
Z
am

ir

C
O

M
-3

04

Foundations of Deep
Reinforcement Learning

A brief introduction to modern RL

Jason Toskov

1

▪ The problem

• Reinforcement learning

▪ The formalization

• Markov decision processes (MDP)

• The MDP optimization target

▪ Solving an MDP

• Policy gradient

• REINFORCE

• TRPO

• PPO

2Lecture Outline

How do we teach a robot to solve a rubiks cube?
(Sped up by 5x)

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

3Lecture Outline

How do we teach a robot to solve a rubiks cube?

4

C
O

M
-3

04

▪ Reinforcement learning:

• Learning what to do in a situation to
maximize some reward signal

Definition 5

C
O

M
-3

04

▪ Simplified setup:

Reinforcement
Learning (RL)

6

C
O

M
-3

04

▪ The setup:

• An agent

Reinforcement
Learning (RL)

7

Z
am

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

Reinforcement
Learning (RL)

8

C
O

M
-3

04

▪ The setup:

• An agent takes an action

Reinforcement
Learning (RL)

9

Z
am

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

Reinforcement
Learning (RL)

10

C
O

M
-3

04

▪ The setup:

• An agent takes an action in the
environment.

Reinforcement
Learning (RL)

11

Z
am

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

Reinforcement
Learning (RL)

12

C
O

M
-3

04

▪ The setup:

• An agent takes an action in the
environment.

• The environment gives us a new
state

Reinforcement
Learning (RL)

13

Z
am

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

▪ State: The dogs location in the
room

Reinforcement
Learning (RL)

14

C
O

M
-3

04

▪ The setup:

• An agent takes an action in the
environment.

• The environment changes to a
new state and gives a reward.

Reinforcement
Learning (RL)

15

Z
am

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

▪ State: The dogs location in the
room

▪ Reward: The treat in the bowl

Reinforcement
Learning (RL)

16

C
O

M
-3

04

▪ The setup:

• An agent takes an action in the
environment.

• The environment changes to a
new state and gives a reward.

• The agent will try to act to
maximize the reward it gets in a
rollout.

Reinforcement
Learning (RL)

17

Z
am

ir

C
S

-5
03

: V
is

ua
l I

nt
el

lig
en

ce
: M

ac
hi

ne
s

an
d

M
in

ds

▪ Agent: Dog

▪ Action: Moves legs

▪ Environment: The room

▪ State: The dogs location in the
room

▪ Reward: The treat in the bowl

▪ Rollout: One dog's attempt to
get the treat

Reinforcement
Learning (RL)

18

C
O

M
-3

04

▪ The setup:

• An agent takes an action in the
environment.

• The environment changes to a
new state and gives a reward.

• The agent will try to act to
maximize the reward it gets in a
rollout.

• Learned through trial and error.

Reinforcement
Learning (RL)

19

C
O

M
-3

04
Trial-and-error Learning 20

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

21Lecture Outline

How do we teach a robot to solve a rubiks cube?

C
O

M
-3

04

▪ Assume:

• Observable state

• Markov property

Simplifying further 22

C
O

M
-3

04

▪ Markovian problems

Markov Property 23

Tic-Tac-Toe Chess

C
O

M
-3

04

▪ MDP: Mathematically idealized version of the general RL problem

Markov Decision
Processes (MDP)

24

Finite set of states

Finite set of actions Reward function

Discount factor
Transition function

(Also has a horizon H)

C
O

M
-3

04
Grid World MDP
Example

25

▪ 4×4 environment

▪ Agent = 🤠

▪ Goals = 🪙 and 👑

Avoid

Reachable

C
O

M
-3

04
State space 26

▪ 5 unique states

Start state Terminal state

C
O

M
-3

04
Action space 27

▪ 4 unique actions

Right

Down

Up

Left

C
O

M
-3

04
Transition Model 28

▪ The Markov Process

Up/Left

Right

Left

Down Up

Right

Up/Right

Down

Left/Down

C
O

M
-3

04
Transition Model 29

▪ The Markov Process
Up/Left

Right

Left

Down Up

Right

Up/Right

Down

Left/Down

Up - -

Down - -

Left - -

Right - -

Transition function (Deterministic so Pr = 1)

C
O

M
-3

04
Transition Model 30

▪ Environments can be non-deterministic

▪ Pr(🪙 | ↓ , s0) = 0.7

▪ Pr(🔥 | ↓ , s0) = 0.2

▪ Pr(□ | ↓ , s0) = 0.1

C
O

M
-3

04
Rewards 31

Up/Left

Right

Left

Down Up

Right

Up/Right

Down

Left/Down
R = -10

R = 1

R = 10

R = 10

R = -10

R = -10

C
O

M
-3

04
Rewards 32

▪ Return = function of rewards, measures performance of agent over
rollout

▪ Simplest case: sum of rewards

C
O

M
-3

04

▪ Immediate rewards > potential future rewards

▪ What if H = ∞ ?

Discount Factor 33

Reward →∞

C
O

M
-3

04

▪ Solution: discount future rewards

▪ Discount γ (0 < γ < 1) balances value of immediate and future reward

Discount Factor 34

Optimal if γ = 1 Optimal if γ < 1

C
O

M
-3

04

▪ Policy π maps states to actions.

Policy 35

A good policy A bad policy

C
O

M
-3

04

▪ Learn the optimal policy π*(a|s) that maximizes return

▪ Mathematically:

Agent's Goal 36

C
O

M
-3

04

▪ MDPs are a big abstraction.

MDP Limitations 37

Sensors Actions

Memory Objectives
But MDPs make RL problems solvable!

C
O

M
-3

04

▪ Define RL problem → convert problem to MDP → solve MDP

Solving RL
Problems

38

Blackjack

Backgammon

DoTA2 (AlphaStar) Robot Soccer (OP3)

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

39Lecture Outline

How do we teach a robot to solve a rubiks cube?

C
O

M
-3

04

▪ Value Function: How good is s under π ?

▪ Optimal Value Function: How good is s under the optimal π* ?

Value Function 40

C
O

M
-3

04

▪ Assume π* is deterministic, γ = 0.9, H = 100

Computing the
Value function

41

1×0.91

1×0.92

1×0.921×0.93

1×0.93 1×0.941×0.94

1×0.94

1×0.95

C
O

M
-3

04

▪ Assume π* is deterministic, γ = 0.9, H = 100

Computing the
Value function

42

γ×V(4,3)

γ×V(3,3)

γ×V(3,3)γ×V(2,3)

γ×V(3,2) γ×V(3,1)γ×V(3,1)

γ×V(1,3)

γ×V(1,2)

C
O

M
-3

04

▪ Assume π* is deterministic, γ = 0.9, H = 100

Computing the
Value function

43

0.9

0.81

0.810.73

0.73 0.660.66

0.66

0.59

C
O

M
-3

04

▪ What if the dynamics are noisy?

• Assume π*, actions successful with probability 0.8, γ = 0.9, H = 100

Computing the
Value function

44

V*(3,3) = 0.8 × 0.9 × V*(4,3)
 + 0.1 × 0.9 × V*(3,2)
 + 0.1 × 0.9 × V*(2,3)

▪ In general:

TODO: Optimality eqn

C
O

M
-3

04

▪ Bellman optimality equation for V*

▪ Bellman equation for Vπ

Bellman Equations 45

dynamics × [reward + discount × value of next state]

Averaged over policy

C
O

M
-3

04

▪ Action-Value Function: How good is s under π, first taking action a ?

▪ Optimal Action-Value Function: How good is s under the optimal π*, first
taking action a ?

Action-Value
Function

46

C
O

M
-3

04

▪ Bellman optimality equation for Q*

▪ Bellman equation for Qπ

Bellman Equations 47

dynamics × [reward + discount × best action-value of next state]

C
O

M
-3

04

▪ Start with for all s

▪ Until converged:

• For each s ∈ S:

Policy Evaluation 48

C
O

M
-3

04
Policy Evaluation 49

C
O

M
-3

04
Policy Evaluation 50

C
O

M
-3

04
Policy Evaluation 51

C
O

M
-3

04
Policy Evaluation 52

C
O

M
-3

04
Policy Evaluation 53

C
O

M
-3

04
Policy Evaluation 54

C
O

M
-3

04
Policy Evaluation 55

C
O

M
-3

04
Policy Evaluation 56

C
O

M
-3

04
Policy Evaluation 57

C
O

M
-3

04
Policy Evaluation 58

C
O

M
-3

04
Policy Evaluation 59

C
O

M
-3

04
Policy Evaluation 60

C
O

M
-3

04
Policy Evaluation 61

C
O

M
-3

04
Policy Evaluation 62

C
O

M
-3

04

▪ Change policy to maximize value

• Act greedily

Policy
Improvement

63

C
O

M
-3

04
Policy
Improvement

64

C
O

M
-3

04

▪ Start with for all s, π random

▪ Until π is stable:

• Evaluate policy (until value convergence)

• Improve policy (greedily)

Policy Iteration 65

C
O

M
-3

04

▪ Only run a single step of policy evaluation (more efficient)

▪ Start with for all s, π random

▪ Until value converged:

• For each s ∈ S:

▪ Return an optimal policy

Value Iteration 66

C
O

M
-3

04

▪ Many RL algorithms can be thought of as a form of GPI

Generalized Policy
Iteration (GPI)

67

Works

because

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

68Lecture Outline

How do we teach a robot to solve a rubiks cube?

C
O

M
-3

04

▪ Need dynamics

• Solution: sampling-based approximation

▪ Need iteration over all states

• Solution: function approximation

Value Iteration
Limitations

69

C
O

M
-3

04

▪ Need dynamics

• Solution: sampling-based approximation

▪ Need iteration over all states

• Solution: function approximation

Value Iteration
Limitations

70

C
O

M
-3

04
Unknowable
Dynamics

71

https://www.youtube.com/watch?v=5sRqythe6TE

https://www.youtube.com/watch?v=5sRqythe6TE

C
O

M
-3

04

▪ Do GPI with the Q* bellman optimality equation

• Estimate the expectation by sampling

Q-Learning 72

Expectation over dynamics

C
O

M
-3

04
Sampling 73

https://research.google/blog/deep-learning-for-robots-learning-from-large-scale-interaction/

https://research.google/blog/deep-learning-for-robots-learning-from-large-scale-interaction/

C
O

M
-3

04

▪ Do GPI with the Q* bellman optimality equation

Q-Learning 74

Improved estimate = reward + discount × best action-value of next state

C
O

M
-3

04

▪ Given a sample:

▪ Old estimate:

▪ New sample estimate:

Q-Learning 75

C
O

M
-3

04

▪ Two views of Q learning

• 1. Estimate expectation with running average:

• 2. Correct for error in estimate:

▪ These are equivalent

Q-Learning 76

Error in current estimate

C
O

M
-3

04

▪ How should we act?

Exploration vs
Exploitation

77

C
O

M
-3

04

▪ How should we act?

Exploration vs
Exploitation

78

Exploration Exploitation

C
O

M
-3

04

▪ Choose a random action with probability ϵ

ϵ-greedy
action

79

C
O

M
-3

04

▪ Off-policy: Q-learning

▪ On-policy: SARSA

On-policy vs off-policy learning 80

Estimate under π* Estimate under π

Estimate under πEstimate under π =

≠

C
O

M
-3

04
On-policy vs off-policy learning 81

Q-Learning

SARSA

C
O

M
-3

04
Q-learning: Crawler 82

Learning Fully Learned

https://github.com/huschen/crawler_ql

https://github.com/huschen/crawler_ql

C
O

M
-3

04
Q-learning: Crawler 83

https://www.youtube.com/watch?v=2iNrJx6IDEo

https://www.youtube.com/watch?v=2iNrJx6IDEo

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

84Lecture Outline

How do we teach a robot to solve a rubiks cube?

C
O

M
-3

04

▪ Need dynamics

• Solution: sampling-based approximation

▪ Need iteration over all states

• Solution: function approximation

Value Iteration
Limitations

85

C
O

M
-3

04
Intractable states 86

Grid world
States ~ 101

Atari
States ~ 10308 (ram) or

~1016992 (pixels)

Real robot
States = ∞ (continuous states)

C
O

M
-3

04

▪ Make the Q function a neural network

Deep Q-Networks
(DQN)

87

State s . . .

Q(s,a1)

Q(s,a2)

Q(s,aN)

C
O

M
-3

04

▪ Follow the negative gradient of a function gradually to a minima

Optimization:
Gradient decent

88

C
O

M
-3

04

▪ Recall the error correction view of Q-learning

▪ This error is the loss to minimize

DQN Optimization 89

This is just mean squared error

C
O

M
-3

04
Ambiguous States 90

or

C
O

M
-3

04

▪ Solution: make the state the past few frames

Ambiguous States 91

Disambiguated motion

C
O

M
-3

04

▪ Off-policy so data from old policies can be used

Experience Replay 92

Sample mini-batch

of experience

Add experience

to replay buffer

Update θ Use improved
policy

Act and get experiences

C
O

M
-3

04
Atari DQN learning 93

Input (state): pixels from
last 4 frames

Q(,)

Output: Q-values of state
for each action

CNN

94

10 minutes of training 120 minutes of training 240 minutes of training

Atari DQN learning

C
O

M
-3

04

▪ Deadly triad: can cause divergence

DQN Issues 95

! Function approximation

Off-policy learning

Bootstrapping

C
O

M
-3

04

▪ Continuous actions

DQN Issues 96

Champion-level drone racing using deep reinforcement learning

https://www.nature.com/articles/s41586-023-06419-4

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

97Lecture Outline

How do we teach a robot to solve a rubiks cube?

C
O

M
-3

04

▪ Represent the policy π with a neural network

▪ So, we can use deep learning methods to learn the policy directly

Direct policy
parameterization

98

C
O

M
-3

04

▪ Represent actions as parameterized gaussians

Handling
continuous actions

99

State s

C
O

M
-3

04

▪ To optimize a neural network, we need a differentiable target function to
do gradient descent/ascent on

▪ Modifying the objective from earlier can get us this:

• Let the return for some rollout τ be

• Then the utility U for a model parameterized by θ is given by

• Where P(τ | θ) is the probability of seeing rollout τ with parameters θ

Policy optimization 100

C
O

M
-3

04

▪ So, our goal is to find θ that maximizes the utility U:

Policy optimization 101

C
O

M
-3

04

102Policy gradient

Begin with:

C
O

M
-3

04

103Policy gradient

Differentiate with respect to θ:

C
O

M
-3

04

104Policy gradient

Rearrange:

C
O

M
-3

04

105Policy gradient

Add fraction:

C
O

M
-3

04

106Policy gradient

Rearrange:

C
O

M
-3

04

107Policy gradient

Use properties of log derivative:

C
O

M
-3

04

108Policy gradient

Approximate with empirical estimate over m rollouts:

C
O

M
-3

04

▪ The gradient:

• Increases the (log) probability
of paths with positive return

• Decreases the (log) probability
of paths with negative return

▪ The gradient is estimated over a
sample of m rollouts

Policy gradient:
Intuition

109

C
O

M
-3

04

▪ So, we end up with the empirical gradient estimate:

▪ If we can compute the probability of a rollout, we could use it to perform
gradient ascent on our model.

Policy gradient 110

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ The rollout probability can be decomposed into:

• Dynamics: the transition probability from one state to the next

• Policy: the probability of this transition happening
▪ The probability of a step occurring is hence Dynamics * Policy
▪ The rollout probability is the product of all steps probabilities

Gradient
decomposition

111

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ Apply the log to the probability

Gradient
decomposition

112

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ Dynamics doesn't depend on θ, so it's gradient is 0!

Gradient
decomposition

113

C
O

M
-3

04

▪ We can't directly compute the trajectory probability, so let's break down
the gradient further:

▪ Rearrange:

Gradient
decomposition

114

C
O

M
-3

04

▪ Now that we have a gradient, we can do gradient ascent:

▪ Plugging in our gradient estimate:

• α is the learning rate (how much we update our model each step)

Finding the optimal
policy

115

C
O

M
-3

04

▪ So, to find the optimal policy we could just run this gradient ascent over
lots of trajectories.

▪ The "vanilla" policy gradient algorithm

• Loop until sufficiently converged:

▪ Collect a set of m rollouts following

▪ Do:

Finding the optimal
policy

116

C
O

M
-3

04

▪ The gradient:

• Increases the odds of an action
happening in a state when the
rollout gave positive return

• Decreases the odds of an
action happening in a state
when the rollout gave negative
return

Policy gradient:
Intuition

117

C
O

M
-3

04

▪ An alternative to the vanilla policy gradient algorithm is REINFORCE

▪ Estimate gradient and update policy per step instead

▪ Loop until sufficiently converged:
• Do one rollout τ following
• For each step t = 0, 1, ..., H of the episode:

▪ Do:

▪ Faster (updates parameters much more often) but noisier

The REINFORCE
algorithm

118

C
O

M
-3

04
Example: robot
walking

119

▪ The problem

• Reinforcement learning

• Markov decision processes (MDP)

▪ Tabular solution methods

• Value iteration

• Q-learning

▪ Function approximation methods

• DQN

• Policy gradient

• TRPO/PPO

120Lecture Outline

How do we teach a robot to solve a rubiks cube?

C
O

M
-3

04

▪ So far we assumed the reward function is "nice"

• Need negative reward to push down bad
paths

▪ But what if it isn't?

• Reward is often always positive

▪ Use advantage instead

• How much better is the return than what we
expected?

Advantage vs
return

121

C
O

M
-3

04

▪ Advantage A

• How much better is the return than what
we expected?

▪ Subtract a baseline b which estimates the
expected return

▪ We usually use advantage as it is a better
signal for models to learn from

Advantage vs
return

122

C
O

M
-3

04

▪ We can estimate advantage with state-values and action-values

Advantage 123

C
O

M
-3

04

▪ How do we choose the step size alpha?

• A: trial and error

▪ What might happen if the step size is too small?

• A: No learning -> waste of time

▪ What might happen if the step size is too big?

• A: The policy will become bad -> all future
data collection is affected!

Step size 124

The mountain of policies
Be careful where you step!

C
O

M
-3

04

▪ But the best step size might not be consistent

• So, it can be very easy to ruin our policy

▪ How do we stop this from happening?

Step size 125

A loss landscape

C
O

M
-3

04

▪ What if we could learn by acting according to
our old policy for longer?

• We trust our old policy. So use that trust.

▪ We should also stay close to our old policy

• We don't trust a different policy too much

TRPO: Idea 126

C
O

M
-3

04
Surrogate objective 127

C
O

M
-3

04
Surrogate objective 128

C
O

M
-3

04
Surrogate objective 129

C
O

M
-3

04
Surrogate objective 130

C
O

M
-3

04

▪ With a similar derivation as earlier, we can start from our surrogate loss

• and drop the dynamics to get a new objective

▪ This gives us a new loss we can optimize

Surrogate objective 131

C
O

M
-3

04

▪ Measure the closeness of 2 distributions:

▪ Details aren't super important.

▪ But its a tool we can use to measure the closeness of two policies

KL divergence 132

C
O

M
-3

04

▪ Trust region policy optimization (TRPO) optimizes the surrogate loss:

▪ While staying close to the old policy:

▪ Note: the agent acts according to the old policy, which is updated every
so often

TRPO 133

C
O

M
-3

04

▪ Act with the trusted policy to find a
good step to a better policy

▪ Stay close to the old policy, or our
estimates might be bad

▪ Update our data collection policy
to the better policy

▪ Keep repeating to gradually
optimize the policy

TRPO Intuition 134

C
O

M
-3

04

▪ Hard to implement trust region for complex policies

▪ We can need to estimate the conjugate gradient (complex)

▪ Would be much easier if standard optimizers could be used

• AdamW

• RMSProp

• ...

TRPO issues 135

C
O

M
-3

04

▪ In deep learning, we usually treat a constraint as another loss term with
some weight

▪ We can do that with the KL constraint to make this a simpler optimization
problem

PPO v1 136

From

To

C
O

M
-3

04

▪ Lets understand our objective better:

▪ This ratio gives us how likely it is to take an action under the old policy vs
the new one

• If this ratio is greater than 1, we are more likely to take the action
under the new policy

• If this ratio is less than 1, we are less likely to take the action under
the new policy

Improving PPO 137

C
O

M
-3

04

▪ Since it's important, we'll name this ratio:

▪ This ratio measures the similarity of the old and new policies.

▪ To keep the policies similar, we just need to keep this ratio close to 1.

Improving PPO 138

C
O

M
-3

04

▪ We can form a new objective that uses this ratio to keep the policies
close:

▪ We maintain the trust region by directly clipping the objective if we move
too far away.

• So, if we go out of bounds (outside the clip range), we get a gradient
of 0, and so θ won't be changed.

PPO v2 139

C
O

M
-3

04

▪ Effects of the clipped loss

PPO v2 140

If advantage is positive, only let the rollout be
slightly more likely under the new policy

If advantage is negative, don't try and
decrease the odds of seeing a rollout too far

C
O

M
-3

04

▪ Note that we don't clip the bottom of the objective

• This means that if the new policy can always be pushed towards the
old, trusted policy

• We just limit how far it can be pushed away

PPO v2 141

C
O

M
-3

04

▪ Maximize policy entropy → encourages exploration

Entropy
Regularization

142

Orange = low entropy, Blue = high entropy

C
O

M
-3

04

▪ Balance clip and entropy losses

Full PPO Objective 143

C
O

M
-3

04

▪ Still the same idea as TRPO

• Take small, cautious steps that
are definitely safe

▪ But, the boundaries are harder and
more pessimistic

▪ And the objective is easier to
optimize

PPO intuition 144

Z
am

ir

C
O

M
-3

04

Thank you!

Amir Zamir (amir.zamir@epfl.ch)

Jason Toskov (jason.toskov@epfl.ch)

Rishubh Singh (rishubh.singh@epfl.ch)
Zhitong Gao (zhitong.gao@epfl.ch)

https://vilab.epfl.ch/

145

π*

