Join at
slido.com
#7176 576

Spring 2025

[Picture: Pierre75000, CC BY-SA 4.0, https://commons.wikimedia.org/w/inde x.php? curid=809466 78]

=P'L Programmable Logic Controllers ’
(PLCs) in the Automation Pyramid

enterprise

/nanufacturing executior\
/ supervision \
/ control, communication networks \
/ sensors, actors \
/ physical plant \

B Industrial Automation - Week 7: PLC Programming

=P*L Programmable Logic 3
Controller (PLC)

Main components in a PLC can be categorized into:

= Processor (CPU, etc.)

= Input (digital, analog, etc.)

= Qutput (digital, analog, etc.)
= Communication interface

B Industrial Automation - Week 7: PLC Programming

https://new.abb.com/plc/programmable-logic-controllers-plcs/ac500

PFL PLC Inputs and
Outputs 2w

Inputs are named as IX.Y
®
Switch / / ov

K
Inputs O O O O O O O O O O O

- Week 7: PLC Programming

Outputs OQOOOOOOOOQ

Outputs are named as QX.Y

B Industrial Automation

——
oV

=PrL

B Industrial Automation - Week 7: PLC Programming

Connecting to Inputs / “
Outputs

= All program variables must be declared with name, type and initial value.
= Avariable may be connected to an input or an output, giving it an I/O address.
= Several properties can be set: initial value, fall-back value, store at power fail,...

Name Class Type Location Initial Value
1 |BUTTON1 Local BOOL %IX1.1 FALSE

2 LED_GREEN Local BOOL %QX1.0 FALSE

EPF

B Industrial Automation - Week 7: PLC Programming

L

Matching the analog
and binary world

= Binary World

« Relay control, pneumatic
sequencer

A
B
>

— T

combinatorial sequential
discrete processes

= Analog World

* Pneumatic and
electromechanical controllers

regulation, controllers
continuous processes

=PFL How to program PLCs?

= Originally PLCs are intended to be used by non-software engineers

» Ladder Diagram (LD): Graphical programming language similar to electric
circuit diagrams

= |EC (International Electrotechnical Commission) 61131-3 standard
defines 5 programming languages adopted by most PLC
manufacturers:
« Textual languages:
= |nstruction List (IL)
= Structured Text (ST)
« Graphical languages:
» Ladder Diagram (LAD)
» Function Block Diagram (FBD)
= Sequential Function Chart (SFC)

B Industrial Automation - Week 7: PLC Programming

=Pr

B Industrial Automation - Week 7: PLC Programming

IEC 61131-3 programming languages

Ladder Diagram (LD)

AUTO CALC PUMP
1 INL OUT —
ACT

1/ ——|IN2

MAN_ON

Instruction List (IL)

A: 1D %$IX1 (* PUSH BUTTON *)
ANDN %MX5 (* NOT INHIBITED *)

ST %QX2 (* FAN ON *)

Function Block Diagram (FBD)

Structured Text (ST)

CALC PUMP

AUTO—]IN1 OuUT >=1
MAN_ON— —

ACT —QIN2

Sequential Flow Chart (SFC)

VAR CONSTANT X : REAL := 53.8;
Z : REAL; END_VAR
VAR aFB, bFB : FB type; END VAR

bFB(A:=1, B:=‘0K’) ;
Z := X - INT TO REAL (bFB.OUT1);

IF Z>57.0 THEN aFB(A:=0, B:=“ERR”);

END_IF

START STE%|
T1
STEP A N ACTION D1 D1 _READY
T D ACTION D2 D2 READY
T2 |
STEP B N ACTION D3 D3_READY
D ACTION D4 D4 READY
T3

10

=PrL

B Industrial Automation - Week 7: PLC Programming

Types of Program
Organisation Units (POUs)

= Functions:
« are part of the base library
* have no memory

« Examples: AND gate, adder, multiplier, selector,

= Function Blocks (FB):
« are part of the base library
* may have a memory ("static" data)
* may access global variables (side-effects!)
« Examples: counter, filter, integrator, ...

r Programs (compound blocks):
user-defined or application-specific blocks
* may have a memory
* may be configurable
« Examples: PID controller, overcurrent protection,

upP
RESET

w >

AND

COUNTER

COUNT

[] xo1

X02

motor sequence (a library of compound blocks may be found in IEC 61804-1)

11

=PrL

B Industrial Automation - Week 7: PLC Programming

The long way to the IEC

61131-3 standard

= PLC industry needs agreement on;
« Data types (operations may only be executed on appropriate types)

« Programming languages

« Software structure (program organization units for modularity, encapsulation)

 Execution

it took 20 years to make that standard...

NEMA Programmable Controllers Committee formed (USA)

GRAFCET (France)

T DIN 40719, Function Charts (Germany)

[NEMA ICS-3-304, Programmable Controllers (USA)

T IEC SC65AMG6 formed

DIN 19 239, Programmable Controller (Germany)

IEC 65A(Sec)38, Programmable Controllers

TMIL-STD-1815 Ada (USA)

IEC SC65A (Sec)49, PC Languages

T IEC SC65A (Sec)67
IEC 848, Function Charts
IEC 64A(Sec)90
IEC 1131-3

Type 3 report

recommendation
IEC 61131-3
name change

T T T T T >

70 // 7I7 7I8 7I9 8I0

Source: Dr. J. Christensen

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

12

=PrL

B Industrial Automation - Week 7: PLC Programming

Why using IEC 61131-3 ’
for PLCs?

= |EC 61131-3 are the most important automation languages in
industry. Most PLCs on the market support it.

= Improved interoperability between programming languages
(standardized data types)

= Modularization, component reuse

= More information:;

* http://www.plcopen.org/pages/tcl standards/downloads/plcopen iec
61131-3 feb2014.pptx

e http://www.plcopen.org/pages/pc? training/downloads/index.htm

http://www.plcopen.org/pages/tc1_standards/downloads/plcopen_iec61131-3_feb2014.pptx
http://www.plcopen.org/pages/tc1_standards/downloads/plcopen_iec61131-3_feb2014.pptx
http://www.plcopen.org/pages/pc2_training/downloads/index.htm

=PrL

B Industrial Automation - Week 7: PLC Programming

Programming
environment capabilities

= A PLC programming environment allows the
programmer to:

* program using one of the IEC 61131 languages
 define the variables (name and type)
 bind the variables to the input/output (binary, analog)
* run simulations
» download programs and firmware to the PLC
 upload from the PLC (if provided, rare)
* monitor the PLC

= Examples:

« ABB ControlBuilder, Siemens Step 7, CoDeSys,
OpenPLC

deploy

14

configuration,
editor, compiler,
library

=l

workstation

variable
monitoring and
forcing

for debugging

network

1 pLC

=PrL

Industrial Automation - Week 7: PLC Programming

IDE Example: OpenPLC
Editor

' B
24} PLCOpenkditor - traffic-light-rcl [E= N
File Edit Display Help
: LTI 2 == O 4 Lo [L wam uaR
cwBEg e & ol QYo T
—
| B 1y_Program x| =
Project Library
- . (Al -
= gﬂ Blank Project Description: Class Filter: E:] [~] & Q Search
| 3| togaleRequ ‘ ‘ ‘ ‘ . ‘ . ‘) ‘ ; ‘ - - Standard function =
Name Class Type Location | Initial Value Option Documentation
.ﬂ Function Blocks e [1d E [+ Additional functio
ﬂ mm 1 |resetButton Local BOOL %eIN0.0 - Type conversion
&2 Configd 2 carSensor00 Local BOOL %IN11 G- Numerical
3 carsensor0l Local BOOL %IN1.2 - Arithmetic
- Time =
4 |carSensorld Local BOOL %elN13 [Bit-shift
5 |trainsensor0 Local BOOL 20X 1.4 M @ Bitwise
N - Selection
- Comparison
[~ Character string
N 00 sensorReader(Disch (- User-defined POL: ~
carSensor sensorReader sensorDischarge P T 5
res dischargeSensors = i
I
P lII b carsensor(1 | carsensor(0 cars0
e carSensor0l carsl
onfigl. Instd »
? | carSensor 10 }7 carSensor 10 train
|:-| resetButton (BOOL) * trainSensord
|:-| carSensor00 (BOOL) E| | trainsensord }—‘
|:-| carSensor01 (BOOL) frainSensor 1
|:-| carSensor 10 (BOOL) trainSensor1 -
“ |#] trainsensoro (BOOL) | m I r i
.i-l trainSensor 1 (BOOL)
.i-l sensorDischarge (BO
| @] redo (BooL) - Search
1 + Mo search results available.

http://www.openplcproject.com

15

=PrL

- Week 7: PLC Programming

B Industrial Automation

OpenPLC Runtime for
Raspbeny Pi

= Open-Source PLC Runtime Environment

Grove Base Hat

Pl

Runtime

LED (red, green, blue)

Push Button

o Switch
L)

17

=PFL Raspbeny Pi: Inputs
and Outputs

Grove Base Hat for Raspberry Pi

1x Analog Output

GNDE Bl cno :EGNO;E

12C 12C

B Industrial Automation - Week 7: PLC Programming

3x Digital Input

3x Digital Output

18

=PrL

8
3
n
=
«
5
=
5
S
.
| o |

Buwweboid D7d :Z H99M - uonewoiny [euisnpu| |

"L Ladder Diagrams (LD)

= | adder Diagrams is the oldest programming language for PLC
 based on relay intuition of electricians
 widely used
* not recommended for large new projects

Input instructions (conditions) ~ Output (actions)

] S

TN
Rung 0 . . . ‘_
Rung 1 .

i — -0

B Industrial Automation - Week 7: PLC Programming

=PrL

B Industrial Automation - Week 7: PLC Programming

Ladder Diagrams (LD) "

= The contact plan or "ladder diagram" language allows an easy transition
from the traditional relay logic diagrams to the programming of binary
functions:

 well suited to express combinational logic
 not suited for process control programming (there are no analog elements)

= The main Ladder Diagrams symbols represent the elements:

: : make contact

M break contact

H
() relay coil
U/ Y

=Pr

B Industrial Automation - Week 7: PLC Programming

L

Ladder Diagrams: Series

and Parallel Contacts

Binary combinations are expressed by series and parallel relay contact:

Series

Parallel

Ladder Diagrams representation

01

02

50

“logic" equivalent

Coil 50 is active (current flows) when 01 is active AND 02 is not.

40

)

O

01
AND
02 50
01
OR
02 40

Cail 40 is active (current flows) when 01 is active OR 02 is not.

=Pr

B Industrial Automation - Week 7: PLC Programming

Ladder Diagrams: Example

origin:
Electrical circuit

corresponding
ladder diagram

relay coil
BUTTON 1 BUTTON 2
O e O e v
make contact

(normally open)

make contact
(normally open)

BUTIFCI)N_l BUT;I'(I)N_Z COIL

A

()
1 11 U/

rung

23

B Industrial Automation - Week 7: PLC Programming

Exercise: Ladder i E y[m]
Diagram slido.com

#7176 576
[=]%35%
= What is the behavior of the following ladder diagram?

« What happens when Button 1 is pressed?
« What happens when Button 2 is pressed?

BUTTON_1 BUTTON_2 COIL
. |/1 11
corresponding I 11

ladder diagram

rung

O

COIL
I 1
11

"cail" is used to move

other contact(s)

=Pr

B Industrial Automation - Week 7: PLC Programming

Solution: Ladder Diagram for Start/Stop

origin:
Electrical circuit

corresponding
ladder diagram

[l '
relay coll
BUTTON_1 BUTTON 2
O—e . v
break contact make contact

(normally closed)

(normally open)

make contact
(normally open)

BUTIFON_l

BUTTON 2

COIL

BUTTON_1 = STOP

BUTTON_2 = START

7

COIL

"coil" is used to move

other contact(s)

A

()
U/

rung

=PFL Ladder Diagrams:
Advanced Functions

= Ladder Diagrams stems from time of relay technology.

» As PLCs replaced relays, not everything could be expressed in relay
terms.

= Language was extended to express functions.
* Intuition of contacts and coil gets lost.

00 01 literal expression:
| FUN 02 @ 200:= 100 & 01 FUN 02

= More or less hidden control of the flow destroys the
freedom of side effects and makes programs difficult to read.

- Week 7: PLC Programming

B Industrial Automation

=PrL

B Industrial Automation - Week 7: PLC Programming

Ladder Diagrams:
Shortcomings

= | adder Diagrams don’t provide:
* sub-programs (blocks)
« data encapsulation
* structured data types

= Not suited to make reusable modules.

= |EC 61131 does not prescribe the minimum requirements for a compiler
[interpreter such as number of rungs per page nor does it specify the
minimum subset to be implemented.

= Therefore, it should not be used for large programs made by groups of
people
* It is very limited when considering analog values
« — used mostly in manufacturing, not in process control

=PrL

2. Functional Block
Diagram (FBD)

=PFL Execution of function
blocks

>

X01

= The function blocks are X02

translated to machine language
(intermediate code, IL), that is

either interpreted or compiled to function
inputl
assembly language i
= Blocks are executed in output X01

sequence, normally from upper
left to lower right

= The sequence is repeated
every t ms.

X02
F4

B Industrial Automation - Week 7: PLC Programming

X02

=PrL

B Industrial Automation - Week 7: PLC Programming

Input-output of
function blocks

= Executed cyclically:
« all inputs are read from memory or plant (possibly cached)
* segment is executed
* results are written into memory or to plant (possibly to cache)

Read inputs Write outputs

. X IO | _ X I O | _ X | O | R
execute individual period time

= Order of execution of the blocks does not matter

= For speed it can help to impose execution order on blocks
= Different segments may be assigned different periods

31

=PrL

- Week 7: PLC Programming

B Industrial Automation

Exercise: Asymmetric
Sawtooth Wave

Build an asymmetric sawtooth wave generator for constant
input with IEC 61131 function blocks.

5s «— 15s
75

Hints:
- Compute the slopes
- Use integrators, comparators, flip-flops and selectors

32

EPF

B Industrial Automation - Week 7: PLC Programming

L

Solution: Asymmetric ”
Sawtooth Wave with FBD

ouT
INTEGRAL®
INTEGRAL
START RUN oL s
<Rl XouT IN1 OUuT RSO
XIN UPPER LIMIT | —IN2 RS
= T#100ms (cycle time) -1 X0 e s Q1}—
INTERVAL CYCLE o — — R1
75/ 15s — +0.5 per cycle time (100ms) INI ouT
SEL LOWER LIMIT IN2
SLOPE_UP — T ¢ outH
INO =0.0
SLOPE_DOWN INL
75/ 5s — -1.5 per cycle time (100ms)
Note: This is just one of many possible solutions.

Buwweboid D7d :Z H99M - uonewoiny [euisnpu| |

-
L.
o
L

=PrL

B Industrial Automation - Week 7: PLC Programming

Instruction Lists (1)

Operator

Instruction lists is the machine
language of PLC programming s

It has 21 instructions

Three modifiers are defined:
* "N" negates the result o

MUL

« "C" makes it conditional p1v
GT

« "(" delays it. o

EQ

All operations relate to e
accumulator. &

LT

JMp
CAL
RET

)

Modifiers
N
N

~ |~

~N N~ A~~~ ~N~N~N~N~N~ zZz2 =z
< <

o o o
=z =2 =2

35

Meaning

Make current result equal to the operand

Save current result at the position of the Operand

Put the Boolean operand exactly at TRUE if the current resultis TRUE
Put the Boolean operand exactly at FALSE if the current resultis TRUE
Bitwise AND

Bitwise OR

Bitwise exklusive OR

Addition

Subftraction

Multiplication

Division

Jump to label
call function block
Return from call of a function block

Evaluate deferred operation

Source: https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/T cPIcCtrl_Languages%20IL.htm

=PrL

B Industrial Automation - Week 7: PLC Programming

Instruction Lists (2) "

= Accumulator-based programming:
1. First, values are loaded into the accumulator (LD instruction)

2. Then, operations are executed with first parameter taken out of accumulator and
second parameter of operand.

3. Result put in the accumulator, from where it can be stored (ST instruction)

= Conditional executions or loops are supported by comparing operators like EQ,
GT, LT, GE, LE, NE and jumps (JMP, IMPC, JMPCN, for the last two the
accumulators value is checked on TRUE or FALSE)

= Syntax:
 each instruction begins on a new line and contains an operator and, depending on the
type of operation, one or more operands separated by commas
* before an instruction there can be a label, followed by a colon (:), as target for jumps
 use brackets to define order of execution
« comments must be placed last

=PrL

B Industrial Automation - Week 7: PLC Programming

Instruction Lists: Example

LD TRUE (*load TRUE into the accumulator¥*)

ANDN BOOL1 (*execute AND with the negated value of the BOOL1 variable*)
IJMPC mark (*if the result was TRUE, then jump to the label "mark"*)
LDN BOOL2 (*load the negated value of BOOL2 into the accumulator*)

ST RES (*store the content of the accumulator in RES*)

JMP continue (*jump to label “continue"*)

mark:
LD BOOL2 (*save the value of *)
ST RES (*BOOL2 in RES*)

continue:

37

=PrL

B Industrial Automation - Week 7: PLC Programming

Instruction Lists:
Shortcomings

= With Instructions Lists (IL) once can write the most efficient code, but
only for specialists.

= In general, IL should not be used because of:
» provides no code structuring
* is machine-dependent
« weak tool support (IDE)

38

=PrL

B Industrial Automation - Week 7: PLC Programming

Instruction Lists:

[=]

Join at [=]
Exercise slido.com
#776 576 [m]kTx
LD templ (* load templ *)
GT temp2 (* test if templ > temp2 *)
JMPCN (* jump if NOT true to Greater *)
LD speedl (* load speedl *)
ADD (* add constant 200 *)
JMP (* jump unconditionally to End *)
: LD speed2 (* load speed2 *)
: ST speed3 (* store result in speed3 *)

Question: What is the resulting value of the variable speed3 for the following input?

templ = 10
temp2 = 5
speedl = 50
speed2 = 100

39

=PrL

3
g
3
3
8

Buwweboid D7d :Z H99M - uonewoiny [euisnpu| |

=PrL

B Industrial Automation - Week 7: PLC Programming

Structured Text

= Structured Text is an imperative language similar to Pascal (I,
While, etc..)

* |[teration loops: REPEAT. .UNTIL, WHILE..DO
* Conditional execution: IF..THEN. .ELSE, CASE

= The variables defined in ST can be used in other languages
= ST is used for complex data manipulation and to write blocks

= Caution: writing programs in structured text can breach real-time
rules!

42

=PrL

B Industrial Automation - Week 7: PLC Programming

Structured Text
Examples

IF tank.temp > 200 THEN
pump.fast :=1;
pump.slow :=0;
pump.off :=0;

ELSIF tank.temp > 100

THEN

pump.fast :=0;

pump.slow :=1;

pump.off :=0;
ELSE

pump.fast :=0;

pump.slow :=0;

pump.off :=1;
END_IF;

IF(Switch_© AND Switch_1) THEN
Start_Motor := 1;
Start_Count := Start_Count + 1;
END_IF;

IF(BUTTON 1) THEN
LED RED := 1;
ELSE
LED RED := ©;
END_IF;

[http//literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm007_-en-p.pdf]

43

=PrL

5. Sequential Function
Chart (SFC)

- We

B Industrial Automation

B Industrial Automation - Week 7: PLC Programming

SFC (Sequential Function Chart)

= Describes sequences of operations and interactions between parallel
processes.

= Derived from Grafcet and SDL (Specification and Description
Language, used for communication protocols), mathematical foundation
lies in Petri Nets.

“ START STEP "

T1 =

N| ACTION D1 D1_READY
STEP A STEP B
T DI ACTION D2 D2 _READY|

T2

=PFL SFC: Elements

event condition 1
<_\ oy
("1" = always true) transitions
fa/ / example transition condition
/'Ea + B Fc=((varX &varY) |varZ)
states
- Sb
.
token
\
o Sc
I

* Program consists of states connected by transitions.

« Astate is activated by a token (the corresponding variable becomes TRUE).
Token leaves state when transition condition (event) on state output is true.

* Only one transition takes place at a time.

« Execution period is configuration parameter (task to which program is attached)

Rule: there is always atransition between states, there is always a state
between transitions.

B Industrial Automation - Week 7: PLC Programming
L]

=PrL

B Industrial Automation - Week 7: PLC Programming

SFC: Initial state

» State which come into existence with a token are called initial states.

= All initial states receive exactly one token, the other states receive
none.

= |nitialization takes place explicitly at start-up.

= |n some systems, initialization may be triggered in a user program
(initialization pin in a function block).

g Initial State

a7

=Pr

B Industrial Automation - Week 7: PLC Programming

SFC: Switch and
parallel execution

= Token Switch

- Token crosses the first active transition
(at random if both Ea and Eb are true)

* Note: transitions are after the switch

= Token Forking

» Token is replicated to all connected
states when the transition Ee is true

* Note: transition is before the fork

= Token Join

 Single token is forwarded when all
connected states have tokens and
transition Eg is true.

» Note: transition is after the join

N
—.

" em—————— EO

Sa
L =) m——FD
Sc
+7Ec
@ s sd
[|
=— Ed
Se
- Fe
@ |
= @ so
Sf

-_—— Eg

EPF

B Industrial Automation - Week 7: PLC Programming

L

SFC: P1,Nand PO
actions

= P1 (pulse raise) action is executed once when the state is entered
= PO (pulse fall) action is executed once when the state is left
= N (non-stored) action is executed continuously while the token is in the

State

= P1 and PO actions could be replaced by additional states.
= The actions are described by a code block written e.g. in Structured

Text.

| Statel IiPl

Statel P1: do at enter

Statel N: do while

PO

Statel PO: do at leaving

=PrL

- Week 7: PLC Programming

B Industrial Automation

Special action: the
timer

= Rather than define a PO action “reset timer....”, there is an implicit
variable defined as <state name>.t that express the time spent in that
state.

Sa
% Sa.t > t#5s

Sb

=PrL

B Industrial Automation - Week 7: PLC Programming

Flow Charts vs
Function Blocks

= Many PLC applications mix continuous and discrete control.
* Function blocks: Continuous time control
« Sequential flow charts: Discrete time control

= A PLC may execute alternatively function blocks and flow charts.

= Communication between these program parts is possible.

A flow chart taken as a whole can be considered a function
block with binary inputs (transitions) and binary outputs (states).

51

=PrL

B Industrial Automation - Week 7: PLC Programming

Flow Charts or
Function Blocks?

A task can sometimes be written indifferently as function blocks or as flow chart.

The application may decide which representation is more appropriate:

Flow Chart Function Block

bR —rc
— d

NOT

52

=PrL

B Industrial Automation - Week 7: PLC Programming

Exercise: Write the SFC for this task

(actor)

open V1 until tank’s L1 indicates upper Level
open V2 during 25 seconds
open V3 until the tank’s L1 indicates it reached the Lower Level
while stirring:
heat mixture during 50 minutes while stirring
empty the reactor while the drying bed is moving
repeat

temperature
(sensor)

53

Buwweboid D7d :Z H99M - uonewoiny [euisnpu| |

-
L.
o
L

£PFL PLC Programming
Languages (IEC 61131-3)

Ladder Diagram (LD) Function Block Diagram (FBD) Sequential Function Chart (SFC)
IA B < A — C
I “ O AND 3
B «—

g —C =
IS
§
g _ _ A&NOT B +
& Instruction List (IL) Structured Text (ST)
g LD A C:= A AND NOT B —C =
§ ANDN B
g NOTA |B
8 ST C
5
-

=PrL

B Industrial Automation - Week 7: PLC Programming

Limitations of IEC
61131

= No support to distribute execution of programs over several
devices.

= No support for event-driven operation.
Note: Blocks may be triggered by a Boolean variable

= NO object orientation in structured text.

=Pr

B Industrial Automation - Week 7: PLC Programming

The next standard: "
IEC 61499

= |EC 61499 was first published in 2005
= Extends IEC 61131 with an event-driven model
= Application can be distributed over several PLCs

Counter Up Counter Up
——CU Q—— (8—CU cuor—
R RO H Events
CU = Counter Up L n o)
R = Reset] |
PV = counter limit value 4 L N)
—R CV =current counter value -=—PV Q -
Q = TRUE when counter reaches limit Data
—1PV CV— (AVA ==
\ J

IEC 61131 IEC 61499

=PrL

Industrial Automation - Week 7: PLC Programming

Learning PLC
Programming?

[cs.SE] 25 May 2023

ChatGPT for PLC/DCS Control Logic Generation

Heiko Koziolek*, Sten Gruener®, Virendra Ashiwal*
*ABB Research, Ladenburg, Germany
Email: <firstname.lastname > @de.abb.com

Abstract—Large language models (LLMs) providing generative
Al have become popular to support software engineers in
creating, izing, optimizing, and doc ting source code.
It is still unknown how LLMs can support control engineers
using typical control programming languages in programming
tasks. Researchers have explored GitHub CoPilot or DeepMind
AlphaCode for source code generation but did not yet tackle
control logic progr ing. The contribution of this paper is an
exploratory study, for which we created 100 LLM prompts in 10
representative categories to analyze control logic generation for
of PLCs and DCS from natural langnage. We tested the prompts
by generating answers with ChatGPT using the GPT-4 LLM. It
generated syntactically correct IEC 61131-3 Structured Text code
in many cases and d rated useful r ing skills that could
boost control engineer productivity. Qur prompt collection is the
basis for a more formal LLM benchmark to test and compare
such models for control logic generation.

Index Terms—Generative Al, Large Language Models, Au-
tomation engineering, Control Logic Generation, IEC 61131-3,
Structured Text, Control engineering, Benchmark

I. INTRODUCTION

Reseachers have tackled control logic generation in the last
20 years with different approaches [4]. Several authors for-
mulated control logic using UML or SysML notations, which
were then translated into IEC 61131-3 ST [5]-[8]. Others de-
rived object-oriented models from piping-and-instrumentation
diagrams (P&IDs) and then applied pre-specified rules to
automatically identify topological patterns and generate IEC
61131-3 ST [9]-[12]. None of these approaches has gained
widepsread adoption in practice, and none of these approaches
utilized LLMs [4]. Experiments on code generation involving
LLMs largely come from the IT world and focused on Java,
Python or C# code (e.g.. [2], [3]. [13], [14]). A detailed
analysis of LLMs’ capabilities to generate control logic is
missing.

The contribution of this paper is a collection of 100 prompts
that can be used to test an LLMs’ ability to generate correct
and useful control logic for industrial automation. These
prompts are the result of an exploratory study. The promp

11 i o i dvia oed inalla A

58

=PrL Assessment "

1. Which programming languages are defined in IEC 61131-3?

2. What are the advantages of using a PLC instead of using traditional
relay logic?

3. How are inputs and outputs to the process treated in a function block
language?

4. Why is Java/Python/Matlab not used to program PLCs?

- Week 7: PLC Programming

5. Why is OpenPLC on the RaspberryPi not suited for industrial
automation tasks?

B Industrial Automation

=PrL

B Industrial Automation - Week 7: PLC Programming

Literature

= Stamatios Manesis, George Nikolakopoulos,
Automation”, CRC Press

Introduction to

Industrial Automation

“Introduction to Industrial

	Slide 1: PLC Programming
	Slide 2: Programmable Logic Controllers (PLCs) in the Automation Pyramid
	Slide 3: Programmable Logic Controller (PLC)
	Slide 4: PLC Inputs and Outputs
	Slide 5: Connecting to Inputs / Outputs
	Slide 6: Matching the analog and binary world
	Slide 9: How to program PLCs?
	Slide 10: IEC 61131-3 programming languages
	Slide 11: Types of Program Organisation Units (POUs)
	Slide 12: The long way to the IEC 61131-3 standard
	Slide 13: Why using IEC 61131-3 for PLCs?
	Slide 14: Programming environment capabilities
	Slide 15: IDE Example: OpenPLC Editor
	Slide 17: OpenPLC Runtime for Raspberry Pi
	Slide 18: Raspberry Pi: Inputs and Outputs
	Slide 19: 1. Ladder Diagrams (LD)
	Slide 20: Ladder Diagrams (LD)
	Slide 21: Ladder Diagrams (LD)
	Slide 22: Ladder Diagrams: Series and Parallel Contacts
	Slide 23: Ladder Diagrams: Example
	Slide 24: Exercise: Ladder Diagram
	Slide 26: Solution: Ladder Diagram for Start/Stop
	Slide 27: Ladder Diagrams: Advanced Functions
	Slide 28: Ladder Diagrams: Shortcomings
	Slide 29: 2. Functional Block Diagram (FBD)
	Slide 30: Execution of function blocks
	Slide 31: Input-output of function blocks
	Slide 32: Exercise: Asymmetric Sawtooth Wave
	Slide 33: Solution: Asymmetric Sawtooth Wave with FBD
	Slide 34: 3. Instruction List (IL)
	Slide 35: Instruction Lists (1)
	Slide 36: Instruction Lists (2)
	Slide 37: Instruction Lists: Example
	Slide 38: Instruction Lists: Shortcomings
	Slide 39: Instruction Lists: Exercise
	Slide 41: 4. Structured Text (ST)
	Slide 42: Structured Text
	Slide 43: Structured Text Examples
	Slide 44: 5. Sequential Function Chart (SFC)
	Slide 45: SFC (Sequential Function Chart)
	Slide 46: SFC: Elements
	Slide 47: SFC: Initial state
	Slide 48: SFC: Switch and parallel execution
	Slide 49: SFC: P1, N and P0 actions
	Slide 50: Special action: the timer
	Slide 51: Flow Charts vs Function Blocks
	Slide 52: Flow Charts or Function Blocks?
	Slide 53: Exercise: Write the SFC for this task
	Slide 54: Summary
	Slide 55: PLC Programming Languages (IEC 61131-3)
	Slide 56: Limitations of IEC 61131
	Slide 57: The next standard: IEC 61499
	Slide 58: Learning PLC Programming?
	Slide 59: Assessment
	Slide 60: Literature

