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The three main dependable computer architectures

inputs 

outputs

2/3 voter

c) Integer & persistent

error masking, massive redundancy (2oo3)

inputs

off-switch

a) Integer

" rather nothing than wrong "

(fail-silent, fail-stop, "fail-safe")
1oo1d

outputs

processor

on-line workby

output

fail-over logic

b) Persistent

" rather wrong than nothing "

"fail-operate“
(1oo2D) 

processor processor
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diagnosticsD
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Overview Dependable Architectures

1 Error detection

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby Implementation

 - Input Processing

 - Synchronization

 - Output Processing

4 Issues in Standby Implementation

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer
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1 Error Detection and Fail-Silent

1 Error detection

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer
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Error Detection: Classification

Error detection is the base of “safe” computing (“fail-silent”)

 -> disable outputs if error detected

Error detection is the base of fault-tolerant computing (“fail-operate”)

 -> switchover if error detected, passivate faulty unit. 

Key factors:

“hamming distance”:

 how many simultaneous errors can be detected

coverage (recouvrement, Deckungsgrad)

 probability that an error is discovered (within useful time)
(definition of "useful time": before any damages occur, before automatic shutdown,…)

latency (latence, Latenz)
time between occurrence and detection of an error
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Error Detection: Classification

Errors can be detected, (in order of increasing latency):

–on-line (while the specified function is performed)

 → by continuous monitoring/supervision

–off-line (in a time period when the unit is not used for its specified function)

 → by periodic testing

–during periodic maintenance (when the unit is tested and calibrated)
 → by thorough testing, uncovering lurking errors
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Error detection

The correctness of a result can be checked by:

relative tests (comparison tests): 

by comparing several results of redundant units or computations (not necessary 

identical)

pessimistic, i.e. differences due to (allowed) indeterminism count as errors

 high coverage, high cost

absolute tests (acceptance tests): 
by checking the result against an a priori consistency condition (plausibility check)

optimistic, i.e. even if result is consistent it may not be correct

 (but can catch some design errors)
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Error Detection: Possibilities

relative test absolute test

on-line

off-line

duplication and comparison 

(either hardware duplication 

or time redundancy)

triplication and voting

comparison with 

precomputed test result 

(fixed inputs)

e.g. memory test

check of program version

check of watchdog function

check code for program code

watchdog (time-out)

control flow checking

error-detecting code (CRC, etc.)

illegal address checking
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Detection of Errors Caused by Physical Faults

medium to high error rate, 

memoryless

parity, 

CRC, 

watchdog

medium error rate, 

large storage

parity, 

Hamming codes EDC

CRC on disk. 

low error rate, 

high complexity

duplication and comparison, 

coded logic, control flow, 

watchdog

high error rate,

high diversity

mechanical integrity,

voltage supervision, 

watchdogs,...

Data transmission lines

Regular memory elements

Processors and controllers

Auxiliary elements

(hard disk, ventilation)

Error detection depends on the type of component, its error rate and its complexity.

Error characteristics Typical error detectionComponent
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Watchdog Processor (absolute test)

application processor

reset

cyclic

application
(every k ms)

watchdog

processor

supply

voltage

trusted

switch
inhibit

time

> k ms

The application processor periodically resets the watchdog timer. If it fails to do it, the watchdog 

processor will shut down and restart the processor.

Typically implemented in PLCs but also autonomous robots.
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Duplication and Comparison (relative test)

Conditions: worker and checker are identical and deterministic. 

inputs are (made) identical and synchronized (interrupts !)

output must be synchronized to allow comparison.  

Problem non-determinism: digital 

computers are made of analog elements:

(variable delays, thresholds, asynchronous 

clocks...) 



worker checker

comparator

switch

fail-silent output

safe input

spreader

sync

clock

Variant: the checker only checks the plausibility of the results

(requires definition of what is forbidden)

The safety-relevant parts (comparator 

and switch) are useless if not regularly 

checked. 

Advantage: high coverage, short latency
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Error detection method by coding (absolute test)

This method is used in network and storage, where error patterns are simple. 

It consists in adding a code  (parity, checksum, cyclic redundancy check,…) to the 

useful data that guarantees its integrity. 

k data bits

n-bit code word

Coding is more efficient than duplication and comparison.

r check bits

Coding has also been applied to processing elements, but the complexity is huge.

For each operation, a corresponding operation on the check bits has to be done. 

A

B

C

value

A’

B’

C’

code
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Error detection method by coding (absolute test) in practice

https://en.wikipedia.org/wiki/Ethernet_frame

https://en.wikipedia.org/wiki/IPv4

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

TCP – 2 bytes

IP – 2 bytes

Ethernet – 4 bytes

“The checksum field is the 16 bit one's complement of the one's 

complement sum of all 16-bit words in the header and text.” – RFC 793

https://en.wikipedia.org/wiki/Ethernet_frame
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
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Error detection by predicates (absolute check)

The results of a computation are checked against predicates that must be fulfilled,

 e.g. the sum of two positive integers is a positive integer

Plausibility checks require knowledge of the specification:

 e.g. not all traffic lights may be green at the same time

Plausibility may involve different information sources:

 e.g. compare wheel speed with GPS speed

Danger is 

-detection of wrong errors

 legal situations not foreseen by the application, e.g. flight altitude below sea level ( -385m Bar 

Yehuda Aiport) 

and

 

-not detection of real errors

 the result is wrong, but plausible

Error coverage is not 100% !
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Integer Computers: Self-Testing System

Computers include 

increasingly means 

to detect their own 

errors. 

serial bus 
(CRC)

changeover logic 
to safe state

parallel 
backplane bus 

(self-test by 
parity)

E
D

MEM

E
D

PE
D

PE
D

P

E
D

I/O

Vs

self-testing 
processors 

(e.g. duplication
& comparison)

stable storage 
(with error detection

and correction)

safe value

What happens if the safe switch fails ?
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Integer outputs: selection by the plant

worker checker controller
E

D

M

worker checker

The dual channel should be extended as far as possible into the plant

act if both agree

(workby)

act if any does

(workby)

act if error detection agrees

(error detector controls power)
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2 Fault-tolerant structures

1 Error detection and fail-silent computers

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer
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Fault tolerant structures

• Fault tolerance allows to continue operation in spite of a limited number of independent 

failures. 

• Fault tolerance relies on operational redundancy.

• It is not sufficient that a back-up unit exists, it must be loaded with the same data and be 

in a state as near possible to the state of the on-line unit in order to take over smoothly. 

• The actualisation of the back-up assumes that computers are deterministic and identical 

machines.

• “Given two identical machines, initially in the same state,  the states of these machines 

will follow each other provided they always act on the same inputs, received in the same 

sequence.”  
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Fault-tolerance: the two approaches

input

E

D

E

D

E

D

E

D

output

input

output
trusted elements 

(must be checked)

fail-silent unit

error detection

(also of idle parts)

Workby

(static redundancy, parallel redundancy)
Standby

(dynamic redundancy, serial redundancy)

the on-line unit regularly copies its 

state and its inputs to the back-up. 

both machines modify synchronously 

their states based on the same inputs 

in the same manner

on-lineworker standbyco-worker

data flow
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Workby of 3 synchronised and identical units.

– All 3 units OK:   Correct output.

– 2 units OK:    Majority output correct.

– 2 or 3 units with same failure behaviour: Incorrect output.

– Otherwise:    Error detection output.

Workby: 2 out of 3  (2oo3) Computer

A B

sync

voter

C

sync

process input

process output

also known as: 

TMR (triple module redundancy)

2oo3v (two out of three with voting)

provides integrity (fail-silent) and persistency (fail-operate) !

sync
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Standby (Dynamic Redundancy)

on-line unit stand-by unit

switch

output

What are standby units used for?

– only as redundancy

– for other functions (that get lower priority in case of primary unit failure)

– better performance (“graceful degradation” in case of failure – wishful 

thinking)

input

Redundancy only activated and inserted after an error is detected.

– restart on the same hardware (non-redundant)

– reserve components (cold redundancy), standby (warm/hot standby)
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Hybrid Redundancy

Mixture of workby (static redundancy) and standby (dynamic redundancy).

voter

work-

by

work-

by

work-

by

stand-

by

stand-

by

voter

work-

by
failed

work-

by

work-

by

stand-

by
Reconfiguration

(self-purging

redundancy)
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Workby vs. Standby: applies to redundant computer networks

network B
Static (workby) redundancy

network A

switch

switch

switch switch

switch

switch

Dynamic (standby) 

redundancy

nodes are singly attached in case of failure, the switches route the traffic over an other port

(partial redundancy: loss of switch = loss of attached nodes, loss of leaf link = loss of node) 

nodes send on both networks - in case of failure the nodes work with the remaining network

(partial redundancy: loss of node = loss of function)

node node node node node node node node

nodenodenodenodenodenode node
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General designation

KooN: K out-of N

1oo1: simplex system

1oo2: duplicated system, one unit is sufficient to perform the function

2oo2: duplicated system, both units must be operational (fail-safe)
1oo2D: duplicated system with self-check error detection (fail-operational)

2oo3: triple modular redundancy: 2 out of three must be operational (masking)

2oo4: masking (massive redundancy) architecture 
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3 Workby

1 Error detection and fail-silent computers

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer
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Workby: Fault-Tolerance for both Integrity and Persistency

disjunctor

comparator

integer

2oo2

worker

input

checker

output

worker

commutator

synchronization

matching

persistent

1oo2D

input

worker

output

E

D

E

D

réserve synchrone, synchrone Redundanz

provides integrity (fail-safe) or persistency (fail-operate) and massive redundancy (masking)

worker

voter

worker

input

output

worker

2/3

integer / persistent

2oo3

synchronization

matching matching

synchronization synchronization
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“2oo4D” architecture

switch

comparator

checker worker

output

synchronization

matching

safe output value

switch

comparator

worker checker

synchronization

matching

input

synchronization

provides integrity in face of any two unit failures, but cannot provide operation in face of

any two unit failure (but 2oo4 it is an accepted designation in safety automation systems)

spreading (can be redundant inputs)
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Workby: Input and Output Handling

input synchronization and matching

input

output

Replicated units must receive exactly the same input at the same time (execution step).

Delay (skew, jitter) between outputs must be small enough to allow comparison

and smooth switchover.  

output comparison and selection

three identical,

deterministic,

synchronized

state machines

CBA
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Workby: Input synchronisation and matching

input synchronization and matching

computer
A

computer
B

computer
C

input

Correct synchronisation requires input synchronization and matching (building a consensus value used by all the replicas).

Common signals are not suitable for reaching a consensus

Input from same source: single point of failure, propagation delays causes differences. 

Input from different sources: redundant sensors: needs application knowledge.

Every replica builds a vector of the value it received directly and the value received from the other units and applies a matching algorithm 

to it. 

All units can then compare the same vector and act on it. 

-> requires solving: matching, reliable broadcast, Byzantine problems

c.f. “Reliable and Secure Distributed Programming” from C. Cachin et al. for details on consensus algorithms
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Workby: Matching redundant inputs

Redundant inputs may differ in:

• value (different sensors, sampling)

• timing (even when coming from the same sensor, different delays)

computer
A

computer
B

Matching: reaching a consensus value used by all replicas

To reach a consensus, each computer must know the input value received by the 

other computer(s), through some (often dedicated) communication link. 

 

input A input B
redundant

matching
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Workby: Input matching

The matched value depends on the semantics of the variables.

Matching needs knowledge of the dynamic and physical behaviour.

Matching stretches over several consecutive values of the variables.  

Binary variables: 
jitter

Analog variables:

time

time

A

B

A
B

Therefore, matching is application-dependent !

agree on value stable 

during a time window, 

biased decision,...

agree on median value, 

time-averaged value, 

exclude not plausible 

values,...



Dependable Architectures - 34Industrial Automation

Consensus Issue - Byzantine Faults and Failures

• Byzantine fault

• Any fault presenting different symptoms to different observers

• Byzantine failure

• The loss of a system service due to a Byzantine fault in systems that require 

consensus

Worst-case scenario… but they may happen!
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The Byzantine Generals´ Problem

A

CB

attack

attack

attackattack

A

CB

attack

retreat

attackretreat
A

CB

attack

retreat

attackattack

C cannot distinguish who is the traitor, A or B

For success, all generals must take the same decision, in spite of 't' traitors. 

A is a traitor B is a traitor

In the computer world, A can be a faulty processing 

unit or the link to B and C can be not reliable.
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Exercise: Byzantine Faults

Assume that a dependable computer system consists of four computers.

Each of the computers has a point-to-point data link to the other three computers.

Each of these computers reads an input value from a sensor to which it is 

connected. However, the sensor reading is unreliable and thus the computer 
connected to it has to confirm the sensor reading by agreeing with the other 

computers.

a) Assume that one of the computers fails in such a way that its outputs to 
different computers can be different. Can the remaining three fault-free 

computers agree on a common sensor value?

b) Assume that there are two “Byzantine” computers. Is the answer different?
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The Byzantine Generals´ Problem

A

CB

attack

attack

attackattack

A

CB

attack

retreat

attackretreat
A

CB

attack

retreat

attackattack

C cannot distinguish who is the traitor, A or B

No solution for 3t parties in presence of t faults. 
Encryption (source authentication) 
Reliable broadcast

Solutions: 

For success, all generals must take the same decision, in spite of 't' traitors. 

Sources: Lamport, Shostak, Pease,  "Reaching Agreement", J Asso. Com. Mach, 1980, , 27, pp 228-234. 

This is a general problem also affecting replicated databases and blockchains

A is a traitor B is a traitor
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Matching - not so easy 

Extract from a Boeing Patent :

Midvalue signal selection and fault detection apparatus and method
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Workby: Interrupt Synchronisation

101 101

104 105 106CPU 1 101 102 103

interrupt request

104CPU 2 101 102 103

407 408

407 408

synchronized 
CPU (same clock)

time

Instructions may affect the control flow

Interrupts must be matched, like any other input data

All decisions which affect the control flow (task switch) require previous matching. 

The execution paths diverge, if any action performed is non-identical

Solution: do not use interrupt, poll the interrupt vector after a certain number of instructions 

instruction number just before

just after
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Workby synchronisation: fundamental metastability limit

The synchronization of asynchronous inputs by hardware means is only

possible with a certain probability  

D

Clock

Q
D

clock

Q

100 ns

Circuit (D-flip-flop)

When input signal changes extremely close (simultaneously) to the clock edge

• Output signal may enter a metastable state (value which is neither 0 nor 1)

• Output signal will eventually settle randomly to either 0 or 1

Effect can be reduced (but not totally avoided) by cascading flip-flops (synchronizer)
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Workby: Output Comparison and Voting

The synchronized computers operate preferably in a cyclic way so as to 

guarantee determinism and easy comparison.

The last decision on the correct value must be made in the process itself.

read inputs

compute

build 
consensus

synchro
outputs

read inputs

compute

synchro
outputs

read inputs

compute

build 
consensus

synchro
outputs

build 
consensus
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Workby with massive (static) redundancy: the plant votes

control 
surfaces

motors

power 
electronics 
and control

damaged unit 

the damaged unit is outvoted by the working units. If the damaged unit can be passivated,

(i.e. autodetects its faults and disengages), impact is reduced.  
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Voters – Not So Simple

• Majority voting: 

• Select the value that appears on at least ⎣n/2⎦+ 1 of the n inputs

• Number n of inputs is usually odd, but does not have to be

• Example: vote(1, 2, 3, 2, 2) = 2

• Sometimes we can not use strict equality

• If |x-y| < Δ, then x = y

• Simple implementation with comparator and muxes

• In case of 3-way disagreement, any value is chosen
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Voters

• Plurality voting

• Select the value that occurs the most or a number of time defined by the developper

• Example: vote(0,1,3,2,3,5,4)=3

• Median voting

• Select the median value of the set of inputs

• Example: vote (1.00, 3.00, 0.99, 3.00, 1.01) = 1.01

• It is another way of dealing with approximation

• Threshold voting

• Output is 1 if at least k out of n inputs is 1

• Majority voting is a special case of threshold voting

• Weighted threshold voting
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Workby: teaching

When a workby unit is repaired and reintegrated, it is brought to the state of the 

running unit before it can serve as workby unit again. 

To this effect, the state of the running unit is copied to the repaired unit while it is 

operating.

Since the state of the running unit is continuously changing, the copying must take 

place much faster than the changes to the state. 

This is only possible if the state is handled at a high abstraction level (for speed 
reasons) and states are tagged (to retransmit them if they changed in between). 
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State restoration

State saving and restoring applies in a modified form to reintegration of 

repaired units.

This applies especially to standby computers, that must be reinitialized to the

state of the running machine. 

This requires the on-line unit to spare a portion of its computing power to

restore the state of the reintegrated unit and bring it to synchronism.

This is a more challenging task than just switching over in case of failure. 
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4 Standby

1 Error detection

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

réserve asynchrone, unbeteiligte Redundanz
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Standby

on-line standby
sync

on-line storage

Hot standby Warm standby

Standby unit is not computing

Error detection is needed.

Easy switchover in case of failure.

Easy repair of reserve unit.

Standby is not operational

Error detection needed.

Long switchover period with loss of state info.

Smaller failure rate of storage unit

E

D

E

D

E

D
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Standby: cold, warm hot

Standby consists in restarting a failed computation from a known-good state.

The basic techniques for state saving are the same as for the back-up in a 
personal computer or on mainframe computers.

At the simplest, restart can be done on the same machine when only transient 

faults are considered -> “automatic restart”, “warm start”. 

Restart after repair requires a more elaborate state saving.

Standby relies on the existence of a stable storage in which the state of the 

computation is guarded, either in a non-volatile memory (Non-Volatile RAM, disk) 
or in a fail-independent memory (which can be the workspace of the spare 

machine).

Standby requires a periodic checkpointing to keep the stable storage up-to-date.

There is always a lag between the state of computations and the state of stable 
storage, because of the checkpointing interval or because of asynchronous 

input/outputs.
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Actualization of state in standby vs. workby

restore

back-up

(work-by)

SYNC

input

outputoutput

b) Workbya) Standby

on-line
E

D 

E

D 

save

track I/O

on-line
E

D

on-line back-up on-line back-up

back-up

(standby)

input A input"

input

on-line and back-up are synchronized by 

parallel operation (synchronized inputs)

restore for hot reintegration, no save. 

The on-line unit  regularly actualises

the state of the stand-by unit, which

otherwise remains passive.  

error

detection

switchover 
unit

ED = Error Detection

restore

restore

plant can

 use either

E

D
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full 
back-up

delta 
back-up CP CP CP

reconstruct initial state

CP CP

reconstructed

trusted state 

CP CP CP

CP

recover

stable 
storage 

(e.g. stand-by's memory) 

Checkpointing requires  identification of the parts of the context modified since 

last checkpoint – this is application dependent !

To speed up recovery, the stand-by can apply the deltas to its state continuously. 

Checkpoints save enough information to reconstruct a previous, known-good state.

To limit the data to save (checkpoint duration, distance between checkpoints), 

only the parts of the state modified since last checkpoint are saved. 

ON-LINE

by applying deltas to full back-up

CP CP CP

Stand-by unit

recover

On-line unit

Standby: Checkpointing for state transfer

failure 
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Standby: Checkpointing

The amount of data to save to reconstruct a previous known-good state 

depend on the instant the checkpoint is taken.

Recovery depends on which parts of the state are trusted after a crash (trusted

storage), on which are not (volatile storage) and on which parts are relevant. 

processor
microregister

cache

registers

RAM

disk

world (cannot be rolled back !) 

other computers in the network
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Standby: Checkpointing Strategy

Checkpoints are difficult to insert automatically, unless every change to the trusted 

storage is monitored. 

This requires additional hardware (e.g. bus spy). 

Many times, the changes cannot be controlled since they take place in cache.  

The amount of relevant information depends on the checkpoint location: 

• after the execution of a task, its workspace is not anymore relevant. 

• after the execution of a procedure, its stack is not anymore relevant 

• after the execution of an instruction, microregisters are no more relevant. 

Therefore, an efficient checkpointing requires that the application tags the data to save 

and decide on the checkpoint location. 

Problem: how to keep control on the interval between checkpoints if the execution time 
of the programs is unknown ? 
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full back-up Checkpoint (?)

reconstruct 
known-good state

Checkpoint
Stand-by

On-line

Checkpoint

For faster recovery and closer checkpointing, the stand-by monitors the

input-output interactions of the on-line unit in an interaction log. 

After reconstructing a known-good state from the full copy and incremental back-ups, 

the stand-by resumes computation and applies the log of interactions to it:  

•It takes its input data from the log instead of reading them directly.

•It suppresses outputs if they are already in the log (counts them)

•It resumes normal computations (and checkpointing) when the log is void. 

external world

replay 
log

regular 
operation

log entries

Standby: Logging
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Standby: Domino Effect

As long as a failed unit does not communicate with the outer world, there is no harm.

The failure of a unit can oblige to roll back another unit which did not fail,because it acted 

on incorrect data. 

This roll-back can propagate under evil circumstances ad infinitum (Domino-effect) 

This effect can be easily prevented by placing the checkpoints in function of 
communication - each communication point should be preceded by a checkpoint.

Process 1

Process 2

Process 3

3

12

4

5

6



Dependable Architectures - 56Industrial Automation

Recovery times for various architectures

degree of 
coupling

lock-step 
synchronization

common 
memory

local 
network

wide area 
network

recovery time100 s10s1s0.1s10 ms

The time available for recovery depends on the tolerance of the plant against outages. 

When this time is long enough, stand-by operation becomes possible

2/3 voting

1/2 workby

standby

workby/ 
standby
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5 Example Architectures

1 Error detection and fail-silent computers

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer
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ABB 1/2 Multiprocessor for HVDC substation

Synchronizing multiprocessors means: synchronize processors with the peer

processor, and pairs with other pairs.

The multiprocessor bus must support a deterministic arbitration. 

The Update and Synchronization Unit USU enforces synchronous operation. 

side A side B

duplicated 
input/output

commutator

USU

outputinput input"

P
E 
D P

E 
D P

E 
D P

E 
D P

E 
D P

E 
D

I/O
E 
D M

E 
DM

E 
D I/O

E 
D
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Redundant control system

Central repository

– Redundant 2oo3

Duplication of connectivity severs
– each maintains its own A&E and history log

Network
– Dual lines, dual interfaces, 

dual ports on controller CPU

Controller CPU
– Hot standby, 1oo2

Fieldbus line redundancy
– Dual physical lines

Fieldbus device redundancy

– Duplicated bus interfaces

Redundant I/O, remote, 1oo2

Dual power supplies
– Supervision of A and B power lines

Power back-up for workplaces and servers
– UPS (Uninterruptible Power Supply) technology

Connectivity

Server

Aspect

Server

System

Features
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Full redundant system

Engineering

Fieldbus

Firewall 

Intranet 

Fieldbus

Plant network

Application

DB

Databases 

Operator

Workplace

Engineering

Workplace

Mobile

Operator

Connectivity

Control Networl

control

Redundant

PLC

touch-screen
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Example: Flight Control Display Module for helicopters

reconfiguration unit:

the pilot judges which

FCDM to trust in case of

discrepancy

sensors
(Attitude Heading Reference System)

instrument control panel

primary flight display /

navigation display

source: National Aerospace Laboratory, NLR

Flight Control Display Module
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B777: airplane 

Source: Boeing
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Triple-triple redundant 777 primary flight computer

Abstract:

 “The flight control system for the Boeing 777 airplane is a Fly-By-Wire (FBW) system. 
The FBW system must meet extremely high levels of functional integrity and availability. 

The heart of the FBW concept is the use of triple redundancy for all hardware 

resources: computing system, airplane electrical power, hydraulic power and 

communication path. The Primary Flight Computer (PFC) is the central computation 

element of the FBW system. The triple modular redundancy (TMR) concept also applies 
to the PFC architectural design. Further, the N-version dissimilarity issue is integrated to 

the TMR concept. The PFCs consist of three similar channels (of the same part 

number), and each channel contains three dissimilar computation lanes. The 777 

program design is to select the ARINC 629 bus as the communication media for the 

FBW.”

 “each PFC ( primary fight computer ) channel contains three dissimilar processor lanes, 

and software from Ada source code using three different Ada compilers to provide triple 

dissimilarity”
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B777 control architecture
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B777 control surfaces
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B777 Modules
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B777 Primary Flight Control: example of diverse programming

triplicated

input bus

Motorola

68040

Intel

80486

AMD

29050

Primary

Flight

Computer

(PFC 1)

sensor inputs

input           signal          mgt.

triplicated

output bus

PFC 2
(Intel)

PFC 3
(AMD)

actuator control actuator control actuator control

left actuator centre actuator right actuator



Dependable Architectures - 68Industrial Automation

Airbus

• Airbus Fly-byWire: a total approach to dependability
• https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf 

• Airbus flight control system
• https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf 

• 1oo5 flight control computers redundancy

• Primary (3 units) and secondary (2 units) computers

• Use different computers

• Designed and supplied by different companies

• Processor chips from different manufacturers

https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
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Airbus 330

1) A flight computer (ADIRU) that does not disengage in 

case of malfunction will poison the remaining good 

units !    fail silent did not work

2) In case of sensor problems, no consensus can be built.

all units could disengage ! 

Quantas airbus after ADIRU failure
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Space Shuttle PASS Computer

CRT 
display

payload- 
interface 

Manipulator 
uplink

Solid rocket 
boosters 

Ground umbilicals 
Ground support 

equipment

Telemetry
Mass 

memory 
units

GNC sensors 
Main engine interface 
Aerosurface actuators 
Thrust - vector control 

actuators 
Primary flight displays 

Mission event controllers 
Master time 

Navigation aids

28 
1 - MHz 

serial data 
buses 

( 23 shared, 
5 dedicated )

GPC 5

IOP 5

GPC 4

IOP 4

GPC 3

IOP 3

GPC 2

IOP 2

GPC 1

IOP 1

Discrete inputs and analog IOPs, control panels, and mass memories

Intercomputer (5)

Mass memory (2)

Display system (4)

Payload operation (2)

Launch function (2)

Flight instrument (5;1 dedicated per GPC)

Flight - critical sensor and control (8)

Control 
Panels

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5
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Wrap-up

Fault-tolerant computers offer a finite increase in availability (safety ?)

All fault-tolerant architectures suffer from the following weaknesses:

- assumption of no common mode of error
 hardware: mechanical, power supply, environment, 

 software: no design errors

- assumption of near-perfect coverage to avoid lurking errors and ensure fail-silence.

-assumption of short repair and maintenance time

-increased complexity with respect to the 1oo1 solution

ultimately, the question is that of which risk is society willing to accept. 
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