
PLC
Programming

Dr. Philipp Sommer

Spring 2025
[Picture: Pier re75000, CC BY-SA 4.0, h ttps://commons.wikimedia.org/w/index.php?cur id=80946678]

Join at

slido.com

#776 576

Programmable Logic Controllers
(PLCs) in the Automation Pyramid

Hierarchy

admin

enterprise

manufacturing execution

supervision

control, communication networks

sensors, actors

physical plant

Course

2

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Main components in a PLC can be categorized into:

▪ Processor (CPU, etc.)

▪ Input (digital, analog, etc.)

▪ Output (digital, analog, etc.)

▪ Communication interface

Programmable Logic
Controller (PLC)

CPU

digital inputs

/outputs
analog inputs /

outputs

https://new.abb.com/plc/programmable-logic-controllers-plcs/ac500

Communication

interface

3

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

PLC Inputs and
Outputs

PLC

Inputs

Outputs

Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.n

I0.1 I0.2 I0.3 I0.4 I0.5 I0.n

0V

24V
Relay

0V

24V

Switch

Inputs are named as IX.Y

Outputs are named as QX.Y

4

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ All program variables must be declared with name, type and initial value.

▪ A variable may be connected to an input or an output, giving it an I/O address.

▪ Several properties can be set: initial value, fall-back value, store at power fail,…

Connecting to Inputs /
Outputs

5

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Binary World

• Relay control, pneumatic
sequencer

▪ Analog World

• Pneumatic and
electromechanical controllers

Matching the analog
and binary world

A
B

C

continuous processes

P2
P1

I1

regulation, controllers
discrete processes

combinatorial sequential

PLC

6

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Originally PLCs are intended to be used by non-software engineers
• Ladder Diagram (LD): Graphical programming language similar to electric

circuit diagrams

▪ IEC (International Electrotechnical Commission) 61131-3 standard
defines 5 programming languages adopted by most PLC
manufacturers:
• Textual languages:

▪ Instruction List (IL)

▪ Structured Text (ST)

• Graphical languages:

▪ Ladder Diagram (LAD)

▪ Function Block Diagram (FBD)

▪ Sequential Function Chart (SFC)

How to program PLCs?
In

d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

9

IEC 61131-3 programming languages

Structured Text (ST)
VAR CONSTANT X : REAL := 53.8;

Z : REAL; END_VAR

VAR aFB, bFB : FB_type; END_VAR

bFB(A:=1, B:=‘OK’);

Z := X - INT_TO_REAL (bFB.OUT1);

IF Z>57.0 THEN aFB(A:=0, B:=“ERR”);

END_IF

Instruction List (IL)

A: LD %IX1 (* PUSH BUTTON *)

ANDN %MX5 (* NOT INHIBITED *)

ST %QX2 (* FAN ON *)

Sequential Flow Chart (SFC)

START STEP

T1

T2

D1_READY

D2_READY

STEP A ACTION D1N

D ACTION D2

STEP B D3_READY

D4_READY

ACTION D3N

D ACTION D4
T3

Ladder Diagram (LD)

OUT

PUMPAUTO

MAN_ON

ACT

CALC

IN1

IN2

OUT

Function Block Diagram (FBD)
PUMP

AUTO

MAN_ON

ACT

DO

V

CALC

IN1

IN2

OUT >=1

10

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Functions:
• are part of the base library
• have no memory
• Examples: AND gate, adder, multiplier, selector,

▪ Function Blocks (FB):
• are part of the base library
• may have a memory ("static" data)
• may access global variables (side-effects!)
• Examples: counter, filter, integrator, ...

▪ Programs (compound blocks):
• user-defined or application-specific blocks
• may have a memory
• may be configurable
• Examples: PID controller, overcurrent protection,

motor sequence (a library of compound blocks may be found in IEC 61804-1)

Types of Program
Organisation Units (POUs)

11

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

A
AND

B
C

UP
COUNTER

RESET
COUNT

A
F1 F2

B

F4
Y

X01

X02
F3C

X

Type 3 report
recommendation

IEC 1131-3

IEC 61131-3
name change

NEMA Programmable Controllers Committee formed (USA)

GRAFCET (France)

IEC 848, Function Char ts

DIN 40719, Function Charts (Germany)

NEMA ICS-3-304, Programmable Controllers (USA)

IEC SC65A/WG6 formed

DIN 19 239, Programmable Controller (Germany)

MIL-STD-1815 Ada (USA)

IEC SC65A(Sec)67

IEC 65A(Sec)38, Programmable Contro llers

IEC SC65A(Sec)49, PC Languages

IEC 64A(Sec)90

▪ PLC industry needs agreement on:

• Data types (operations may only be executed on appropriate types)

• Programming languages

• Software structure (program organization units for modularity, encapsulation)

• Execution

The long way to the IEC
61131-3 standard

Source: Dr. J. Christensen

77 78 79 8180 93 94 9570 82 83 84 85 8786 88 89 90 91 92 96

it took 20 years to make that standard…

12

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ IEC 61131-3 are the most important automation languages in

industry. Most PLCs on the market support it.

▪ Improved interoperability between programming languages

(standardized data types)

▪ Modularization, component reuse

▪ More information:

• http://www.plcopen.org/pages/tc1_standards/downloads/plcopen_iec
61131-3_feb2014.pptx

• http://www.plcopen.org/pages/pc2_training/downloads/index.htm

Why using IEC 61131-3
for PLCs?

13

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

http://www.plcopen.org/pages/tc1_standards/downloads/plcopen_iec61131-3_feb2014.pptx
http://www.plcopen.org/pages/tc1_standards/downloads/plcopen_iec61131-3_feb2014.pptx
http://www.plcopen.org/pages/pc2_training/downloads/index.htm

▪ A PLC programming environment allows the
programmer to:

• program using one of the IEC 61131 languages

• define the variables (name and type)

• bind the variables to the input/output (binary, analog)

• run simulations

• download programs and firmware to the PLC

• upload from the PLC (if provided, rare)

• monitor the PLC

▪ Examples:

• ABB ControlBuilder, Siemens Step 7, CoDeSys,
OpenPLC

Programming
environment capabilities

workstation

deploy

symbols

code

network

configuration,

editor, compiler,

library

PLC

variable
monitoring and

forcing
for debugging

14

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

IDE Example: OpenPLC
Editor

http://www.openplcproject.com

15

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Open-Source PLC Runtime Environment

OpenPLC Runtime for
Raspberry Pi

Raspberry Pi

Runtime

Grove Base Hat

LED (red, green, blue)

Push Button

Switch

+ +

17

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Raspberry Pi: Inputs
and Outputs

%QX0.0 %QX0.1 %QX0.2

%QW0 %IX0.2%IX0.1%IX0.0

3x Digital Input

3x Digital Output

1x Analog Output

Grove Base Hat for Raspberry Pi

18

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

1. Ladder Diagrams (LD)

19

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Ladder Diagrams is the oldest programming language for PLC

• based on relay intuition of electricians

• widely used

• not recommended for large new projects

Ladder Diagrams (LD)

Rung 0

Rung 1

Rung 2

Input instructions (conditions) Output (actions)

20

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ The contact plan or "ladder diagram" language allows an easy transition
from the traditional relay logic diagrams to the programming of binary
functions:

• well suited to express combinational logic

• not suited for process control programming (there are no analog elements)

▪ The main Ladder Diagrams symbols represent the elements:

Ladder Diagrams (LD)

make contact

break contact

relay coil

21

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Ladder Diagrams: Series
and Parallel Contacts

Binary combinations are expressed by series and parallel relay contact:

+
01 02 50

Coil 50 is active (current flows) when 01 is active AND 02 is not.

01

02
50

Series

+
01 40

02

Coil 40 is active (current flows) when 01 is active OR 02 is not.

Parallel

Ladder Diagrams representation “logic" equivalent

01

02
40

AND

OR

22

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Ladder Diagrams: Example

BUTTON_1 COIL

relay coil

make contact

(normally open)

make contact

(normally open)

corresponding

ladder diagram

origin:

Electrical circuit

rung

BUTTON_1 BUTTON_2

BUTTON_2

23

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ What is the behavior of the following ladder diagram?

• What happens when Button 1 is pressed?

• What happens when Button 2 is pressed?

Exercise: Ladder
Diagram

corresponding

ladder diagram

BUTTON_1 COIL

rung

BUTTON_2

"coil" is used to move
other contact(s)

COIL

24

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Join at

slido.com

#776 576

Solution: Ladder Diagram for Start/Stop

corresponding

ladder diagram

origin:

Electrical circuit

BUTTON_1 COIL

relay coil

make contact

(normally open)

break contact

(normally closed)

rung

BUTTON_1 BUTTON_2

BUTTON_2

"coil" is used to move
other contact(s)

COIL

make contact

(normally open)

BUTTON_1 = STOP

BUTTON_2 = START

26

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Ladder Diagrams stems from time of relay technology.
• As PLCs replaced relays, not everything could be expressed in relay

terms.

▪ Language was extended to express functions.
• Intuition of contacts and coil gets lost.

▪ More or less hidden control of the flow destroys the
freedom of side effects and makes programs difficult to read.

Ladder Diagrams:
Advanced Functions

literal expression:

200:= !00 & 01 FUN 02
200FUN 02

0100

27

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Ladder Diagrams don’t provide:
• sub-programs (blocks)

• data encapsulation

• structured data types

▪ Not suited to make reusable modules.

▪ IEC 61131 does not prescribe the minimum requirements for a compiler
/ interpreter such as number of rungs per page nor does it specify the
minimum subset to be implemented.

▪ Therefore, it should not be used for large programs made by groups of
people
• It is very limited when considering analog values

• → used mostly in manufacturing, not in process control

Ladder Diagrams:
Shortcomings

28

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

2. Functional Block
Diagram (FBD)

29

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ The function blocks are
translated to machine language
(intermediate code, IL), that is
either interpreted or compiled to
assembly language

▪ Blocks are executed in
sequence, normally from upper
left to lower right

▪ The sequence is repeated
every t ms.

Execution of function
blocks

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

30

F1

A

B

X01

F2

X01

X

F3

B

C

X02

F4

X

X02

Y

function

input1

input2

output

A
F1 F2

B

F4
Y

X01

X02
F3

C

X

▪ Executed cyclically:

• all inputs are read from memory or plant (possibly cached)

• segment is executed

• results are written into memory or to plant (possibly to cache)

▪ Order of execution of the blocks does not matter

▪ For speed it can help to impose execution order on blocks

▪ Different segments may be assigned different periods

Input-output of
function blocks

execute individual period

I OX I OX I OX

Read inputs Write outputs

time

31

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Exercise: Asymmetric
Sawtooth Wave

Build an asymmetric sawtooth wave generator for constant

input with IEC 61131 function blocks.

75

0

5s 15s

Hints:

- Compute the slopes

- Use integrators, comparators, flip-flops and selectors

32

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Solution: Asymmetric
Sawtooth Wave with FBD

Note: This is just one of many possible solutions.

= 75.0

= 0.0

75 / 5s → -1.5 per cycle time (100ms)

= T#100ms (cycle time)

75 / 15s → +0.5 per cycle time (100ms)

33

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

3. Instruction List (IL)

34

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Instruction lists is the machine
language of PLC programming

▪ It has 21 instructions

▪ Three modifiers are defined:

• "N" negates the result

• "C" makes it conditional

• "(" delays it.

▪ All operations relate to
accumulator.

Instruction Lists (1)

Operator Modifiers Meaning

LD N Make current result equal to the operand

ST N Save current result at the position of the Operand

S Put the Boolean operand exactly at TRUE if the current result is TRUE

R Put the Boolean operand exactly at FALSE if the current result is TRUE

AND N, (Bitwise AND

OR N, (Bitwise OR

XOR (Bitwise exklusive OR

ADD (Addition

SUB (Subtraction

MUL (Multiplication

DIV (Division

GT (>

GE (>=

EQ (=

NE (<>

LE (<=

LT (<

JMP CN Jump to label

CAL CN call function block

RET CN Return from call of a function b lock

) Evaluate deferred operation

Source: https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/TcPlcCtrl_Languages%20IL.htm

35

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Accumulator-based programming:

1. First, values are loaded into the accumulator (LD instruction)

2. Then, operations are executed with first parameter taken out of accumulator and
second parameter of operand.

3. Result put in the accumulator, from where it can be stored (ST instruction)

▪ Conditional executions or loops are supported by comparing operators like EQ,
GT, LT, GE, LE, NE and jumps (JMP, JMPC, JMPCN, for the last two the
accumulators value is checked on TRUE or FALSE)

▪ Syntax:

• each instruction begins on a new line and contains an operator and, depending on the
type of operation, one or more operands separated by commas

• before an instruction there can be a label, followed by a colon (:), as target for jumps

• use brackets to define order of execution

• comments must be placed last

Instruction Lists (2)
36

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Instruction Lists: Example

LD TRUE (*load TRUE into the accumulator*)
ANDN BOOL1 (*execute AND with the negated value of the BOOL1 variable*)
JMPC mark (*if the result was TRUE, then jump to the label "mark"*)

LDN BOOL2 (*load the negated value of BOOL2 into the accumulator*)
ST RES (*store the content of the accumulator in RES*)
JMP continue (*jump to label “continue"*)

mark:
LD BOOL2 (*save the value of *)
ST RES (*BOOL2 in RES*)

continue:
…

37

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ With Instructions Lists (IL) once can write the most efficient code, but
only for specialists.

▪ In general, IL should not be used because of:

• provides no code structuring

• is machine-dependent

• weak tool support (IDE)

Instruction Lists:
Shortcomings

38

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

LD temp1 (* load temp1 *)
GT temp2 (* test if temp1 > temp2 *)
JMPCN Greater (* jump if NOT true to Greater *)
LD speed1 (* load speed1 *)
ADD 200 (* add constant 200 *)
JMP End (* jump unconditionally to End *)

Greater: LD speed2 (* load speed2 *)
End: ST speed3 (* store result in speed3 *)

Instruction Lists:
Exercise

Question: What is the resulting value of the variable speed3 for the following input?

temp1 = 10
temp2 = 5
speed1 = 50
speed2 = 100

39

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Join at

slido.com

#776 576

4. Structured Text (ST)

41

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Structured Text is an imperative language similar to Pascal (If,
While, etc..)

• Iteration loops: REPEAT..UNTIL, WHILE..DO

• Conditional execution: IF..THEN..ELSE, CASE

▪ The variables defined in ST can be used in other languages

▪ ST is used for complex data manipulation and to write blocks

▪ Caution: writing programs in structured text can breach real-time
rules!

Structured Text
42

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Structured Text
Examples

IF tank.temp > 200 THEN
pump.fast :=1;
pump.slow :=0;
pump.off :=0;

ELSIF tank.temp > 100
THEN

pump.fast :=0;
pump.slow :=1;
pump.off :=0;

ELSE
pump.fast :=0;
pump.slow :=0;
pump.off :=1;

END_IF;

[http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm007_-en-p.pdf]

IF(Switch_0 AND Switch_1) THEN
Start_Motor := 1;
Start_Count := Start_Count + 1;

END_IF;

IF(BUTTON_1) THEN
LED_RED := 1;

ELSE
LED_RED := 0;

END_IF;

43

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

5. Sequential Function
Chart (SFC)

44

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Describes sequences of operations and interactions between parallel
processes.

▪ Derived from Grafcet and SDL (Specification and Description
Language, used for communication protocols), mathematical foundation
lies in Petri Nets.

SFC (Sequential Function Chart)
45

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

ACTION D1N D1_READY

D ACTION D2 D2_READY

T1

T2

START STEP

STEP BSTEP A

SFC: Elements

• Program consists of states connected by transitions.

• A state is activated by a token (the corresponding variable becomes TRUE).

• Token leaves state when transition condition (event) on state output is true.

• Only one transition takes place at a time.

• Execution period is configuration parameter (task to which program is attached)

Ec = ((varX & varY) | varZ)

token

Sa

Sb

"1"

Ea

Sc

Eb

transitions

states

event condition

("1" = always true)

example transition condition

S0

Rule: there is always a transition between states, there is always a state

between transitions.

46

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ State which come into existence with a token are called initial states.

▪ All initial states receive exactly one token, the other states receive
none.

▪ Initialization takes place explicitly at start-up.

▪ In some systems, initialization may be triggered in a user program
(initialization pin in a function block).

SFC: Initial state

Initial State

47

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Eg

▪ Token Switch
• Token crosses the first active transition

(at random if both Ea and Eb are true)

• Note: transitions are after the switch

▪ Token Forking
• Token is replicated to all connected

states when the transition Ee is true

• Note: transition is before the fork

▪ Token Join
• Single token is forwarded when all

connected states have tokens and
transition Eg is true.

• Note: transition is after the join

SFC: Switch and
parallel execution

"1" E0

Ed

Sb

Ea Eb

Ec

Ee

Ef Sg

48

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Sc

Sd

Se

Sf

Sa

▪ P1 (pulse raise) action is executed once when the state is entered

▪ P0 (pulse fall) action is executed once when the state is left

▪ N (non-stored) action is executed continuously while the token is in the
state

▪ P1 and P0 actions could be replaced by additional states.

▪ The actions are described by a code block written e.g. in Structured
Text.

SFC: P1, N and P0
actions

P1 State1_P1: do at enter

N State1_N: do while

P0 State1_P0: do at leaving

State1

49

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Rather than define a P0 action “reset timer….”, there is an implicit
variable defined as <state name>.t that express the time spent in that
state.

Special action: the
timer

Sa.t > t#5s

50

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Sa

Sb

▪ Many PLC applications mix continuous and discrete control.

• Function blocks: Continuous time control

• Sequential flow charts: Discrete time control

▪ A PLC may execute alternatively function blocks and flow charts.

▪ Communication between these program parts is possible.

Flow Charts vs
Function Blocks

A flow chart taken as a whole can be considered a function

block with binary inputs (transitions) and binary outputs (states).

51

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Flow Charts or
Function Blocks?

A task can sometimes be written indifferently as function blocks or as flow chart.

The application may decide which representation is more appropriate:

c

d

"1"

b

a

a

b c

d

Flow Chart Function Block

NOT

S

R

52

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Exercise: Write the SFC for this task

open V1 until tank’s L1 indicates upper level
open V2 during 25 seconds
open V3 until the tank’s L1 indicates it reached the lower level
while stirring:

heat mixture during 50 minutes while stirring
empty the reactor while the drying bed is moving

repeatMS

MD

temperature

(sensor)

H1

upper

lower

V4

heater

(actor)

V1 V2

L1

T

V3

53

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

Summary

54

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

PLC Programming
Languages (IEC 61131-3)

Function Block Diagram (FBD)

C:= A AND NOT B

Structured Text (ST)Instruction List (IL)

LD A

ANDN B

ST C

Ladder Diagram (LD)

A CB

"1"

A & NOT B

Start

Sequential Function Chart (SFC)

C := 0

C := 1

NOT A | B

55

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

AND

A

B

C

▪ No support to distribute execution of programs over several
devices.

▪ No support for event-driven operation.
Note: Blocks may be triggered by a Boolean variable

▪ No object orientation in structured text.

Limitations of IEC
61131

56

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ IEC 61499 was first published in 2005

▪ Extends IEC 61131 with an event-driven model

▪ Application can be distributed over several PLCs

The next standard:
IEC 61499

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

57

Counter Up Counter Up

IEC 61131 IEC 61499

R

P

R

P

R Events

Data

CU = Counter Up
R = Reset

PV = counter limit value
CV = current counter value
Q = TRUE when counter reaches limit

Learning PLC
Programming?

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

58

1. Which programming languages are defined in IEC 61131-3?

2. What are the advantages of using a PLC instead of using traditional

relay logic?

3. How are inputs and outputs to the process treated in a function block

language?

4. Why is Java/Python/Matlab not used to program PLCs?

5. Why is OpenPLC on the RaspberryPi not suited for industrial

automation tasks?

Assessment
59

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

▪ Stamatios Manesis, George Nikolakopoulos, “Introduction to Industrial
Automation”, R Press

Literature
60

In
d
u
s
tr

ia
l
A

u
to

m
a
tio

n
 -

W
e
e
k
 7

:
P

L
C

 P
ro

g
ra

m
m

in
g

	Slide 1: PLC Programming
	Slide 2: Programmable Logic Controllers (PLCs) in the Automation Pyramid
	Slide 3: Programmable Logic Controller (PLC)
	Slide 4: PLC Inputs and Outputs
	Slide 5: Connecting to Inputs / Outputs
	Slide 6: Matching the analog and binary world
	Slide 9: How to program PLCs?
	Slide 10: IEC 61131-3 programming languages
	Slide 11: Types of Program Organisation Units (POUs)
	Slide 12: The long way to the IEC 61131-3 standard
	Slide 13: Why using IEC 61131-3 for PLCs?
	Slide 14: Programming environment capabilities
	Slide 15: IDE Example: OpenPLC Editor
	Slide 17: OpenPLC Runtime for Raspberry Pi
	Slide 18: Raspberry Pi: Inputs and Outputs
	Slide 19: 1. Ladder Diagrams (LD)
	Slide 20: Ladder Diagrams (LD)
	Slide 21: Ladder Diagrams (LD)
	Slide 22: Ladder Diagrams: Series and Parallel Contacts
	Slide 23: Ladder Diagrams: Example
	Slide 24: Exercise: Ladder Diagram
	Slide 26: Solution: Ladder Diagram for Start/Stop
	Slide 27: Ladder Diagrams: Advanced Functions
	Slide 28: Ladder Diagrams: Shortcomings
	Slide 29: 2. Functional Block Diagram (FBD)
	Slide 30: Execution of function blocks
	Slide 31: Input-output of function blocks
	Slide 32: Exercise: Asymmetric Sawtooth Wave
	Slide 33: Solution: Asymmetric Sawtooth Wave with FBD
	Slide 34: 3. Instruction List (IL)
	Slide 35: Instruction Lists (1)
	Slide 36: Instruction Lists (2)
	Slide 37: Instruction Lists: Example
	Slide 38: Instruction Lists: Shortcomings
	Slide 39: Instruction Lists: Exercise
	Slide 41: 4. Structured Text (ST)
	Slide 42: Structured Text
	Slide 43: Structured Text Examples
	Slide 44: 5. Sequential Function Chart (SFC)
	Slide 45: SFC (Sequential Function Chart)
	Slide 46: SFC: Elements
	Slide 47: SFC: Initial state
	Slide 48: SFC: Switch and parallel execution
	Slide 49: SFC: P1, N and P0 actions
	Slide 50: Special action: the timer
	Slide 51: Flow Charts vs Function Blocks
	Slide 52: Flow Charts or Function Blocks?
	Slide 53: Exercise: Write the SFC for this task
	Slide 54: Summary
	Slide 55: PLC Programming Languages (IEC 61131-3)
	Slide 56: Limitations of IEC 61131
	Slide 57: The next standard: IEC 61499
	Slide 58: Learning PLC Programming?
	Slide 59: Assessment
	Slide 60: Literature

