s',a,s) +~VT7(s")]

VALUES AFTER 5 ITERATIONS

=L Policy Evaluation

V7(s) « Z 7(als) Z P(s'[s,a)[R(s,a,s) +~vVT(s')]

VALUES AFTER 6 ITERATIONS

=L Policy Evaluation

V™(s) « > w(als) Y P(s']s,a)[R(s, a,s) + 7V (s)

VALUES AFTER 7 ITERATIONS

=L Policy Evaluation

s,a)[R(s',a,s) +yV7(s")]

VALUES AFTER & ITERATIONS

=L Policy Evaluation

V™(s) « > w(als) Y P(s']s,a)[R(s, a,s) + 7V (s)

VALUES AFTER 9 ITERATIONS

=L Policy Evaluation

V™(s) « > w(als) Y P(s']s,a)[R(s, a,s) + 7V (s)

VALUES AFTER 10 ITERATIONS

=PFL Policy Evaluation

V™(s) « > w(als) Y P(s']s,a)[R(s, a,s) + 7V (s)

VALUES AFTER 11 ITERATIONS

60

=L Policy Evaluation

V™(s) « > w(als) Y P(s']s,a)[R(s, a,s) + 7V (s)

VALUES AFTER 12 ITERATIONS

=L Policy Evaluation

V™(s) « > w(als) Y P(s']s,a)[R(s, a,s) + 7V (s)

VALUES AFTER 100 ITERATIONS

62

=PFL Policy

Improvement Q"(s,a) =E[G| 7,5 = 5,0, = q

= Change policy to maximize value
o Act greedily

m'(s) = argmax, Q" (s, a)

=PFL Policy

Improvement m'(s) = argmax,Q" (s, a)

Q-VALUES AFTER

B COM-304

100 ITERATIONS

64

=PFL Policy Iteration

= Start with V;(s) =0 for all s, m random
=Until m 1s stable:
e Evaluate policy (until value convergence)

<—Z7’ a|: ZP "|s,a)[R(s",a,s) +~V™(s")]

e Improve pollcy (greedlly)
7' (s) = argmax,Q" (s, a)

B COM-304

65

=PFL V/alue Iteration

= Only run a single step of policy evaluation (more efficient)

= Start with V;(s) =0 for all s, m random
= Until value converged:

e For each s € S:

V(s) ¢+ max Z P(s'|s,a)[R(s,a,s) +~yV™(s")]

= Return an optimal policy 7T*(S) = a.rgma,xaQ“(s, (1.)

B COM-304

66

=L Generalized Policy
Iteration (GPI)

= Many RL algorithms can be thought of as a form of GPI

evaluation

7~ groedy (V)

Works "

lmpfovemem because ()h ﬂ.(l

B COM-304

67

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

e Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

« Q-learning
= Function approximation methods

« DON

» Policy gradient

« TRPO/PPO

68

PFL Value lteration
Limitations

= Need dynamlcs

<—maxz. (s',a,8) +yV™(s')]

« Solution: sampling- based approximation

= Need iteration over all states

V(s) + ma (s'|s,a)[R(s',a,s) +yVT(s)]

 Solution: function approximation

PFL Value lteration
Limitations

= Need dynamlcs

<—maxz. (s',a,8) +yV™(s')]

s Solution: sampllng based approximation

= Need iteration over a

V(s) + m(fl.(s’|.s, a)[R(s',a,s) +~yV7(s)]

 Solution: function approximation

fL Unknowable
Dynamics

B COM-304

https://www.voutube.com/watch?v=5sRaythe6TE

71

https://www.youtube.com/watch?v=5sRqythe6TE

=PFL Q-Learning Qs.o) « Y P(sls.a)[R(s,a.5) + ymax Q(s',a)]

= Do GPI with the Q* bellman optimality equation

Qr+1(8,8) — Egnpistisg [[1(a,s) +ymax Qi (s, a’)
\ a'

Expectation over dynamics

e Estimate the expectation by sampling

B COM-304

PFLSampling

B COM-304

https://research.gooqle/blog/deep-learning-for-robots-learning-from-large-scale-interaction/

73

https://research.google/blog/deep-learning-for-robots-learning-from-large-scale-interaction/

=PFL Q-Learning Q(s,a) « Y P(s']s, a)[R(s,a,5) + 7 max Q(s, a')]

= Do GPI with the Q* bellman optimality equation
Qi+1(8,a) < Eyop(sys, [P(a,s) + 7 max Qr(s’,a’)

d

Improved estimate = reward + discount x best action-value of next state

B COM-304

PFLQ-Learning Quals.o) « Evepwi [0,9) + ymaxQu(s)] "

= Given a sample:
s ~ P(s'|s,a)
= Old estimate:

Q(s,a)

= New sample estimate:

(2(9 ”-’)better . R(Sl, a, ‘5) 3 me}.x (2(‘3, (,'I./)
a

ePrl Q-Learn I n g 62k+1(83 (1') —]ES’NP(S’|S,H) [[i)(sla a, S) + Y m”E/lX (‘2]\"(8/3 ”/):| :

(2 (S, a)better

= Two views of Q learning

« 1. Estimate expectation with running average:

Q(s,a) + (1 —a)Q(s,a) + aQ(s, a)pester

e 2. Correct for error in estimate:

Q(s,a) < Q(s,a) + a|Q(s, @)petter — Q(S, a)]
W—J

= These are equivalent Error in current estimate

EPFL EXpIO I’a'[IOn VS Qri(8,0) «+ Egup(s)sa lR(s’,a,S) +ymax Qk(S',a’)J ”
Exploitation

= How should we act?

EPEL EXploration VS Qea(s,a) « Eouppin [R(s0,5) + ymax Qu(s',a)] ™

B COM-304

Exploitation

= How should we act?

lf’ VISITS

(wEw FaN0RrTE)
? ; : *}%E‘t D2
: —

o > GuaLYTY
¢ OMGE

GRERT 5 GO TWEEE
[” O\LK ADAIM

Yum! @
N

I.x

b ‘, . ' woRrst OKSH
et . . pow't g
@ &aap = AP

Exploration

FavoRITE
RESTAURANTS

\

X = WMAT Mou ATE
Theds FIRET

Tege®a?
3 . : . .
' .
@
Exploitation

=PFL e_g reedy Qr+1(8,a) < Egp(st|s,a) [[:’(s', a,s)+ max Qu(s’,a)| "
action

= Choose a random action with probability €

1.0

Exploitation area

Exploration area

200 400 600 800 1000
Step

B COM-304
o

=L On-policy vs off-policy learning

= Off-policy: Q-learning

Estimate under m* # Estimate under T

= On-policy: SARSA

Q) o Qe+l 4G D))

Estimate under ™ = Estimate under 1T

=L On-policy vs off-policy learning

R=-1

SARSA
Safer path

Q-Learning
Optimal path

=PFL Q-learning: Crawler

Learning

e a6 Dvwn e | S
. 3301 gy s ose [
Laad TR s |
LSRN abia 1290 [

f R 0 A

B COM-304

https://qithub.com/huschen/crawler dl

Fully Learned

Oumg O
e LR X0
Lo

oo Uvwam

Lamgdem 0000

S Dme

82

https://github.com/huschen/crawler_ql

=L Q-learning: Crawler

B COM-304

https://www.youtube.com/watch?v=2iNrJx6IDEo

83

https://www.youtube.com/watch?v=2iNrJx6IDEo

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

e Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

» Q-learning
= Function approximation methods

« DON

» Policy gradient

« TRPO/PPO

84

PFL Value lteration
Limitations

= Need dynamlcs

<—maxz. (s',a,8) +yV™(s')]

e Solution: sgmalia

Need iteration over all states

V(s) + ma (s'|s,a)[R(s',a,s) +yVT(s)]

» Solution: function approximation

EPF

B COM-304

L Intractable states

Grid world Atari
States ~ 10* # States ~ 10°% (ram) or
~10%%992 (pixels)

Real robot
States = « (continuous states)

86

="t Deep Q-Networks

(DQN)

= Make the Q function a neural network

—> Q(s,a1)

State s ——> Q(s,a)

—> Q(s,an)

Q()(S, (l)

=PFL Optimization:
Gradient decent

= Follow the negative gradient of a function gradually to a minima

0+ 60— A\Vf(6)

B COM-304

88

=PFL DOQN Optimization

= Recall the error correction view of Q-learning

Q(s,a) < Q(s,a) + alQ(s, @)petter — Q(S,)]

= This error is the loss to minimize

K] N
9 «— 0 — (IVQ 5((20(3 (’)bette'r - (’20(5: ”‘))2
-Hr—_/ -

This is just mean squared error

=PFL. Ambiguous States

=PFL Ambiguous States

= Solution: make the state the past few frames

B COM-304

Disambiguated motion

91

=L Experience Replay

= Off-policy so data from old policies can be used

Sample mini-batch
Q P > §

| — of experience

=ML Update © Vse Improved
k policy

= Add experience

to replay buffer

Act and get experiences

=PFL Atarl DON learning ’

Convglub‘on Comgmlon Fully cc'mnecled Fully cgnnecmd

ol E/m
.] EHi e &
—~f-oens -0 e

ot] Ef

—o gl &)

Output: Q-values of state
for each action

L L L B

ol @] \®
Input (state): pixels from ‘
last 4 frames

e $

CNN

B COM-304

L Atari DON learning

10 minutes of training 120 minutes of training 240 minutes of training

m

0
"

B COM-304

DQN ISSU eS 0« 60— aVy %(QO(S, (’)bette-r — Q()(S’ ”))2 %

= Deadly triad: can cause divergence

Off-policy learning
[l',(.\',..”~~"') + — (‘26(5_6.”)

Function approximation

(@8, a)

Bootstrapping

‘)(s” (r, '\.,) —+— ". l]]il‘x (!D— (L)H(t\. ”)

=Pl DQN Issues

= Continuous actions

B COM-304

96

https://www.nature.com/articles/s41586-023-06419-4

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

e Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

» Q-learning
= Function approximation methods

« DON

e Policy gradient

« TRPO/PPO

97

=PFL Direct policy
parameterization

= Represent the policy m with a neural network 7Tg

= S0, we can use deep learning methods to learn the policy directly

v
>
>
state reward action
S; R, A,
RHI 4
—] Z
- S.. | Environment Jﬁ—

.

B COM-304

fL Handling |
continuous actions

= Represent actions as parameterized gaussians

—>- 1 = ,"\;"(;l.(l)(,s'),

—- @5 = ,.’\"’(/[5(.5').

T
_) |
r~
State s —
s
e
(Y’ :

B COM-304

Ty

Ty

)

)

99

=PFL Policy optimization

B COM-304

= To optimize a neural network, we need a differentiable target function to
do gradient descent/ascent on

= Modifying the objective from earlier can get us this:
e Let the return for some rollout 1 be G(T)
« Then the utility U for a model parameterized by 6 is given by

U(6) = E[G(r)|mg) = Y P(7|6)G()

e Where P(r| 0) is the probability of seeing rollout r with parameters 6

100

=PFL Policy optimization
= S0, our goal is to find 6 that maximizes the utility U:

max U(0) = max Z P(7|6)G(1)

PFL Policy gradient max U(6) = max > P(r|0)G(r)

Begin with:

U9) =) P(1|6)G(r)

PFL Policy gradient max U(6) = max > P(r|0)G(r)

U®) =>»_ P(r0)G(r)

Differentiate with respect to 6:

VoU(0) = Vs 3 P(710)G(r)

PFL Policy gradient max U(6) = max > P(r|0)G(r)

U©o) =Y P(rlo)G(r)

VoU(0) = Vo > P(1|0)G(r)

Rearrange:

- Z Ve P(7]0)G(T)

ePrL PO“Cy gradlent meax U((’?’) = mthZP(TIH)G(T)

U) = 3" P(r16)G(r)

VoU(0) = Vo > P(1|0)G(r)
- Z Ve P(7]0)G(7)

Add fraction:

— Z ig::z;vgp('rlf))@(’r)

r

ik POIICy gradlent max U(f) = mngP(Tlﬁ)G(T) :

U@®)=>_ P(r|0)G(r)
VoU(0) = Vo > P(r|0)G()
= " VoP(r|0)G(7)

- 3 RAVeP(rInG()

Rearrange:

_ p Vo P(7|0) I
=Y P(r|0) PI0) G(7)

T

B COM-304

7L Policy gradient

B COM-304

U©o) =Y P(rlo)G(r)

VoU(0) = Vo > P(r|0)G()

= 3" VeP(rl9)C(r)

-y g:g;wP(rw)G(r)

3 VoP(7|0)
_ZT:P(TW) P{rI) G(r)

Use properties of log derivative:

=Y P(7]0)Vylog P(r]0)G()

max Uf) = mgxz; P(7|0)G(7)

107

m

B COM-304

Policy gradient

=Y P(7|0)G(7)
- veZTjP<r|9>G<)
= Zvewa)G()
= Z P ng 10)G(7)
‘ZP 10) v,, T|9 ()

=Y P(7]0)Vylog P(r|0)G()

max U(f) =

Approximate with empirical estimate over m rollouts:

m

VoU(0) ~ nglogP(TZIO) (7:)

=1

108

109

=PFL Policy gradient:
Intuition

m

VU (6) ~ = — 3 Vylog P(r|9)G(n)

=1
= The gradient:

o Increases the (log) probability

of paths with positive return
 Decreases the (log) probability d .

of paths with negative return

= The gradient is estimated over a
sample of m rollouts

B COM-304

L Policy gradient max U(9) = max Y P(rl0)G(r)

= S0, we end up with the empirical gradient estimate:

m’m

. 1
VoU(0) = g = = Z Vg log P(7i|0)G(7;)

1=1

= If we can compute the probability of a rollout, we could use it to perform
gradient ascent on our model.

B COM-304

=PFL Gradient

B COM-304

decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

Vo log P(r®;0) = Vo log | TT(P(s,Ist", uj

= The rollout probability can be decomposed into:
e Dynamics: the transition probability from one state to the next
e Policy: the probability of this transition happening

= The probability of a step occurring is hence Dynamics * Policy

= The rollout probability is the product of all steps probabilities

111

FL Gradient
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

t=0 - o
dynamics model POhCY

Vo log P(%;8) = Vg log [Hpsm spyuy) mo(ug |8)]

H
= Vg [z log P(ss',)II.s(') (‘))+ Zlogvr st]

=0

= Apply the log to the probability

B COM-304

FL Gradient
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

t=0 - o
dynamics model POhCY

Vo log P(%;8) = Vg log [Hpsm spyuy) mo(ug |8)]

i H
v [znogp S50, + 3 log e .sm]
t=0

=0

H
=V) logmo(u”|s;")
t=0

Dynamics doesn't depend on 6, so it's gradient is 0!

B COM-304
]

fL Gradient
decomposition

= We can't directly compute the trajectory probability, so let's break down
the gradient further:

Vo log P(r%);8) = Vg log HP«;,+l |3y up) o(ul ’|s)
t=0 v = &

dynamics model DOllcy

= Ve ZIOgP 359, E'),ug‘) +210g7r9 (2" gs(")
=0

H
Vo Z log o (u;”|s¢”)
=0
%)i
2 NUIRG
- Rearrange: f[a Vologmo(us ls:)

no dynamics model required!!

B COM-304

PFL Finding the optimal

B COM-304

policy U(6) = E[G(7)|mg] = ZPT|0

= Now that we have a gradient, we can do gradient ascent:

0« 0+ aVU(0)

= Plugging in our gradient estimate:

m

9(—9+0—ZC T ZVGIOOWO (1, |qi)

m

» ais the learning rate (how much we update our model each step)

115

=L Finding the optimal
policy

= S0, to find the optimal policy we could just run this gradient ascent over
lots of trajectories.

= The "vanilla" policy gradient algorithm
« Loop until sufficiently converged:

= Collect a set of m rollouts Ti; following Ty

m

= Do 9(—9+Q—ZG T ngloomg(a, \s

m
t=0

B COM-304

=PFL Policy gradient:

B COM-304

Vg log P(Tzw)G(Tz)

1
Intuition m

0 ¢ 0+im— ZGT, nglogwg()|s(?))

=1 t=0

= The gradient:

e Increases the odds of an action

happening in a state when the
rollout gave positive return /

e Decreases the odds of an
action happening in a state
when the rollout gave negative
return

=P*L. The REINFORCE
algorithm

= An alternative to the vanilla policy gradient algorithm is REINFORCE

= Estimate gradient and update policy per step instead

= Loop until sufficiently converged:
Do one rollout t following Ty
« For each step t =0, 1, ..., H of the episode:
= Do: 6 « 0+ aG:Vglog my(az|s;)

» Faster (updates parameters much more often) but noisier

B COM-304

L Example: robot
walking

cPrL

How do we teach a robot to solve a rubiks cube?

| ecture Outline
= The problem

e Reinforcement learning

e Markov decision processes (MDP)
= Tabular solution methods

e Value iteration

» Q-learning
= Function approximation methods

« DON

» Policy gradient

« TRPO/PPO

120

fL. Advantage vs
return

= So far we assumed the reward function is "nice"

* Need negative reward to push down bad
paths

= But what if it isn't?
 Reward is often always positive

= Use advantage instead

e How much better is the return than what we
expected?

B COM-304

=PFL Advantage vs
return

= Advantage A

e How much better is the return than what
we expected?

= Subtract a baseline b which estimates the
expected return

At B Gt — b(St)

= \WWe usually use advantage as it is a better
signal for models to learn from

B COM-304

Retum vs Advartage dstributions

, ’..LL.;;,
L

122

[}
-10 3 0 3 0
Tajectory Petumiddesntage

15

=L Advantage

= \We can estimate advantage with state-values and action-values

At . Gt — b(St)

VN

A(s,a) = Q(s,a) = V(s)

=PFL Step size

= How do we choose the step size alpha?
o A: trial and error

= What might happen if the step size is too small?
* A: No learning -> waste of time

= What might happen if the step size is too big?
» A: The policy will become bad -> all future o
data collection is affected! o

The mountain of policies
Be careful where you step!

B COM-304

=PFL Step size

= But the best step size might not be consistent

e S0, it can be very easy to ruin our policy

= How do we stop this from happening?

Aloss landscape

B COM-304

cPFL

B COM-304

TRPO: Idea

= What if we could learn by acting according to
our old policy for longer?

« We trust our old policy. So use that trust.

= We should also stay close to our old policy
« We don't trust a different policy too much

126

=PFLSurrogate objective v®) =EGH)|m =Y Prl6)G(r)

P(r|6)

U(f) =E,r o, [P(Tlguld) R 'r)]

=PFLSurrogate objective v®) =EGH)Im =Y P0G

[P(r|6)
.P(Twuld)R T)]

U(0) = Erpy,

(Ve P(7]0)

VoU(®) = Ernoss | ot D R(r)|

mo) =Y P(r|9)G(r) *
ate objective v =EGH)m) >
=PFL Surrog

P(7|6)
P(Tloold)

U(6) = Ernoyy [R(r)]

VOP(Tlo) R(T)]
P(Tleold)

VGU(G) =]ET"'oold [

Vo P(7|0)4,,, R(T)]
P(T|001d)

Vo U(o)h):@nm = Er~boa [

PFL_Surrogate objective v@) =Elcm)m) =) PriOGE)

B P(7|6)
U(o) = Ef“-'onhl [P<Tloold) R(T)]
B Vo P(7]6)
V()U(a) — E‘rweold [P(Tloold) R(T)‘
Vo P(7|0
VB U(o)l():(inld =]E‘r"‘-'ool.j [op(i’lrol‘)llleum R(T)]

=E no,4 [Vo log P(Tle)lﬂum R(T)]

=PFLSurrogate objective v®) =EGH)|m =Y Prlo)Gr)

= With a similar derivation as earlier, we can start from our surrogate loss

P(r|6)

U(0) =Erp,, [m

()
« and drop the dynamics to get a new objective

= This gives us a new loss we can optimize

B w(als)
max L(w) = E._, [r—-————om (als)

m

i)

B COM-304

fL KL divergence

= Measure the closeness of 2 distributions:

P
DgL(P || Q) = ZP 108(QEZ;)
reX

= Detalls aren't super important.

= But its a tool we can use to measure the closeness of two policies

B COM-304

=PFL TRPO

= Trust region policy optimization (TRPO) optimizes the surrogate loss:

w(als)
Told(als)

max L(w) =By, [AFoe(g a)]

= While staying close to the old policy:

Er [KL(7||mo1a)] < €

= Note: the agent acts according to the old policy, which is updated every
so often

B COM-304

cPFL

B COM-304

TRPO Intuition

= Act with the trusted policy to find a
good step to a better policy

= Stay close to the old policy, or our
estimates might be bad

= Update our data collection policy
to the better policy

= Keep repeating to gradually
optimize the policy

134

=PFL. TRPO I1ssues

= Hard to implement trust region for complex policies
= \We can need to estimate the conjugate gradient (complex)

= Would be much easier if standard optimizers could be used
o AdamWwW
« RMSProp

B COM-304

B COM-304

PPO vl

= In deep learning, we usually treat a constraint as another loss term with
some weight

= We can do that with the KL constraint to make this a simpler optimization
problem

maximize]Et [Mﬁt]
) Moy, (@t | St)

subject to &;[KL[mg,,, (- | 5¢), ma(- | 5)]] < &

From

mo(ae|s:)

A TIETY

TO max &, [l,] -3 (Lt, [KLimg, . (| 82).7a(: | 5¢)]] = 6)

136

137

=PFL Improving PPO

= Lets understand our objective better:

= This ratio gives us how likely it is to take an action under the old policy vs
the new one
o If this ratio is , We are likely to take the action
under the new policy

o If this ratio is less than 1, we are less likely to take the action under
the new policy

B COM-304

=PFL Improving PPO

= Since it's important, we'll name this ratio:

re(0) = muley Sts)t)v s0 r(foid) = 1

M1 (@t

= This ratio measures the similarity of the old and new policies.

= To keep the policies similar, we just need to keep this ratio close to 1.

B COM-304

ePrl PPO V2 'I"t(e) - mg(at | 8t) SO T(oold) =1 -

Toora (@t | 5¢)°

= \We can form a new objective that uses this ratio to keep the policies
close:

LCLIP(H) p— Et [min(’rt(g)At, C]ip(rt(g)-) 1— €, 1 + E)At)]

= \We maintain the trust region by directly clipping the objective if we move
too far away.

» So, if we go out of bounds (outside the clip range), we get a gradient
of 0, and so 6 won't be changed.

B COM-304

=PFL PPQO v2 LOUP(6) — By [min(ru(6) A, clip(r(@), 1 - €1+ 94)]

= Effects of the clipped loss

A<0

A=0

, [CLIP
1 =]

4 r
0 1 1+¢ JCLiP
§ If advantage is positive, only let the rollout be If advantage is negative, don't try and
- slightly more likely under the new policy decrease the odds of seeing a rollout too far

B COM-304

P PO V2 LCLIP(9) = K, [min('rt(G)flt, clip(r¢(6),1 —€,1 + E)J‘it)] N

= Note that we don't clip the bottom of the objective

» This means that if the new policy can always be pushed towards the
old, trusted policy

» We just limit how far it can be pushed away

A=0

, [CLIP

I CLiP

r

=L Entropy
Regularization

= Maximize policy entropy — encourages exploration

LENT (9) = 3[my](s)

" 1
"
M |
n
aw |
L) A Ny
- -
20 £
“ e ' ~—
am — —
’ ' ’ ’ : . 2

Orange = low entropy, Blue = high entropy

B COM-304

=L Full PPO Objective

= Balance clip and entropy losses

LPPO(@) _ LCLIP(Q) 4+ K,LENT(Q)

=PFL PPO Intuition

= Still the same idea as TRPO

» Take small, cautious steps that
are definitely safe

= But, the boundaries are harder and
more pessimistic

= And the objective is easier to
optimize

B COM-304

145

Thank you!

Amir Zamir (amir.zamir@epfl.ch)
Jason Toskov (jason.toskov@epfl.ch)
Rishubh Singh (rishubh.singh@epfl.ch)

Zhitong Gao (zhitong.gao@epfl.ch)

https://vilab.epfl.ch/

o
o
@
=
o]
O
.

