
Dependable Software

Verlässliche Software

Logiciel fiable

Dr. Jean-Charles Tournier

CERN, Geneva, Switzerland

Material initially prepared by Pr. Dr. H. Kirrmann

Industrial Automation

Automation Industrielle

Industrielle Automation

2025 - JCT

Dependable Software - 2Industrial Automation

Overview Dependable Software

1. Requirements on Software Dependability

–Failure Rates

–Physical vs. Design Faults

2. Software Dependability Techniques

–Fault Avoidance and Fault Removal

–On-line Fault Detection and Tolerance

–On-line Fault Detection Techniques

–Recovery Blocks

–N-version Programming

–Redundant Data

3. Examples

Dependable Software - 3Industrial Automation

Requirements for Safe Computer Systems

integrity level

control systems protection systems

4  10
-9

to < 10
-8

 10
-5

to < 10
-4

3  10
-8

to < 10
-7

 10
-4

to < 10
-3

2  10
-7

to < 10
-6

 10
-3

to < 10
-2

1  10
-6

to < 10
-5

 10
-2

to < 10
-1

Required failure rates according to the standard IEC 61508:

[per hour] [per operation]

< 1 failure every 10 000 years

safety

most safety-critical systems
(e.g. railway signalling)

< 1 failure every ~10 years

Dependable Software - 4Industrial Automation

Software Problems

Did you ever see software that did not fail once in 10 000 years

(i.e. it never failed during your lifetime)?

First space shuttle launch delayed due to software synchronisation
problem, 1981 (IBM).

Therac 25 (radiation therapy machine) killed 2 people due to software
defect leading to massive overdoses in 1986 (AECL).

Software defect in 4ESS telephone switching system in USA led to
loss of $60 million due to outages in 1990 (AT&T).

Software error in Patriot equipment: Missed Iraqi Scud missile in
Kuwait war killed 28 American soldiers in Dhahran, 1991 (Raytheon).

... [add your favourite software bug].

•

•

•

•

•

Dependable Software - 5Industrial Automation

The Patriot Missile Failure

"The range gate's prediction of where the Scud will next appear is a function of the Scud's known velocity and the

time of the last radar detection.

Velocity is a real number that can be expressed as a whole number and a decimal (e.g., 3750.2563...miles per

hour).

Time is kept continuously by the system's internal clock in tenths of seconds but is expressed as an integer or whole

number (e.g., 32, 33, 34...).

The longer the system has been running, the larger the number representing time. To predict where the Scud will

next appear, both time and velocity must be expressed as real numbers. Because of the way the Patriot computer

performs its calculations and the fact that its registers are only 24 bits long, the conversion of time from an integer

to a real number cannot be any more precise than 24 bits. This conversion results in a loss of precision causing a

less accurate time calculation. The effect of this inaccuracy on the range gate's calculation is directly proportional

to the target's velocity and the length of the system has been running. Consequently, performing the conversion

after the Patriot has been running continuously for extended periods causes the range gate to shift away from the

center of the target, making it less likely that the target, in this case a Scud, will be successfully intercepted."

The Patriot Missile failure in Dharan, Saudi Arabia, on February 25, 1991 which resulted in

28 deaths, is ultimately attributable to poor handling of rounding errors.

On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dharan, Saudi

Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck an American

Army barracks, killing 28 soldiers and injuring around 100 other people.

A report of the General Accounting office, GAO/IMTEC-92-26, entitled Patriot Missile Defense:

Software Problem Led to System Failure at Dhahran, Saudi Arabia analyses the causes (excerpt):

http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm

Dependable Software - 6Industrial Automation

Ariane 501 failure

"The failure of the Ariane 501 was caused by the complete loss of guidance and attitude information 37 seconds

after start of the main engine ignition sequence (30 seconds after lift-off). This loss of information was due to

specification and design errors in the software of the inertial reference system.

The internal SRI* software exception was caused during execution of a data conversion from 64-bit floating

point to 16-bit signed integer value. The floating point number which was converted had a value greater than

what could be represented by a 16-bit signed integer. "

*SRI stands for Système de Référence Inertielle or Inertial Reference System.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the

European Space Agency exploded just forty seconds after its lift -

off from Kourou, French Guiana. The rocket was on its first

voyage, after a decade of development costing $7 billion. The

destroyed rocket and its cargo were valued at $500 million. A

board of inquiry investigated the causes of the explosion and in

two weeks issued a report. http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

(no more available at the original site)

Code was reused from the Ariane 4 guidance system. The Ariane 4 has different flight characteristics in the first 30 s of

flight and exception conditions were generated on both inertial guidance system (IGS) channels of the Ariane 5. There

are some instances in other domains where what worked for the first implementation did not work for the second.

"Reuse without a contract is folly"

90% of safety-critical failures are requirement errors (a JPL study)

Dependable Software - 7Industrial Automation

Malaysia Airline 124: Faulty Unit

BY Robert N. Charette // December 2009 (IEEE Spectrum, February 2010)

The passengers and crew of Malaysia Airlines Flight 124 were just settling into their five-hour flight from Perth to Kuala Lumpur that late on the

afternoon of 1 August 2005. Approximately 18 minutes into the flight, as the Boeing 777-200 series aircraft was climbing through 36 000 feet altitude

on autopilot, the aircraft—suddenly and without warning—pitched to 18 degrees, nose up, and started to climb rapidly. As the plane passed 39 000

feet, the stall and overspeed warning indicators came on simultaneously—something that’s supposed to be impossible, and a situation the crew is not

trained to handle.

At 41 000 feet, the command pilot disconnected the autopilot and lowered the airplane’s nose. The auto throttle then commanded an increase in

thrust, and the craft plunged 4000 feet. The pilot countered by manually moving the throttles back to the idle position. The nose pitched up again, and

the aircraft climbed 2000 feet before the pilot regained control.

The flight crew notified air-traffic control that they could not maintain altitude and requested to return to Perth. The crew and the 177 shaken but

uninjured passengers safely returned to the ground.

The Australian Transport Safety Bureau investigation discovered that the air data inertial reference unit (ADIRU)—which provides air data and

inertial reference data to several systems on the Boeing 777, including the primary flight control and autopilot flight director systems—had two faulty

accelerometers. One had gone bad in 2001. The other failed as Flight 124 passed 36 571 feet.

The fault-tolerant ADIRU was designed to operate with a failed accelerometer (it has six). The redundant design of the ADIRU also meant that it

wasn’t mandatory to replace the unit when an accelerometer failed.

However, when the second accelerometer failed, a latent software anomaly allowed inputs from the first faulty accelerometer to be used,

resulting in the erroneous feed of acceleration information into the flight control systems. The anomaly, which lay hidden for a decade,

wasn’t found in testing because the ADIRU’s designers had never considered that such an event might occur.

The Flight 124 crew had fallen prey to what psychologist Lisanne Bainbridge in the early 1980s identified as the ironies and paradoxes of

automation. The irony, she said, is that the more advanced the automated system, the more crucial the contribution of the human operator becomes to

the successful operation of the system. Bainbridge also discusses the paradoxes of automation, the main one being that the more reliable the

automation, the less the human operator may be able to contribute to that success. Consequently, operators are increasingly left out of the loop, at

least until something unexpected happens. Then the operators need to get involved quickly and flawlessly, says Raja Parasuraman, professor of

psychology at George Mason University in Fairfax, Va., who has been studying the issue of increasingly reliable automation and how that affects

human performance, and therefore overall system performance.

”There will always be a set of circumstances that was not expected, that the automation either was not designed to handle or other things that just

cannot be predicted,” explains Parasuraman. So as system reliability approaches—but doesn’t quite reach—100 percent, ”the more difficult it is to

detect the error and recover from it,” he says.

And when the human operator can’t detect the system’s error, the consequences can be tragic.

http://www.atsb.gov.au/publications/investigation_reports/2005/aair/aair200503722.aspx

Dependable Software - 8Industrial Automation

Boeing 787

• Counter Overflow (2015)

• Department of Transportation – Federal Aviation Administration

 “We have been advised by Boeing of an issue identified during laboratory testing. The
software counter internal to the generator control units (GCUs) will overflow after 248

days of continuous power, causing that GCU to go into failsafe mode. If the four main

GCUs (associated with the engine mounted generators) were powered up at the same

time, after 248 days of continuous power, all four GCUs will go into failsafe mode at the

same time, resulting in a loss of all AC electrical power regardless of flight phase.”

https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf

https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf
https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf
https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf
https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf
https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf

Dependable Software - 9Industrial Automation

Mars Pathfinder – Priority Inversion Problem - 1997

http://www.cse.chalmers.se/~risat/Report_MarsP
athFinder.pdf

In few days after landing, the spacecraft began
experiencing total system resets.

No data was lost, but collection was delayed by a
day (critical when considering that the
mission estimated lifetime was only a couple
of weeks)

The source of the problem was due to priority
inversion which subsequently caused a
deadline-miss of a critical task, which was
identified by a watchdog timer, and finally,
the action in such faulty scenario was to
reset the spacecraft

Based on IBM RS6000 processor and WindRiver
VxWorks RTOS

http://www.cse.chalmers.se/~risat/Report_MarsPathFinder.pdf
http://www.cse.chalmers.se/~risat/Report_MarsPathFinder.pdf

Dependable Software - 10Industrial Automation

It begins with the specifications

A 1988 survey conducted by the United Kingdom's Health & Safety Executive (Bootle,

U.K.) of 34 "reportable" accidents in the chemical process industry revealed that

inadequate specifications could be linked to 20% (the #1 cause) of these accidents.

Dependable Software - 11Industrial Automation

Software and the System

"Software by itself is never dangerous, safety is a system characteristic."

Fault detection helps: if physical system has a safe state (fail-safe system).

Fault tolerance helps: if physical system has no safe state.

computer

system

physical

system

(e.g. HV

substation,

train, factory)

environment

(e.g. persons,

buildings, etc.)

software

Persistency: Computer always produces output (which may be wrong).

Integrity: Computer never produces wrong output (maybe no output at all).

system

Dependable Software - 12Industrial Automation

Which Faults?

physical faults

random faults

design faults

systematic faults

hardware

software

statistics

???

???

solution: redundancy

solution: diversity

Dependable Software - 14Industrial Automation

Software Dependability Techniques

1) Against design faults

– Fault avoidance → (formal) software development techniques

– Fault removal → verification and validation (e.g. test, formal verification)

– On-line error detection  plausibility checks

– Fault tolerance → design diversity

2) Against physical faults

–Fault detection and fault tolerance

(physical faults can not be detected and removed at design time)

–Systematic software diversity (random faults definitely lead to different errors in both

software variants)

–Continuous supervision (e.g. coding techniques, control flow checking, etc.)

–Periodic testing

Dependable Software - 15Industrial Automation

Fault Avoidance and Fault Removal

Verification &

Validation

Dependable Software - 16Industrial Automation

Validation and Verification (V&V)

Validation: Do I develop the right solution?

Verification: Do I develop the solution right?

dynamic techniques

• test

• simulation

static techniques

• review

• proof

Dependable Software - 17Industrial Automation

ISO 8402 definitions Validation – Verification

Validation := „Confirmation by examination and provision of objective evidence that the

particular requirements for a specific intended use are fulfilled.“

Validation is the activity of demonstrating that the safety-related system under consideration, before or

after installation, meets in all respects the safety requirements specification for that safety -related system.

Therefore, for example, software validation means confirming by examination and provision of objective

evidence that the software satisfies the software safety requirements specification.

Verification := „Confirmation by examination and provision of objective evidence that the

specific requirements have been fulfilled.“

Verification activities include:
reviews on outputs (documents from all phases of the safety lifecycle) to ensure compliance with the

objectives and requirements of the phase, taking into account the specific inputs to that phase;

design reviews;

tests performed on the designed products to ensure that they perform according to their specification;

integration tests performed where different parts of a system are put together in a step by step manner

and by the performance of environmental tests to ensure that all the parts work together in the specified

manner.

Dependable Software - 18Industrial Automation

Verification & Validation

Verification Validation

1. Verification is a static practice of verifying documents,

design, code and program.

1. Validation is a dynamic mechanism of validating and

testing the actual product.

2. It does not always involve executing the code. 2. It always involves executing the code.

3. It is human based checking of documents and files. 3. It is computer based execution of program.

4. Verification uses methods like inspections, reviews,

walkthroughs, and Desk-checking etc.

4. Validation uses methods like black box

(functional) testing, gray box testing, and white box

(structural) testing etc.

5. Verification is to check whether the software

conforms to specifications.

5. Validation is to check whether software meets the

customer expectations and requirements.

6. It can catch errors that validation cannot catch. It is

low level exercise.

6. It can catch errors that verification cannot catch. It is

High Level Exercise.

7. Target is requirements specification, application and

software architecture, high level,complete design,

and database design etc.

7. Target is actual product-a unit, a module, a bent of

integrated modules, and effective final product.

8. Verification is done by QA team to ensure that the

software is as per the specifications in the SRS

document.

8. Validation is carried out with the involvement of testing

team.

9. It generally comes first-done before validation. 9. It generally follows verification.

http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html

http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html
http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html
http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html
http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html
http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html
http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html
http://testingbasicinterviewquestions.blogspot.fr/2012/01/difference-between-verification-and.html

Dependable Software - 20Industrial Automation

Testing

Testing requires a test specification, test rules (suite) and test protocol

specification

implementation test rules

test procedure

test results

Testing can only reveal errors, not demonstrate their absence ! (Dijkstra)

Tests can themselves be faulty too…

Dependable Software - 21Industrial Automation

Is testing enough?

• System: Elevator controller

• Testing is useful to validate the system functions

• If press to 1, goes to floor 1?

• If press on open door, doors stay open?

• etc.

• But how to test/express safety properties

(invariant)?

• Can the elevator have the door open while

moving => is there a state in the controller for

which this condition may be true?

• In addition to testing, formal verification is needed

• Theorem prover, model checking, etc.

Dependable Software - 22Industrial Automation

Formal Proofs

informal

requirements

formal

spec.

required

properties

proof

formalization

formal

spec.

formal

implemen-

tation

construction proof

Implementation Proofs Property Proofs

what is automatically generated need not be tested !

(if you trust the generator | compiler)

Dependable Software - 23Industrial Automation

Formal Languages and Tools

mathematical foundation example tools

VDM dynamic logic

(pre- and postconditions)

• Mural from University of Manchester

• SpecBox from Adelard

Z predicate logic, set theory • ProofPower from ICL Secure Systems

• DST-fuzz from Deutsche System Technik

SDL finite-state machines • SDT from Telelogic

• Geode from Verilog

LOTOS process algebra • The LOTOS Toolbox from Information

Technology Architecture B.V.

NP propositional logic • NP-Tools from Logikkonsult NP

Huge improvement over the last 20 years.

Many tools are now available to non-expert, but formal methods still require a steep

learning curve.

c.f. Prof. Kuncak class on Formal Verification

https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
and LARA research group
 https://lara.epfl.ch/w/

http://gulliver.eu.org/free_software_for_formal_verification
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://lara.epfl.ch/w/

Dependable Software - 24Industrial Automation

Example – CERN PLCverif

Model Checking for PLCs

4 Integer (16-bit) input variables à 216⋅4 ≈ 1.8⋅1019 combinations

Input1

Input2

Input3

Input4

Output1

Output2

Critical PLC

program

Functionality requirement

If Input1 is False, then

Output2 is False

Safety requirement

If Output1 is True, then

Output2 is False

Solution: Model checking

Sensors Actuators

explore all input combinations

Problem: No model checker for PLC programs in industry Solution: PLCverif

https://gitlab.com/plcverif-oss

https://gitlab.com/plcverif-oss
https://gitlab.com/plcverif-oss
https://gitlab.com/plcverif-oss

Dependable Software - 25Industrial Automation

PLCverif Worklfow

Hiding formal method complexity

Model Checker

Solver

Property OK
Property failed

Counterexample

Real System
(software)

Specifications

Temporal Logic

Control-flow

automaton (CFA)

Formal model Formal requirement

PLCverif
Hides the complexity of
using formal methodsinit

l1 l2

l3

in>10

out1 ß False out1 ß True

in≤10

out2 ß True out2 ß False

l0

in ß IntNonDet()

Dependable Software - 26Industrial Automation

On-line Error Detection by N-Version programming

"detection of design errors on-line by diversified software, independently

programmed in different languages by independent teams, running on

different computers, possibly of different type and operating system".

Difficult to ensure that the teams end up with comparable results, as most computations

yield similar, but not identical results:

• rounding errors in floating-point arithmetic

 (use of identical algorithms)

• different branches taken at random (synchronize the inputs)

 if (T > 100.0) {...}

• equivalent representation (are all versions using the same data formats ?)

 if (success == 0) {….}
 IF success = TRUE THEN

 int flow = success ? 12: 4;

Difficult to ensure that the teams do not make the same errors

(common school, and interpret the specifications in the same wrong way)

N-Version programming is the software equivalent of massive redundancy (workby)

Dependable Software - 27Industrial Automation

On-line error detection by Acceptance Tests

Acceptance Test are invariants calculated at run-time

• definition of invariants in the behaviour of the software

• set-up of a "don't do" specification

• plausibility checks included by the programmer of the
task (efficient but cannot cope with surprise errors).

allowed
states

x

y

Dependable Software - 28Industrial Automation

Cost Efficiency of Fault Removal vs. On-line Error Detection

Design errors are difficult to detect and even more difficult to correct on-line.
The cost of diverse software can often be invested more efficiently in
off-line testing and validation instead.

t

r(t)

rs(t)
rdi(t)

development
version 1

development
version 2

debugging single version

debugging two versions (stretched by factor 2)

t0 t1 T

rd(t)

Rate of safety-critical failures (assuming independence between versions):

Dependable Software - 29Industrial Automation

On-line Error Detection

?

plausibility check

?

acceptance test redundancy/diversity
hardware/software/time

example test

?

?

• periodical tests

• continuous supervision

overhead

Dependable Software - 30Industrial Automation

Plausibility Checks / Acceptance Tests

range checks

structural checks

control flow checks

timing checks

coding checks

reversal checks

•

•

•

•

•

•

0  train speed  500

given list length / last pointer NIL

set flag; go to procedure; check flag

hardware signature monitors

checking of time-stamps/toggle bits

hardware watchdogs

parity bit, CRC

compute y = x; check x = y2

safety assertions

Dependable Software - 31Industrial Automation

Recovery Blocks

primary
program

alternate
version 1s

w
it
c
h

•
•
•

recovery
state

acc.
test

input
try alternate version

failed

passed
result

versions exhausted

unrecoverable error

Dependable Software - 32Industrial Automation

N-Version Programming (Design Diversity)

specification

software 1

software 2

software n

design time:
different teams

different languages

different data structures

different operating system

different tools (e.g. compilers)

different sites (countries)

different specification languages

• • •

run time:

f1

f1'

f2

f2'

f3

f3'

f4

f4'

f5

f5'

f6

f6'

f7

f7'

f8

f8'

= = = = = = = =

time

Dependable Software - 33Industrial Automation

Issues in N-Version Programming

number of software versions (fault detection  fault tolerance)

hardware redundancy  time redundancy (real-time !)

random diversity  systematic diversity

determination of cross-check (voting) points

format of cross-check values

cross-check decision algorithm (consistent comparison problem !)

recovery/rollback procedure (domino effect !)

common specification errors (and support environment !)

cost for software development

diverse maintenance of diverse software ?

•

•

•

•

•

•

•

•

•

•

Dependable Software - 34Industrial Automation

Consistent Comparison Problem

Problem occurs if floating point numbers are used.

Finite precision of hardware arithmetic
→ result depends on sequence of

computation steps.

Thus: Different versions may result in

slightly different results

→ result comparator needs to do

“inexact comparisons”

Even worse: Results used internally

in subsequent computations with

comparisons.

Example: Computation of pressure

value P and temperature value T
with floating point arithmetic and

usage as in program shown:

T > Tth?

P > Pth?

branch 1 branch 3
branch 2

no

no

yes

yes

Dependable Software - 35Industrial Automation

Redundant Data

Redundantly linked list

Data diversity

status status status

input
diversi-
fication

in

in 1

in 2

in 3

algorithm

out 1

out 2

out 3

decision out

Dependable Software - 36Industrial Automation

Examples

Use of formal methods

– Formal specification with Z

Tektronix: Specification of reusable oscilloscope architecture

– Formal specification with SDL

ABB Signal: Specification of automatic train protection systems

– Formal software verification with Statecharts
GEC Alsthom: SACEM - speed control of RER line A trains in Paris

– CERN PLCverif tool to formally verify safety PLC programs

Use of design diversity

– 2x2-version programming

Aerospatiale: Fly-by wire system of Airbus A310

– 2-version programming

US Space Shuttle: PASS (IBM) and BFS (Rockwell)

– 2-version programming

ABB Signal: Error detection in automatic train protection system EBICAB

900

https://gitlab.com/plcverif-oss

Dependable Software - 37Industrial Automation

Example: 2-Version Programming (EBICAB 900)

Both for physical faults and design faults (single processor → time redundancy).

- 2 separate teams for algorithms A and B

3rd team for A and B specs and synchronisation

- B data is inverted, single bytes mirrored compared with A data

- A data stored in increasing order, B data in decreasing order

- Comparison between A and B data at checkpoints

- Single points of failure (e.g. data input) with special protection (e.g. serial input with CRC)

data

input
algorithm A algorithm B A = B?

data

output

time

• • •

Dependable Software - 46Industrial Automation

	Slide 1
	Slide 2: Overview Dependable Software
	Slide 3: Requirements for Safe Computer Systems
	Slide 4: Software Problems
	Slide 5: The Patriot Missile Failure
	Slide 6: Ariane 501 failure
	Slide 7: Malaysia Airline 124: Faulty Unit
	Slide 8: Boeing 787
	Slide 9: Mars Pathfinder – Priority Inversion Problem - 1997
	Slide 10: It begins with the specifications
	Slide 11: Software and the System
	Slide 12: Which Faults?
	Slide 14: Software Dependability Techniques
	Slide 15: Fault Avoidance and Fault Removal
	Slide 16: Validation and Verification (V&V)
	Slide 17: ISO 8402 definitions Validation – Verification
	Slide 18: Verification & Validation
	Slide 20: Testing
	Slide 21: Is testing enough?
	Slide 22: Formal Proofs
	Slide 23: Formal Languages and Tools
	Slide 24: Example – CERN PLCverif Model Checking for PLCs
	Slide 25: PLCverif Worklfow Hiding formal method complexity
	Slide 26: On-line Error Detection by N-Version programming
	Slide 27: On-line error detection by Acceptance Tests
	Slide 28: Cost Efficiency of Fault Removal vs. On-line Error Detection
	Slide 29: On-line Error Detection
	Slide 30: Plausibility Checks / Acceptance Tests
	Slide 31: Recovery Blocks
	Slide 32: N-Version Programming (Design Diversity)
	Slide 33: Issues in N-Version Programming
	Slide 34: Consistent Comparison Problem
	Slide 35: Redundant Data
	Slide 36: Examples
	Slide 37: Example: 2-Version Programming (EBICAB 900)
	Slide 46

