
Dependable Architectures

Verlässliche Architekturen

Architectures sûres de fonctionnement

Industrial Automation

Automation Industrielle

Industrielle Automation

The material of this course has been initially created by Prof. Dr. H. Kirrmann and adapted by Dr. J-C. Tournier2025 - JCT

Dr. Jean-Charles Tournier

CERN, Geneva, Switzerland

ht tps:/ /beaudaniel s.com /aviat ion-infographic-ill ust rations

https://beaudaniels.com/aviation-infographic-illustrations
https://beaudaniels.com/aviation-infographic-illustrations
https://beaudaniels.com/aviation-infographic-illustrations
https://beaudaniels.com/aviation-infographic-illustrations
https://beaudaniels.com/aviation-infographic-illustrations

Dependable Architectures - 2Industrial Automation

The three main dependable computer architectures

inputs

outputs

2/3 voter

c) Integer & persistent

error masking, massive redundancy (2oo3)

inputs

off-switch

a) Integer

" rather nothing than wrong "

(fail-silent, fail-stop, "fail-safe")
1oo1d

outputs

processor

on-line workby

output

fail-over logic

b) Persistent

" rather wrong than nothing "

"fail-operate“
(1oo2D)

processor processor

processor processor processor

diagnosticsD

2/3

D D

input

Dependable Architectures - 3Industrial Automation

Overview Dependable Architectures

1 Error detection

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby Implementation

 - Input Processing

 - Synchronization

 - Output Processing

4 Issues in Standby Implementation

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

Dependable Architectures - 4Industrial Automation

1 Error Detection and Fail-Silent

1 Error detection

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

Dependable Architectures - 5Industrial Automation

Error Detection: Classification

Error detection is the base of “safe” computing (“fail-silent”)

 -> disable outputs if error detected

Error detection is the base of fault-tolerant computing (“fail-operate”)

 -> switchover if error detected, passivate faulty unit.

Key factors:

“hamming distance”:

 how many simultaneous errors can be detected

coverage (recouvrement, Deckungsgrad)

 probability that an error is discovered (within useful time)
(definition of "useful time": before any damages occur, before automatic shutdown,…)

latency (latence, Latenz)
time between occurrence and detection of an error

Dependable Architectures - 6Industrial Automation

Error Detection: Classification

Errors can be detected, (in order of increasing latency):

–on-line (while the specified function is performed)

 → by continuous monitoring/supervision

–off-line (in a time period when the unit is not used for its specified function)

 → by periodic testing

–during periodic maintenance (when the unit is tested and calibrated)
 → by thorough testing, uncovering lurking errors

Dependable Architectures - 7Industrial Automation

Error detection

The correctness of a result can be checked by:

relative tests (comparison tests):

by comparing several results of redundant units or computations (not necessary

identical)

pessimistic, i.e. differences due to (allowed) indeterminism count as errors

 high coverage, high cost

absolute tests (acceptance tests):
by checking the result against an a priori consistency condition (plausibility check)

optimistic, i.e. even if result is consistent it may not be correct

 (but can catch some design errors)

Dependable Architectures - 8Industrial Automation

Error Detection: Possibilities

relative test absolute test

on-line

off-line

duplication and comparison

(either hardware duplication

or time redundancy)

triplication and voting

comparison with

precomputed test result

(fixed inputs)

e.g. memory test

check of program version

check of watchdog function

check code for program code

watchdog (time-out)

control flow checking

error-detecting code (CRC, etc.)

illegal address checking

Dependable Architectures - 9Industrial Automation

Detection of Errors Caused by Physical Faults

medium to high error rate,

memoryless

parity,

CRC,

watchdog

medium error rate,

large storage

parity,

Hamming codes EDC

CRC on disk.

low error rate,

high complexity

duplication and comparison,

coded logic, control flow,

watchdog

high error rate,

high diversity

mechanical integrity,

voltage supervision,

watchdogs,...

Data transmission lines

Regular memory elements

Processors and controllers

Auxiliary elements

(hard disk, ventilation)

Error detection depends on the type of component, its error rate and its complexity.

Error characteristics Typical error detectionComponent

Dependable Architectures - 10Industrial Automation

Watchdog Processor (absolute test)

application processor

reset

cyclic

application
(every k ms)

watchdog

processor

supply

voltage

trusted

switch
inhibit

time

> k ms

The application processor periodically resets the watchdog timer. If it fails to do it, the watchdog

processor will shut down and restart the processor.

Typically implemented in PLCs but also autonomous robots.

Dependable Architectures - 11Industrial Automation

Duplication and Comparison (relative test)

Conditions: worker and checker are identical and deterministic.

inputs are (made) identical and synchronized (interrupts !)

output must be synchronized to allow comparison.

Problem non-determinism: digital

computers are made of analog elements:

(variable delays, thresholds, asynchronous

clocks...)



worker checker

comparator

switch

fail-silent output

safe input

spreader

sync

clock

Variant: the checker only checks the plausibility of the results

(requires definition of what is forbidden)

The safety-relevant parts (comparator

and switch) are useless if not regularly

checked.

Advantage: high coverage, short latency

Dependable Architectures - 12Industrial Automation

Error detection method by coding (absolute test)

This method is used in network and storage, where error patterns are simple.

It consists in adding a code (parity, checksum, cyclic redundancy check,…) to the

useful data that guarantees its integrity.

k data bits

n-bit code word

Coding is more efficient than duplication and comparison.

r check bits

Coding has also been applied to processing elements, but the complexity is huge.

For each operation, a corresponding operation on the check bits has to be done.

A

B

C

value

A’

B’

C’

code

Dependable Architectures - 13Industrial Automation

Error detection method by coding (absolute test) in practice

https://en.wikipedia.org/wiki/Ethernet_frame

https://en.wikipedia.org/wiki/IPv4

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

TCP – 2 bytes

IP – 2 bytes

Ethernet – 4 bytes

“The checksum field is the 16 bit one's complement of the one's

complement sum of all 16-bit words in the header and text.” – RFC 793

https://en.wikipedia.org/wiki/Ethernet_frame
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Dependable Architectures - 14Industrial Automation

Error detection by predicates (absolute check)

The results of a computation are checked against predicates that must be fulfilled,

 e.g. the sum of two positive integers is a positive integer

Plausibility checks require knowledge of the specification:

 e.g. not all traffic lights may be green at the same time

Plausibility may involve different information sources:

 e.g. compare wheel speed with GPS speed

Danger is

-detection of wrong errors

 legal situations not foreseen by the application, e.g. flight altitude below sea level (-385m Bar

Yehuda Aiport)

and

-not detection of real errors

 the result is wrong, but plausible

Error coverage is not 100% !

Dependable Architectures - 16Industrial Automation

Integer Computers: Self-Testing System

Computers include

increasingly means

to detect their own

errors.

serial bus
(CRC)

changeover logic
to safe state

parallel
backplane bus

(self-test by
parity)

E
D

MEM

E
D

PE
D

PE
D

P

E
D

I/O

Vs

self-testing
processors

(e.g. duplication
& comparison)

stable storage
(with error detection

and correction)

safe value

What happens if the safe switch fails ?

Dependable Architectures - 17Industrial Automation

Integer outputs: selection by the plant

worker checker controller
E

D

M

worker checker

The dual channel should be extended as far as possible into the plant

act if both agree

(workby)

act if any does

(workby)

act if error detection agrees

(error detector controls power)

Dependable Architectures - 18Industrial Automation

2 Fault-tolerant structures

1 Error detection and fail-silent computers

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

Dependable Architectures - 19Industrial Automation

Fault tolerant structures

• Fault tolerance allows to continue operation in spite of a limited number of independent

failures.

• Fault tolerance relies on operational redundancy.

• It is not sufficient that a back-up unit exists, it must be loaded with the same data and be

in a state as near possible to the state of the on-line unit in order to take over smoothly.

• The actualisation of the back-up assumes that computers are deterministic and identical

machines.

• “Given two identical machines, initially in the same state, the states of these machines

will follow each other provided they always act on the same inputs, received in the same

sequence.”

Dependable Architectures - 20Industrial Automation

Fault-tolerance: the two approaches

input

E

D

E

D

E

D

E

D

output

input

output
trusted elements

(must be checked)

fail-silent unit

error detection

(also of idle parts)

Workby

(static redundancy, parallel redundancy)
Standby

(dynamic redundancy, serial redundancy)

the on-line unit regularly copies its

state and its inputs to the back-up.

both machines modify synchronously

their states based on the same inputs

in the same manner

on-lineworker standbyco-worker

data flow

Dependable Architectures - 21Industrial Automation

Workby of 3 synchronised and identical units.

– All 3 units OK: Correct output.

– 2 units OK: Majority output correct.

– 2 or 3 units with same failure behaviour: Incorrect output.

– Otherwise: Error detection output.

Workby: 2 out of 3 (2oo3) Computer

A B

sync

voter

C

sync

process input

process output

also known as:

TMR (triple module redundancy)

2oo3v (two out of three with voting)

provides integrity (fail-silent) and persistency (fail-operate) !

sync

Dependable Architectures - 22Industrial Automation

Standby (Dynamic Redundancy)

on-line unit stand-by unit

switch

output

What are standby units used for?

– only as redundancy

– for other functions (that get lower priority in case of primary unit failure)

– better performance (“graceful degradation” in case of failure – wishful

thinking)

input

Redundancy only activated and inserted after an error is detected.

– restart on the same hardware (non-redundant)

– reserve components (cold redundancy), standby (warm/hot standby)

Dependable Architectures - 23Industrial Automation

Hybrid Redundancy

Mixture of workby (static redundancy) and standby (dynamic redundancy).

voter

work-

by

work-

by

work-

by

stand-

by

stand-

by

voter

work-

by
failed

work-

by

work-

by

stand-

by
Reconfiguration

(self-purging

redundancy)

Dependable Architectures - 24Industrial Automation

Workby vs. Standby: applies to redundant computer networks

network B
Static (workby) redundancy

network A

switch

switch

switch switch

switch

switch

Dynamic (standby)

redundancy

nodes are singly attached in case of failure, the switches route the traffic over an other port

(partial redundancy: loss of switch = loss of attached nodes, loss of leaf link = loss of node)

nodes send on both networks - in case of failure the nodes work with the remaining network

(partial redundancy: loss of node = loss of function)

node node node node node node node node

nodenodenodenodenodenode node

Dependable Architectures - 26Industrial Automation

General designation

KooN: K out-of N

1oo1: simplex system

1oo2: duplicated system, one unit is sufficient to perform the function

2oo2: duplicated system, both units must be operational (fail-safe)
1oo2D: duplicated system with self-check error detection (fail-operational)

2oo3: triple modular redundancy: 2 out of three must be operational (masking)

2oo4: masking (massive redundancy) architecture

Dependable Architectures - 27Industrial Automation

3 Workby

1 Error detection and fail-silent computers

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

Dependable Architectures - 28Industrial Automation

Workby: Fault-Tolerance for both Integrity and Persistency

disjunctor

comparator

integer

2oo2

worker

input

checker

output

worker

commutator

synchronization

matching

persistent

1oo2D

input

worker

output

E

D

E

D

réserve synchrone, synchrone Redundanz

provides integrity (fail-safe) or persistency (fail-operate) and massive redundancy (masking)

worker

voter

worker

input

output

worker

2/3

integer / persistent

2oo3

synchronization

matching matching

synchronization synchronization

Dependable Architectures - 29Industrial Automation

“2oo4D” architecture

switch

comparator

checker worker

output

synchronization

matching

safe output value

switch

comparator

worker checker

synchronization

matching

input

synchronization

provides integrity in face of any two unit failures, but cannot provide operation in face of

any two unit failure (but 2oo4 it is an accepted designation in safety automation systems)

spreading (can be redundant inputs)

Dependable Architectures - 30Industrial Automation

Workby: Input and Output Handling

input synchronization and matching

input

output

Replicated units must receive exactly the same input at the same time (execution step).

Delay (skew, jitter) between outputs must be small enough to allow comparison

and smooth switchover.

output comparison and selection

three identical,

deterministic,

synchronized

state machines

CBA

Dependable Architectures - 31Industrial Automation

Workby: Input synchronisation and matching

input synchronization and matching

computer
A

computer
B

computer
C

input

Correct synchronisation requires input synchronization and matching (building a consensus value used by all the replicas).

Common signals are not suitable for reaching a consensus

Input from same source: single point of failure, propagation delays causes differences.

Input from different sources: redundant sensors: needs application knowledge.

Every replica builds a vector of the value it received directly and the value received from the other units and applies a matching algorithm

to it.

All units can then compare the same vector and act on it.

-> requires solving: matching, reliable broadcast, Byzantine problems

c.f. “Reliable and Secure Distributed Programming” from C. Cachin et al. for details on consensus algorithms

Dependable Architectures - 32Industrial Automation

Workby: Matching redundant inputs

Redundant inputs may differ in:

• value (different sensors, sampling)

• timing (even when coming from the same sensor, different delays)

computer
A

computer
B

Matching: reaching a consensus value used by all replicas

To reach a consensus, each computer must know the input value received by the

other computer(s), through some (often dedicated) communication link.

input A input B
redundant

matching

Dependable Architectures - 33Industrial Automation

Workby: Input matching

The matched value depends on the semantics of the variables.

Matching needs knowledge of the dynamic and physical behaviour.

Matching stretches over several consecutive values of the variables.

Binary variables:
jitter

Analog variables:

time

time

A

B

A
B

Therefore, matching is application-dependent !

agree on value stable

during a time window,

biased decision,...

agree on median value,

time-averaged value,

exclude not plausible

values,...

Dependable Architectures - 34Industrial Automation

Consensus Issue - Byzantine Faults and Failures

• Byzantine fault

• Any fault presenting different symptoms to different observers

• Byzantine failure

• The loss of a system service due to a Byzantine fault in systems that require

consensus

Worst-case scenario… but they may happen!

Dependable Architectures - 35Industrial Automation

The Byzantine Generals´ Problem

A

CB

attack

attack

attackattack

A

CB

attack

retreat

attackretreat
A

CB

attack

retreat

attackattack

C cannot distinguish who is the traitor, A or B

For success, all generals must take the same decision, in spite of 't' traitors.

A is a traitor B is a traitor

In the computer world, A can be a faulty processing

unit or the link to B and C can be not reliable.

Dependable Architectures - 36Industrial Automation

Exercise: Byzantine Faults

Assume that a dependable computer system consists of four computers.

Each of the computers has a point-to-point data link to the other three computers.

Each of these computers reads an input value from a sensor to which it is

connected. However, the sensor reading is unreliable and thus the computer
connected to it has to confirm the sensor reading by agreeing with the other

computers.

a) Assume that one of the computers fails in such a way that its outputs to
different computers can be different. Can the remaining three fault-free

computers agree on a common sensor value?

b) Assume that there are two “Byzantine” computers. Is the answer different?

Dependable Architectures - 37Industrial Automation

The Byzantine Generals´ Problem

A

CB

attack

attack

attackattack

A

CB

attack

retreat

attackretreat
A

CB

attack

retreat

attackattack

C cannot distinguish who is the traitor, A or B

No solution for 3t parties in presence of t faults.
Encryption (source authentication)
Reliable broadcast

Solutions:

For success, all generals must take the same decision, in spite of 't' traitors.

Sources: Lamport, Shostak, Pease, "Reaching Agreement", J Asso. Com. Mach, 1980, , 27, pp 228-234.

This is a general problem also affecting replicated databases and blockchains

A is a traitor B is a traitor

Dependable Architectures - 38Industrial Automation

Matching - not so easy

Extract from a Boeing Patent :

Midvalue signal selection and fault detection apparatus and method

Dependable Architectures - 39Industrial Automation

Workby: Interrupt Synchronisation

101 101

104 105 106CPU 1 101 102 103

interrupt request

104CPU 2 101 102 103

407 408

407 408

synchronized
CPU (same clock)

time

Instructions may affect the control flow

Interrupts must be matched, like any other input data

All decisions which affect the control flow (task switch) require previous matching.

The execution paths diverge, if any action performed is non-identical

Solution: do not use interrupt, poll the interrupt vector after a certain number of instructions

instruction number just before

just after

Dependable Architectures - 40Industrial Automation

Workby synchronisation: fundamental metastability limit

The synchronization of asynchronous inputs by hardware means is only

possible with a certain probability

D

Clock

Q
D

clock

Q

100 ns

Circuit (D-flip-flop)

When input signal changes extremely close (simultaneously) to the clock edge

• Output signal may enter a metastable state (value which is neither 0 nor 1)

• Output signal will eventually settle randomly to either 0 or 1

Effect can be reduced (but not totally avoided) by cascading flip-flops (synchronizer)

Dependable Architectures - 41Industrial Automation

Workby: Output Comparison and Voting

The synchronized computers operate preferably in a cyclic way so as to

guarantee determinism and easy comparison.

The last decision on the correct value must be made in the process itself.

read inputs

compute

build
consensus

synchro
outputs

read inputs

compute

synchro
outputs

read inputs

compute

build
consensus

synchro
outputs

build
consensus

Dependable Architectures - 42Industrial Automation

Workby with massive (static) redundancy: the plant votes

control
surfaces

motors

power
electronics
and control

damaged unit

the damaged unit is outvoted by the working units. If the damaged unit can be passivated,

(i.e. autodetects its faults and disengages), impact is reduced.

Dependable Architectures - 43Industrial Automation

Voters – Not So Simple

• Majority voting:

• Select the value that appears on at least ⎣n/2⎦+ 1 of the n inputs

• Number n of inputs is usually odd, but does not have to be

• Example: vote(1, 2, 3, 2, 2) = 2

• Sometimes we can not use strict equality

• If |x-y| < Δ, then x = y

• Simple implementation with comparator and muxes

• In case of 3-way disagreement, any value is chosen

Dependable Architectures - 44Industrial Automation

Voters

• Plurality voting

• Select the value that occurs the most or a number of time defined by the developper

• Example: vote(0,1,3,2,3,5,4)=3

• Median voting

• Select the median value of the set of inputs

• Example: vote (1.00, 3.00, 0.99, 3.00, 1.01) = 1.01

• It is another way of dealing with approximation

• Threshold voting

• Output is 1 if at least k out of n inputs is 1

• Majority voting is a special case of threshold voting

• Weighted threshold voting

Dependable Architectures - 45Industrial Automation

Workby: teaching

When a workby unit is repaired and reintegrated, it is brought to the state of the

running unit before it can serve as workby unit again.

To this effect, the state of the running unit is copied to the repaired unit while it is

operating.

Since the state of the running unit is continuously changing, the copying must take

place much faster than the changes to the state.

This is only possible if the state is handled at a high abstraction level (for speed
reasons) and states are tagged (to retransmit them if they changed in between).

Dependable Architectures - 46Industrial Automation

State restoration

State saving and restoring applies in a modified form to reintegration of

repaired units.

This applies especially to standby computers, that must be reinitialized to the

state of the running machine.

This requires the on-line unit to spare a portion of its computing power to

restore the state of the reintegrated unit and bring it to synchronism.

This is a more challenging task than just switching over in case of failure.

Dependable Architectures - 47Industrial Automation

4 Standby

1 Error detection

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

réserve asynchrone, unbeteiligte Redundanz

Dependable Architectures - 48Industrial Automation

Standby

on-line standby
sync

on-line storage

Hot standby Warm standby

Standby unit is not computing

Error detection is needed.

Easy switchover in case of failure.

Easy repair of reserve unit.

Standby is not operational

Error detection needed.

Long switchover period with loss of state info.

Smaller failure rate of storage unit

E

D

E

D

E

D

Dependable Architectures - 49Industrial Automation

Standby: cold, warm hot

Standby consists in restarting a failed computation from a known-good state.

The basic techniques for state saving are the same as for the back-up in a
personal computer or on mainframe computers.

At the simplest, restart can be done on the same machine when only transient

faults are considered -> “automatic restart”, “warm start”.

Restart after repair requires a more elaborate state saving.

Standby relies on the existence of a stable storage in which the state of the

computation is guarded, either in a non-volatile memory (Non-Volatile RAM, disk)
or in a fail-independent memory (which can be the workspace of the spare

machine).

Standby requires a periodic checkpointing to keep the stable storage up-to-date.

There is always a lag between the state of computations and the state of stable
storage, because of the checkpointing interval or because of asynchronous

input/outputs.

Dependable Architectures - 50Industrial Automation

Actualization of state in standby vs. workby

restore

back-up

(work-by)

SYNC

input

outputoutput

b) Workbya) Standby

on-line
E

D

E

D

save

track I/O

on-line
E

D

on-line back-up on-line back-up

back-up

(standby)

input A input"

input

on-line and back-up are synchronized by

parallel operation (synchronized inputs)

restore for hot reintegration, no save.

The on-line unit regularly actualises

the state of the stand-by unit, which

otherwise remains passive.

error

detection

switchover
unit

ED = Error Detection

restore

restore

plant can

 use either

E

D

Dependable Architectures - 51Industrial Automation

full
back-up

delta
back-up CP CP CP

reconstruct initial state

CP CP

reconstructed

trusted state

CP CP CP

CP

recover

stable
storage

(e.g. stand-by's memory)

Checkpointing requires identification of the parts of the context modified since

last checkpoint – this is application dependent !

To speed up recovery, the stand-by can apply the deltas to its state continuously.

Checkpoints save enough information to reconstruct a previous, known-good state.

To limit the data to save (checkpoint duration, distance between checkpoints),

only the parts of the state modified since last checkpoint are saved.

ON-LINE

by applying deltas to full back-up

CP CP CP

Stand-by unit

recover

On-line unit

Standby: Checkpointing for state transfer

failure

Dependable Architectures - 52Industrial Automation

Standby: Checkpointing

The amount of data to save to reconstruct a previous known-good state

depend on the instant the checkpoint is taken.

Recovery depends on which parts of the state are trusted after a crash (trusted

storage), on which are not (volatile storage) and on which parts are relevant.

processor
microregister

cache

registers

RAM

disk

world (cannot be rolled back !)

other computers in the network

Dependable Architectures - 53Industrial Automation

Standby: Checkpointing Strategy

Checkpoints are difficult to insert automatically, unless every change to the trusted

storage is monitored.

This requires additional hardware (e.g. bus spy).

Many times, the changes cannot be controlled since they take place in cache.

The amount of relevant information depends on the checkpoint location:

• after the execution of a task, its workspace is not anymore relevant.

• after the execution of a procedure, its stack is not anymore relevant

• after the execution of an instruction, microregisters are no more relevant.

Therefore, an efficient checkpointing requires that the application tags the data to save

and decide on the checkpoint location.

Problem: how to keep control on the interval between checkpoints if the execution time
of the programs is unknown ?

Dependable Architectures - 54Industrial Automation

full back-up Checkpoint (?)

reconstruct
known-good state

Checkpoint
Stand-by

On-line

Checkpoint

For faster recovery and closer checkpointing, the stand-by monitors the

input-output interactions of the on-line unit in an interaction log.

After reconstructing a known-good state from the full copy and incremental back-ups,

the stand-by resumes computation and applies the log of interactions to it:

•It takes its input data from the log instead of reading them directly.

•It suppresses outputs if they are already in the log (counts them)

•It resumes normal computations (and checkpointing) when the log is void.

external world

replay
log

regular
operation

log entries

Standby: Logging

Dependable Architectures - 55Industrial Automation

Standby: Domino Effect

As long as a failed unit does not communicate with the outer world, there is no harm.

The failure of a unit can oblige to roll back another unit which did not fail,because it acted

on incorrect data.

This roll-back can propagate under evil circumstances ad infinitum (Domino-effect)

This effect can be easily prevented by placing the checkpoints in function of
communication - each communication point should be preceded by a checkpoint.

Process 1

Process 2

Process 3

3

12

4

5

6

Dependable Architectures - 56Industrial Automation

Recovery times for various architectures

degree of
coupling

lock-step
synchronization

common
memory

local
network

wide area
network

recovery time100 s10s1s0.1s10 ms

The time available for recovery depends on the tolerance of the plant against outages.

When this time is long enough, stand-by operation becomes possible

2/3 voting

1/2 workby

standby

workby/
standby

Dependable Architectures - 57Industrial Automation

5 Example Architectures

1 Error detection and fail-silent computers

 - check redundancy

 - duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation

 - Input Processing

 - Synchronization

 - Output Processing

4 Standby Redundancy Structures

 - Checkpointing

 - Recovery

5 Examples of Dependable Architectures

 - ABB dual controller
 - Boeing 777 Primary Flight Control

 - Space Shuttle PASS Computer

Dependable Architectures - 58Industrial Automation

ABB 1/2 Multiprocessor for HVDC substation

Synchronizing multiprocessors means: synchronize processors with the peer

processor, and pairs with other pairs.

The multiprocessor bus must support a deterministic arbitration.

The Update and Synchronization Unit USU enforces synchronous operation.

side A side B

duplicated
input/output

commutator

USU

outputinput input"

P
E
D P

E
D P

E
D P

E
D P

E
D P

E
D

I/O
E
D M

E
DM

E
D I/O

E
D

Dependable Architectures - 59Industrial Automation

Redundant control system

Central repository

– Redundant 2oo3

Duplication of connectivity severs
– each maintains its own A&E and history log

Network
– Dual lines, dual interfaces,

dual ports on controller CPU

Controller CPU
– Hot standby, 1oo2

Fieldbus line redundancy
– Dual physical lines

Fieldbus device redundancy

– Duplicated bus interfaces

Redundant I/O, remote, 1oo2

Dual power supplies
– Supervision of A and B power lines

Power back-up for workplaces and servers
– UPS (Uninterruptible Power Supply) technology

Connectivity

Server

Aspect

Server

System

Features

Dependable Architectures - 60Industrial Automation

Full redundant system

Engineering

Fieldbus

Firewall

Intranet

Fieldbus

Plant network

Application

DB

Databases

Operator

Workplace

Engineering

Workplace

Mobile

Operator

Connectivity

Control Networl

control

Redundant

PLC

touch-screen

Dependable Architectures - 61Industrial Automation

Example: Flight Control Display Module for helicopters

reconfiguration unit:

the pilot judges which

FCDM to trust in case of

discrepancy

sensors
(Attitude Heading Reference System)

instrument control panel

primary flight display /

navigation display

source: National Aerospace Laboratory, NLR

Flight Control Display Module

Dependable Architectures - 62Industrial Automation

B777: airplane

Source: Boeing

Dependable Architectures - 63Industrial Automation

Triple-triple redundant 777 primary flight computer

Abstract:

 “The flight control system for the Boeing 777 airplane is a Fly-By-Wire (FBW) system.
The FBW system must meet extremely high levels of functional integrity and availability.

The heart of the FBW concept is the use of triple redundancy for all hardware

resources: computing system, airplane electrical power, hydraulic power and

communication path. The Primary Flight Computer (PFC) is the central computation

element of the FBW system. The triple modular redundancy (TMR) concept also applies
to the PFC architectural design. Further, the N-version dissimilarity issue is integrated to

the TMR concept. The PFCs consist of three similar channels (of the same part

number), and each channel contains three dissimilar computation lanes. The 777

program design is to select the ARINC 629 bus as the communication media for the

FBW.”

 “each PFC (primary fight computer) channel contains three dissimilar processor lanes,

and software from Ada source code using three different Ada compilers to provide triple

dissimilarity”

Dependable Architectures - 64Industrial Automation

B777 control architecture

Dependable Architectures - 65Industrial Automation

B777 control surfaces

Dependable Architectures - 66Industrial Automation

B777 Modules

Dependable Architectures - 67Industrial Automation

B777 Primary Flight Control: example of diverse programming

triplicated

input bus

Motorola

68040

Intel

80486

AMD

29050

Primary

Flight

Computer

(PFC 1)

sensor inputs

input signal mgt.

triplicated

output bus

PFC 2
(Intel)

PFC 3
(AMD)

actuator control actuator control actuator control

left actuator centre actuator right actuator

Dependable Architectures - 68Industrial Automation

Airbus

• Airbus Fly-byWire: a total approach to dependability
• https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf

• Airbus flight control system
• https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf

• 1oo5 flight control computers redundancy

• Primary (3 units) and secondary (2 units) computers

• Use different computers

• Designed and supplied by different companies

• Processor chips from different manufacturers

https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://link.springer.com/content/pdf/10.1007%252F978-1-4020-8157-6_18.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf
https://ifs.host.cs.st-andrews.ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs.pdf

Dependable Architectures - 69Industrial Automation

Airbus 330

1) A flight computer (ADIRU) that does not disengage in

case of malfunction will poison the remaining good

units !  fail silent did not work

2) In case of sensor problems, no consensus can be built.

all units could disengage !

Quantas airbus after ADIRU failure

Dependable Architectures - 70Industrial Automation

Space Shuttle PASS Computer

CRT
display

payload-
interface

Manipulator
uplink

Solid rocket
boosters

Ground umbilicals
Ground support

equipment

Telemetry
Mass

memory
units

GNC sensors
Main engine interface
Aerosurface actuators
Thrust - vector control

actuators
Primary flight displays

Mission event controllers
Master time

Navigation aids

28
1 - MHz

serial data
buses

(23 shared,
5 dedicated)

GPC 5

IOP 5

GPC 4

IOP 4

GPC 3

IOP 3

GPC 2

IOP 2

GPC 1

IOP 1

Discrete inputs and analog IOPs, control panels, and mass memories

Intercomputer (5)

Mass memory (2)

Display system (4)

Payload operation (2)

Launch function (2)

Flight instrument (5;1 dedicated per GPC)

Flight - critical sensor and control (8)

Control
Panels

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Dependable Architectures - 71Industrial Automation

Wrap-up

Fault-tolerant computers offer a finite increase in availability (safety ?)

All fault-tolerant architectures suffer from the following weaknesses:

- assumption of no common mode of error
 hardware: mechanical, power supply, environment,

 software: no design errors

- assumption of near-perfect coverage to avoid lurking errors and ensure fail-silence.

-assumption of short repair and maintenance time

-increased complexity with respect to the 1oo1 solution

ultimately, the question is that of which risk is society willing to accept.

Dependable Architectures - 72Industrial Automation

	Slide 1
	Slide 2: The three main dependable computer architectures
	Slide 3: Overview Dependable Architectures
	Slide 4: 1 Error Detection and Fail-Silent
	Slide 5: Error Detection: Classification
	Slide 6: Error Detection: Classification
	Slide 7: Error detection
	Slide 8: Error Detection: Possibilities
	Slide 9: Detection of Errors Caused by Physical Faults
	Slide 10: Watchdog Processor (absolute test)
	Slide 11: Duplication and Comparison (relative test)
	Slide 12: Error detection method by coding (absolute test)
	Slide 13: Error detection method by coding (absolute test) in practice
	Slide 14: Error detection by predicates (absolute check)
	Slide 16: Integer Computers: Self-Testing System
	Slide 17: Integer outputs: selection by the plant
	Slide 18: 2 Fault-tolerant structures
	Slide 19: Fault tolerant structures
	Slide 20: Fault-tolerance: the two approaches
	Slide 21: Workby: 2 out of 3 (2oo3) Computer
	Slide 22: Standby (Dynamic Redundancy)
	Slide 23: Hybrid Redundancy
	Slide 24: Workby vs. Standby: applies to redundant computer networks
	Slide 26: General designation
	Slide 27: 3 Workby
	Slide 28: Workby: Fault-Tolerance for both Integrity and Persistency
	Slide 29: “2oo4D” architecture
	Slide 30: Workby: Input and Output Handling
	Slide 31: Workby: Input synchronisation and matching
	Slide 32: Workby: Matching redundant inputs
	Slide 33: Workby: Input matching
	Slide 34: Consensus Issue - Byzantine Faults and Failures
	Slide 35: The Byzantine Generals´ Problem
	Slide 36: Exercise: Byzantine Faults
	Slide 37: The Byzantine Generals´ Problem
	Slide 38: Matching - not so easy Extract from a Boeing Patent : Midvalue signal selection and fault detection apparatus and method
	Slide 39: Workby: Interrupt Synchronisation
	Slide 40: Workby synchronisation: fundamental metastability limit
	Slide 41: Workby: Output Comparison and Voting
	Slide 42: Workby with massive (static) redundancy: the plant votes
	Slide 43: Voters – Not So Simple
	Slide 44: Voters
	Slide 45: Workby: teaching
	Slide 46: State restoration
	Slide 47: 4 Standby
	Slide 48: Standby
	Slide 49: Standby: cold, warm hot
	Slide 50: Actualization of state in standby vs. workby
	Slide 51: Standby: Checkpointing for state transfer
	Slide 52: Standby: Checkpointing
	Slide 53: Standby: Checkpointing Strategy
	Slide 54: Standby: Logging
	Slide 55: Standby: Domino Effect
	Slide 56: Recovery times for various architectures
	Slide 57: 5 Example Architectures
	Slide 58: ABB 1/2 Multiprocessor for HVDC substation
	Slide 59: Redundant control system
	Slide 60: Full redundant system
	Slide 61: Example: Flight Control Display Module for helicopters
	Slide 62: B777: airplane
	Slide 63: Triple-triple redundant 777 primary flight computer
	Slide 64: B777 control architecture
	Slide 65: B777 control surfaces
	Slide 66: B777 Modules
	Slide 67: B777 Primary Flight Control: example of diverse programming
	Slide 68: Airbus
	Slide 69: Airbus 330
	Slide 70: Space Shuttle PASS Computer
	Slide 71: Wrap-up
	Slide 72

