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Overview Dependable Software

1. Requirements on Software Dependability
—Failure Rates
—Physical vs. Design Faults

2. Software Dependability Techniques
—Fault Avoidance and Fault Removal

—On-line Fault Detection and Tolerance
—On-line Fault Detection Techniques
—Recovery Blocks
—N-version Programming

—Redundant Data

3. Examples
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Requirements for Safe Computer Systems

Required failure rates according to the standard IEC 61508:

safety control systems protection systems
integrity level [per hour] [per operation]
(210'9 to < 10 '8) >10 > to<10 *
3 >10° to<10 7’ >10 ™ to<10
-7 -6 -3 -2
2 >10 to <10 >10 to<10
1 (510 to<10®) \ 21072 to<10 !

) \

most safety-critical systems < 1 failure every 10 000 years
(e.g. railway signalling)

< 1 failure every ~10 years
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Software Problems

Did you ever see software that did not fail once in 10 000 years
(i.e. it never failed during your lifetime)?

e First space shuttle launch delayed due to software synchronisation
problem, 1981 (IBM).

e Therac 25 (radiation therapy machine) killed 2 people due to software
defect leading to massive overdoses in 1986 (AECL).

e Software defect in 4ESS telephone switching system in USA led to
loss of $60 million due to outages in 1990 (AT&T).

e Software error in Patriot equipment: Missed Iraqi Scud missile in
Kuwait war killed 28 American soldiers in Dhahran, 1991 (Raytheon).

... [add your favourite software bug].
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The Patriot Missile Failure

The Patriot Missile failure in Dharan, Saudi Arabia, on February 25, 1991 which resulted in
28 deaths, is ultimately attributable to poor handling of rounding errors.

On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dharan, Saudi
Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck an American
Army barracks, killing 28 soldiers and injuring around 100 other people.

A report of the General Accounting office, GAO/IMTEC-92-26, entitled Patriot Missile Defense:
Software Problem Led to System Failure at Dhahran, Saudi Arabia analyses the causes (excerpt):

"The range gate's prediction of where the Scud will next appear is a function of the Scud's known velocity and the
time of the last radar detection.

Velocity is a real number that can be expressed as a whole number and a decimal (e.g., 3750.2563...miles per
hour).

Time is kept continuously by the system's internal clock in tenths of seconds but is expressed as an integer or whole
number (e.g., 32, 33, 34...).

The longer the system has been running, the larger the number representing time. To predict where the Scud will
next appear, both time and velocity must be expressed as real numbers. Because of the way the Patriot computer
performs its calculations and the fact that its registers are only 24 bits long, the conversion of time from an integer
to a real number cannot be any more precise than 24 bits. This conversion results in a loss of precision causing a
less accurate time calculation. The effect of this inaccuracy on the range gate's calculation is directly proportional
to the target's velocity and the length of the system has been running. Consequently, performing the conversion
after the Patriot has been running continuously for extended periods causes the range gate to shift away from the
center of the target, making it less likely that the target, in this case a Scud, will be successfully intercepted.”
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Ariane 501 failure

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency exploded just forty seconds after its lift-
off from Kourou, French Guiana. The rocket was on its first
voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million. A
board of inquiry investigated the causes of the explosion and in
two weeks issued a report.

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
(no more available at the original site)

"The failure of the Ariane 501 was caused by the complete loss of guidance and attitude information 37 seconds
after start of the main engine ignition sequence (30 seconds after lift-off). This loss of information was due to
specification and design errors in the software of the inertial reference system.

The internal SRI* software exception was caused during execution of a data conversion from 64-bit floating
point to 16-bit signed integer value. The floating point number which was converted had a value greater than

what could be represented by a 16-bit signed integer. "
*SRI stands for Systeme de Référence Inertielle or Inertial Reference System.

Code was reused from the Ariane 4 guidance system. The Ariane 4 has different flight characteristics in the first 30 s of
flight and exception conditions were generated on both inertial guidance system (IGS) channels of the Ariane 5. There
are some instances in other domains where what worked for the first implementation did not work for the second.

"Reuse without a contract is folly"
90% of safety-critical failures are requirement errors (a JPL study)
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Malaysia Airline 124: Faulty Unit

BY Robert N. Charette // December 2009 (IEEE Spectrum, February 2010)

The passengers and crew of Malaysia Airlines Flight 124 were just settling into their five-hour flight from Perth to Kuala Lumpur that late on the
afternoon of 1 August 2005. Approximately 18 minutes into the flight, as the Boeing 777-200 series aircraft was climbing through 36 000 feet altitude
on autopilot, the aircraft—suddenly and without warning—pitched to 18 degrees, nose up, and started to climb rapidly. As the plane passed 39 000
feet, the stall and overspeed warning indicators came on simultaneously—something that’ s supposed to be impossible, and a situation the crew is not
trained to handle.

At 41 000 feet, the command pilot disconnected the autopilot and lowered the airplane’ s nose. The auto throttle then commanded an increase in
thrust, and the craft plunged 4000 feet. The pilot countered by manually moving the throttles back to the idle position. The nose pitched up again, and
the aircraft climbed 2000 feet before the pilot regained control.

The flight crew notified air-traffic control that they could not maintain altitude and requested to return to Perth. The crew and the 177 shaken but
uninjured passengers safely returned to the ground.

The Australian Transport Safety Bureau investigation discovered that the air data inertial reference unit (ADIRU)—which provides air data and
inertial reference data to several systems on the Boeing 777, including the primary flight control and autopilot flight director systems—had two faulty
accelerometers. One had gone bad in 2001. The other failed as Flight 124 passed 36 571 feet.

The fault-tolerant ADIRU was designed to operate with a failed accelerometer (it has six). The redundant design of the ADIRU also meant that it
wasn’ t mandatory to replace the unit when an accelerometer failed.

However, when the second accelerometer failed, a latent software anomaly allowed inputs from the first faulty accelerometer to be used,
resulting in the erroneous feed of acceleration information into the flight control systems. The anomaly, which lay hidden for a decade,

wasn’ t found in testing because the ADIRU’ s designers had never considered that such an event might occur.

The Flight 124 crew had fallen prey to what psychologist Lisanne Bainbridge in the early 1980s identified as the ironies and paradoxes of
automation. The irony, she said, is that the more advanced the automated system, the more crucial the contribution of the human operator becomes to
the successful operation of the system. Bainbridge also discusses the paradoxes of automation, the main one being that the more reliable the
automation, the less the human operator may be able to contribute to that success. Consequently, operators are increasingly left out of the loop, at
least until something unexpected happens. Then the operators need to get involved quickly and flawlessly, says Raja Parasuraman, professor of
psychology at George Mason University in Fairfax, Va., who has been studying the issue of increasingly reliable automation and how that affects
human performance, and therefore overall system performance.

"There will always be a set of circumstances that was not expected, that the automation either was not designed to handle or other things that just
cannot be predicted,” explains Parasuraman. So as system reliability approaches—but doesn’ t quite reach—100 percent, ~the more difficult it is to
detect the error and recover from it,” he says.

And when the human operator can’ t detect the system’ s error, the consequences can be tragic.
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Boeing 787

« Counter Overflow (2015)
» Department of Transportation — Federal Aviation Administration

“We have been advised by Boeing of an issue identified during laboratory testing. The
software counter internal to the generator control units (GCUs) will overflow after 248
days of continuous power, causing that GCU to go into failsafe mode. If the four main
GCUs (associated with the engine mounted generators) were powered up at the same
time, after 248 days of continuous power, all four GCUs will go into failsafe mode at the
same time, resulting in a loss of all AC electrical power regardless of flight phase.”

This document i scheduled 1o bo publshed i the.

S NAH, S| Fodorl Regteron 05012015 and avatati anine
3 %2,57 5  huputedenaireaister gov'a/2015-10066, and o

https://s3.amazonaws.com/public-inspection.federalreqister.gov/2015-10066.pdf
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Mars Pathfinder — Priority Inversion Problem - 1997

http://www.cse.chalmers.se/~risat/Report MarsP
athFinder.pdf

In few days after landing, the spacecraft began
experiencing total system resets.

No data was lost, but collection was delayed by a
day (critical when considering that the
mission estimated lifetime was only a couple
of weeks)

The source of the problem was due to priority
inversion which subsequently caused a
deadline-miss of a critical task, which was
identified by a watchdog timer, and finally,
the action in such faulty scenario was to
reset the spacecraft

Based on IBM RS6000 processor and WindRiver
VxWorks RTOS
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It begins with the specifications ....

A 1988 survey conducted by the United Kingdom's Health & Safety Executive (Bootle,
U.K.) of 34 "reportable” accidents in the chemical process industry revealed that
inadequate specifications could be linked to 20% (the #1 cause) of these accidents.
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Software and the System

"Software by itself is never dangerous, safety is a system characteristic."”

system

~—

—<——— physical <> _
system < » Environment
(e.g. HV <« » (€.9. persons,

<—» Dbuildings, etc.)

computer

substation, <>
system

train, factory) -

Fault detection helps:  if physical system has a safe state (fail-safe system).

Fault tolerance helps: if physical system has no safe state.

Persistency: Computer always produces output (which may be wrong).

Integrity: Computer never produces wrong output (maybe no output at all).
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software

hardware

Which Faults?

statistics

Y

-

design faults
Eystematic faults

~

solution: diversity

s

krandom faults

N
physical faults

solution: redundancy
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Software Dependability Techniques

Against design faults
— Fault avoidance — (formal) software development techniques
— Fault removal — verification and validation (e.g. test, formal verification)
— On-line error detection = plausibility checks

— Fault tolerance — design diversity

2) Against physical faults

—Fault detection and fault tolerance

(physical faults can not be detected and removed at design time)
—Systematic software diversity (random faults definitely lead to different errors in both
software variants)
—Continuous supervision (e.g. coding techniques, control flow checking, etc.)
—Periodic testing
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Fault Avoidance and Fault Removal

Requirements
analysis

Requi-
rements

requirements

specification complete

system

System/Software Verification &
Design Validation

design

specification Integration

program | ==— "”
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Validation and Verification (V&V)

Validation: Do | develop the right solution?
Verification: Do | develop the solution right?

- N - N
dynamic techniques static techniques
e test *  review
 simulation proof
\- VY \- Y
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ISO 8402 definitions Validation — Verification

Validation := ,Confirmation by examination and provision of objective evidence that the
particular requirements for a specific intended use are fulfilled. “

Validation is the activity of demonstrating that the safety-related system under consideration, before or
after installation, meets in all respects the safety requirements specification for that safety -related system.
Therefore, for example, software validation means confirming by examination and provision of objective
evidence that the software satisfies the software safety requirements specification.

Verification := ,Confirmation by examination and provision of objective evidence that the
specific requirements have been fulfilled.“

Verification activities include:

reviews on outputs (documents from all phases of the safety lifecycle) to ensure compliance with the
objectives and requirements of the phase, taking into account the specific inputs to that phase;

design reviews;

tests performed on the designed products to ensure that they perform according to their specification;
integration tests performed where different parts of a system are put together in a step by step manner
and by the performance of environmental tests to ensure that all the parts work together in the specified
manner.
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Verification & Validation

Verification

Validation

1. Verification is a static practice of verifying documents,

design, code and program.

1. Validation is a dynamic mechanism of validating and
testing the actual product.

2. It does not always involve executing the code.

2. It always involves executing the code.

3. It is human based checking of documents and files.

3. It is computer based execution of program.

4. Verification uses methods like inspections, reviews,
walkthroughs, and Desk-checking etc.

4. Validation uses methods like black box
(functional) testing, gray box testing, and white box

(structural) testing etc.

5. Verification is to check whether the software

conforms to specifications.

5. Validation is to check whether software meets the

customer expectations and requirements.

6. It can catch errors that validation cannot catch. It is

low level exercise.

6. It can catch errors that verification cannot catch. It is
High Level Exercise.

7. Target is requirements specification, application and
software architecture, high level,complete design,

and database design etc.

7. Target is actual product-a unit, a module, a bent of

integrated modules, and effective final product.

8. Verification is done by QA team to ensure that the
software is as per the specifications in the SRS

document.

8. Validation is carried out with the involvement of testing

team.

9. It generally comes first-done before validation.

9. It generally follows verification.

estions.blogspo 012/01/difference-between-verifica

Industrial Automation
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Testing

Testing requires a test specification, test rules (suite) and test protocol

specification

implementation

test results

Testing can only reveal errors, not demonstrate their absence ! pjsira)
Tests can themselves be faulty too...
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Is testing enough?

System: Elevator controller

Testing is useful to validate the system functions
» If pressto 1, goes to floor 1?
» |If press on open door, doors stay open?
+ eftc.

But how to test/express safety properties
(invariant)?
* Can the elevator have the door open while

moving => is there a state in the controller for
which this condition may be true?

In addition to testing, formal verification is needed
« Theorem prover, model checking, etc.

-L Industrial Automation
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Formal Proofs

Implementation Proofs Property Proofs

formal equirernents}

spec. k/\)

\ formalization
]

construction proof N —
T~ formal required
spec. properties
formal
implemen-
tation proof

what is automatically generated need not be tested !
(if you trust the generator | compiler)
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Formal Languages and Tools

Huge improvement over the last 20 years.
Many tools are now available to non-expert, but formal methods still require a steep
learning curve.

K \ mathematical foundation \ example tools |
\ VDM dynamic logic *Mural  from University of Manchester \
(pre- and postconditions) » SpecBox from Adelard
\ V4 predicate logic, set theory * ProofPower from ICL Secure Systems \
* DST-fuzz from Deutsche System Technik
\ SDL finite-state machines «SDT  from Telelogic \
» Geode from Verilog
\ LOTOS \ process algebra * The LOTOS Toolbox from Information \
Technology Architecture B.V.
\ NP propositional logic « NP-Tools from Logikkonsult NP \

c.f. Prof. Kuncak class on Formal Verification
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
and LARA research group
https://lara.epfl.ch/w/
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Example — CERN PLCyverif
Model Checking for PLCs

Input1

@) B Inout? " Output1 ol
& {L) RS npu Critical PLC e I
/ Input3 program 0
Inputd Output2
Sensors Actuators
Functionality requirement Safety requirement
If Input1 is False, then If Output1 is True, then
Output2 is False Output2 is False

explore all input combinations

4 Integer (16-bit) input variables a 2164 = 1.8:10'® combinations - [ Solution: Model checking }

Problem: No model checker for PLC programs in industry » [ Solution: PLCverif

https://qitlab.com/plcverif-oss
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PLCverif Worklfow
Hiding formal method complexity

"""""""""""""""""""""""

Formal model

Specifications Formal requirement
ENO_FUNCTION_BLOCK k
Real System
(software) PV

PLCverif
Hides the complexity of
using formal methods

Control-flow
automaton (CFA) > <€

in 3 IntNonDet()

<10 Model Checker ‘7/ \..
Solver \ \ |

Temporal Logic

out1 B False out1 B True
out2 B True out2 R False x

Property failed

Counterexample Property OK

____________________________________________________________________________________________________________________________________________
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On-line Error Detection by N-Version programming
N-Version programming is the software equivalent of massive redundancy (workby)

"detection of design errors on-line by diversified software, independently
programmed in different languages by independent teams, running on
different computers, possibly of different type and operating system".

Difficult to ensure that the teams end up with comparable results, as most computations
yield similar, but not identical results:
* rounding errors in floating-point arithmetic
(use of identical algorithms)

« different branches taken at random (synchronize the inputs)
if (T>100.0){...}

* equivalent representation (are all versions using the same data formats ?)
if (success ==0){....}
IF success = TRUE THEN
int flow = success ? 12: 4;

Difficult to ensure that the teams do not make the same errors
(common school, and interpret the specifications in the same wrong way)
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On-line error detection by Acceptance Tests

Acceptance Test are invariants calculated at run-time

e definition of invariants in the behaviour of the software
* set-up of a "don't do" specification

» plausibility checks included by the programmer of the
task (efficient but cannot cope with surprise errors).

allowed
states
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Cost Efficiency of Fault Removal vs. On-line Error Detection

Design errors are difficult to detect and even more difficult to correct on-line.
The cost of diverse software can often be invested more efficiently in

off-line testing and validation instead.

Rate of safety-critical failures (assuming independence between versions):

r(t) development development

A version 1 version 2
/ > v />:-
F % AN
N rc(t) ™_rdi(t)
L} H »
r;s(t) " s, s, debugging two versions (stretched by factor 2)
H 0.‘.... . L .5.‘.......
-.-.-‘g.‘.‘... b&&._.. Ll TPes -.-‘-5-‘.‘....... .

: / i 0-.-.-.@-.-. -::::::‘:b-.-.‘.......... . ¢7¢'ee-e ‘00 0 g g g e 0regrg e

i debugging single version"'"""""’"“’""’""wann:-.z-.::;-.:-.‘.,,,:.::"

i i | -t
t0 t1 T
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On-line Error Detection

* periodical tests

example test

overhead
—
— > -'| ?
| I
 continuous supervision
plausibility check acceptance test redundancy/diversity

hardware/software/time

{ Ha H{ HE L m
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Plausibility Checks / Acceptance Tests

e range checks

e structural checks

e control flow checks

e timing checks

e coding checks

e reversal checks

0 < train speed < 500

safety assertions

given list length / last pointer NIL
set flag; go to procedure; check flag
hardware signature monitors

checking of time-stamps/toggle bits
hardware watchdogs

parity bit, CRC

compute y = Vx; check x = y?

=P-L Industrial Automation
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Recovery Blocks

try alternate version

v failed

recover | primary
> > result

program passed

L

@)

= alternate

»| | version 1

versions exhausted
\ /

unrecoverable error

=P-L Industrial Automation Dependable Software - 31



N-Version Programming (Design Diversity)

design time: - different teams
different languages
| software 2 different data structures
specification different operating system
different tools (e.g. compilers)
different sites (countries)
Ll software n different specification languages
run time:
time
o
f1' f2' f3' f4' f5' |f6' fr' f8'

“P-L Industrial Automation
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Issues in N-Version Programming

number of software versions (fault detection « fault tolerance)
hardware redundancy « time redundancy (real-time !)

random diversity <> systematic diversity

determination of cross-check (voting) points

format of cross-check values

cross-check decision algorithm (consistent comparison problem !)
recovery/rollback procedure (domino effect !)

common specification errors (and support environment !)

cost for software development

diverse maintenance of diverse software ?
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Consistent Comparison Problem

Problem occurs if floating point numbers are used.

Finite precision of hardware arithmetic
— result depends on sequence of
computation steps.

Thus: Different versions may result in
slightly different results
— result comparator needs to do
“inexact comparisons”

Even worse: Results used internally
in subsequent computations with

comparisons. yes
Example: Computation of pressure

value P and temperature value T branch 2

with floating point arithmetic and branch 1 branch 3

usage as in program shown:
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Redundant Data

Redundantly linked list

— ¥ status ———®|status —— ¥ status —1T— >

Data diversity

inl}— —»| out 1

in 2 |—»|algorithm |—>|out 2 out

Ny

in 3 — - »|out 3
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Examples

Use of formal methods

— Formal specification with Z
Tektronix: Specification of reusable oscilloscope architecture

— Formal specification with SDL
ABB Signal: Specification of automatic train protection systems

— Formal software verification with Statecharts
GEC Alsthom: SACEM - speed control of RER line A trains in Paris

— CERN PLCyverif tool to formally verify safety PLC programs

Use of design diversity

— 2X2-version programming
Aerospatiale: Fly-by wire system of Airbus A310

— 2-version programming
US Space Shuttle: PASS (IBM) and BFS (Rockwell)

— 2-version programming
ABB Signal: Error detection in automatic train protection system EBICAB
900
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Example: 2-Version Programming (EBICAB 900)

Both for physical faults and design faults (single processor — time redundancy).

data
input

algorithm A

algorithm B

B?

data .o
output

Y

- 2 separate teams for algorithms A and B
3rd team for A and B specs and synchronisation

- B data is inverted, single bytes mirrored compared with A data

- A data stored in increasing order, B data in decreasing order

- Comparison between A and B data at checkpoints

time

- Single points of failure (e.g. data input) with special protection (e.g. serial input with CRC)

=P-L Industrial Automation
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