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The three main dependable computer architectures
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Overview Dependable Architectures

Error detection
- check redundancy
- duplication and comparison

Fault-Tolerant Structures

Issues in Workby Implementation
- Input Processing

- Synchronization

- Output Processing

Issues in Standby Implementation
- Checkpointing
- Recovery

Examples of Dependable Architectures

- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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1 Error Detection and Fail-Silent

1 Error detection
- check redundancy
- duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

4 Standby Redundancy Structures
- Checkpointing
- Recovery
3 Examples of Dependable Architectures

- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Error Detection: Classification

Error detection is the base of “safe” computing (“fail-silent”)
-> disable outputs if error detected

Error detection is the base of fault-tolerant computing (“fail-operate™)
-> switchover if error detected, passivate faulty unit.

Key factors:
“hamming distance”:

how many simultaneous errors can be detected
coverage (recouvrement, Deckungsgrad)

probability that an error is discovered (within useful time)
(definition of "useful time": before any damages occur, before automatic shutdown,...)

latency (/atence, Latenz)
time between occurrence and detection of an error

M
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Error Detection: Classification

Errors can be detected, (in order of increasing latency):

—on-line (while the specified function is performed)
— by continuous monitoring/supervision

—off-line (in a time period when the unit is not used for its specified function)
— by periodic testing

—during periodic maintenance (when the unit is tested and calibrated)
— by thorough testing, uncovering lurking errors
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Error detection

The correctness of a result can be checked by:

relative tests (comparison tests):
by comparing several results of redundant units or computations (not necessary

identical)

pessimistic, i.e. differences due to (allowed) indeterminism count as errors
high coverage, high cost

absolute tests (acceptance tests):
by checking the result against an a priori consistency condition (plausibility check)

optimistic, i.e. even if result is consistent it may not be correct
(but can catch some design errors)

M
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Error Detection: Possibilities

relative test

absolute test

duplication and comparison
(either hardware duplication

watchdog (time-out)

on-line | o time redundancy) control flow checking
triplication and voting error-detecting code (CRC, etc.)
illegal address checking
comparison with check of program version
off-line E‘Eecgﬁf)tttes ()j test result check of watchdog function

e.g. memory test

check code for program code

Industrial Automation
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Detection of Errors Caused by Physical Faults

Error detection depends on the type of component, its error rate and its complexity.

Component

Error characteristics

Typical error detection

Data transmission lines

Regular memory elements

Processors and controllers

Auxiliary elements
(hard disk, ventilation)

medium to high error rate,
memoryless

medium error rate,
large storage

low error rate,
high complexity

high error rate,
high diversity

parity,
CRC,
watchdog

parity,
Hamming codes EDC
CRC on disk.

duplication and comparison,
coded logic, control flow,
watchdog

mechanical integrity,
voltage supervision,
watchdogs,...

M
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Watchdog Processor (absolute test)

application processor

cyclic

-

4 <‘:§

watchdog
processor
|
supply O] |
voltage | 1
time
T >Kms

|

application © P,
(every k ms) M reset g
+ Y
Y
trusted |_
switch o
inhibit

The application processor periodically resets the watchdog timer. If it fails to do it, the watchdog
processor will shut down and restart the processor.

Typically implemented in PLCs but also autonomous robots.

=PrL
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Duplication and Comparison (relative test)

safe input
v Advantage: high coverage, short latency
t spreader
‘ Problem non-determinism: digital
7 computers are made of analog elements:
ULl sync HIEEE) (variable delays, thresholds, asynchronous
- clocks...)

The safety-relevant parts (comparator
and switch) are useless if not regularly
checked.

J |«

comparator

switch

fail-silent output

Conditions:  worker and checker are identical and deterministic.
inputs are (made) identical and synchronized (interrupts !)
output must be synchronized to allow comparison.

Variant: the checker only checks the plausibility of the results
(requires definition of what is forbidden)

M
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Error detection method by coding (absolute test)

This method is used in network and storage, where error patterns are simple.
It consists in adding a code (parity, checksum, cyclic redundancy check,...) to the
useful data that guarantees its integrity.

k data bits r check bits

Y

n-bit code word

A

Coding is more efficient than duplication and comparison.

Coding has also been applied to processing elements, but the complexity is huge.
For each operation, a corresponding operation on the check bits has to be done.

A,
B’ {%

C

V

value code

=P~ Industrial Automation Dependable Architectures - 12



Error detection method by coding (absolute test) in practice

TCP segment header

Offsets Octet 0 1 2 3
Octet Bt 7 6 5 4/ 3(2/1 0 7, 6 5 43 2 1|0 7654321076543 210
L] 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
12 96 Data offset Reoseor;ed g EV_E E é E g z IE Window Size

I ‘ : P — 2 b te S 16 128 Checksum Urgent pointer (if URG set)
20 160 >5. Padded at the end with "0" bytes if necessary.)

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

“The checksum field is the 16 bit one's complement of the one's
complement sum of all 16-bit words in the header and text.” — RFC 793

0 1516 31Bit

versinn‘ IHL | TOs Total length

Identification Flass‘ Frgment offset

TTL | Protocol @er ch ecksb B%,?e

Source address

IP — 2 bytes =
[ ]

https://en.wikipedia.org/wiki/|Pv4

—
80 00 20 7A 3F 3E 80 00 20 20 3A AE 08 00 IP, ARP, efc. 00 20 20 3A |
Destination MAC Address Source MAC Address EtherType Payload CRC Checksum

Ethernet — 4 bytes et

Ethernet Type Il Frame
(64 to 1518 bytes)

https://en.wikipedia.org/wiki/Ethemet_fram
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Error detection by predicates (absolute check)

The results of a computation are checked against predicates that must be fulfilled,
e.g. the sum of two positive integers is a positive integer
Plausibility checks require knowledge of the specification:
e.g. not all traffic lights may be green at the same time
Plausibility may involve different information sources:
e.g. compare wheel speed with GPS speed
Danger is
-detection of wrong errors
legal situations not foreseen by the application, e.g. flight altitude below sea level (-385m Bar
Yehuda Aiport)

and

-not detection of real errors
the result is wrong, but plausible

Error coverage is not 100% !
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Integer Computers: Self-Testing System

self-testing parallel
processors E E E backplane bus
(e.g. duplication | D P D P D P (self-test by
& comparison) parity)

Computers include

. : E E stable storage
increasingly means p| /O p| MEM (with error detection
to detect their own and correction)
errors.
. T | changeover logic
serial bus T
(CRC) to safe state
Q’J
S
1 Vs | safe value
A
What happens if the safe switch fails ?
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Integer outputs: selection by the plant

The dual channel should be extended as far as possible into the plant

worker | [checker worker | |checker controller

act if both agree act if any does act if error detection agrees
(workby) (workby) (error detector controls power)
=P~ Industrial Automation Dependable Architectures - 17



2 Fault-tolerant structures

1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

4 Standby Redundancy Structures
- Checkpointing
- Recovery
3 Examples of Dependable Architectures

- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Fault tolerant structures

Fault tolerance allows to continue operation in spite of a limited number of independent
failures.

Fault tolerance relies on operational redundancy.

It is not sufficient that a back-up unit exists, it must be loaded with the same data and be
in a state as near possible to the state of the on-line unit in order to take over smoothly.

The actualisation of the back-up assumes that computers are deterministic and identical
machines.

“Given two identical machines, initially in the same state, the states of these machines
will follow each other provided they always act on the same inputs, received in the same
sequence.”
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Fault-tolerance: the two approaches

Workby Standby
(static redundancy, parallel redundancy) | (dynamic redundancy, serial redundancy)
in;l)ut in;l)ut
data flow ; >/5<
—
::E) worker co-worker E [E) on-line standby [E)
124
7
N
5 AR
fail-silent unit ? A S
i |
error detection trusted elements
tput
(also of idle parts) OUtPU (must be checked) output
both machines modify synchronously the on-line unit regularly copies its
their states based on the same inputs state and its inputs to the back-up.

in the same manner
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Workby: 2 out of 3 (2003) Computer

Workby of 3 synchronised and identical units.

— All 3 units OK: Correct output.

— 2 units OK: Majority output correct.
— 2 or 3 units with same failure behaviour: Incorrect output.

— Otherwise: Error detection output.

process input

also known as: v

: sync sync
TMR (triple module redundancy) A= -l B |- >

2003v (two out of three with voting) : sync

voter

process output
provides integrity (fail-silent) and persistency (fail-operate) !
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Standby (Dynamic Redundancy)

Redundancy only activated and inserted after an error is detected.
— restart on the same hardware (non-redundant)
— reserve components (cold redundancy), standby (warm/hot standby)

input
|
/.

[ I
on-line unit stand-by unit
I I

switch )
L
output

What are standby units used for?
— only as redundancy
— for other functions (that get lower priority in case of primary unit failure)

— better performance (“graceful degradation” in case of failure — wishful
thinking)

M
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Hybrid Redundancy

Mixture of workby (static redundancy) and standby (dynamic redundancy).

work- work-| |work- | |stand- | [stand-
by by by by by
I |
Y Y Y
voter |
Reconfiguration | WOrk- faifed W(;"k- Wgrk- Stind-
(self-purging bly Iy y y
redundancy)

/

voter

L Industrial Automation
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Workby vs. Standby: applies to redundant computer networks

<> e Eswitchi
<>
<H>
ST B S 3

node node node node node node node node

Dynamic (standby)
redundancy

nodes are singly attached in case of failure, the switches route the traffic over an other port
(partial redundancy: loss of switch = loss of attached nodes, loss of leaf link = loss of node)

Static (workby) redundancy

network B

network A
<> I .

<H><H>
nodi nodi nose node_‘ node_‘ node_‘

nodes send on both networks - in case of failure the nodes work with the remaining network
(partial redundancy: loss of node = loss of function)
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General designation

KooN: K out-of N

1001: simplex system
1002: duplicated system, one unit is sufficient to perform the function
2002: duplicated system, both units must be operational (fail-safe)
1002D: duplicated system with self-check error detection (fail-operational)
2003: triple modular redundancy: 2 out of three must be operational (masking)
2004: masking (massive redundancy) architecture
=P~ Industrial Automation Dependable Architectures - 26



3 Workby

Error detection and fail-silent computers
- check redundancy
- duplication and comparison

Fault-Tolerant Structures

Issues in Workby operation
- Input Processing

- Synchronization

- Output Processing

Standby Redundancy Structures
- Checkpointing
- Recovery

Examples of Dependable Architectures
- ABB dual controller

- Boeing 777 Primary Flight Control

- Space Shuttle PASS Computer

=PrL
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Workby: Fault-Tolerance for both Integrity and Persistency

réserve synchrone, synchrone Redundanz

integer persistent integer / persistent
2002 1002D 2003
input input input

i matching ﬁ matching matching

\

worker ﬁchecker g worker ” worker [E) worker worker

synchronization synchronization synchronization [synchronization

worker

¢ comparator

1 A 2/3
disjunctor \ commutator T voter
output output output

provides integrity (fail-safe) or persistency (fail-operate) and massive redundancy (masking)
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“2004D” architecture

input

A

matching matching

spreading (can be redundant inputs)

synchronization

y v \
checker <::> worker <:::> worker <:> checker
synchronization synchronization

y v
comparator # # comparator

safe output value

¥
\<

switch 9 switch

output

provides integrity in face of any two unit failures, but cannot provide operation in face of
any two unit failure (but 2004 it is an accepted designation in safety automation systems)
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Workby: Input and Output Handling

input
Y
input synchronization and matching
i i i
A | B | c O
three identical, i ' i ' i '
deterministic, | = T | = .‘. | = .‘.
synchronized
state machines +_I_| +_I_| +—|—|
L 5 L= L 5
v v v
output comparison and selection
Y
output

Replicated units must receive exactly the same input at the same time (execution step).

Delay (skew, jitter) between outputs must be small enough to allow comparison
and smooth switchover.

M
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Workby: Input synchronisation and matching

in?ut

v

input synchronization and matching

v

v

v

computer
A

computer
B

computer
C

Correct synchronisation requires input synchronization and matching (building a consensus value used by all the replicas).

Common signals are not suitable for reaching a consensus

Input from same source: single point of failure, propagation delays causes differences.

Input from different sources: redundant sensors: needs application knowledge.

Every replica builds a vector of the value it received directly and the value received from the other units and applies a matching algorithm

to it.

All units can then compare the same vector and act on it.

-> requires solving: matching, reliable broadcast, Byzantine problems

c.f. “Reliable and Secure Distributed Programming” from C. Cachin et al. for details on consensus algorithms

L Industrial Automation
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Workby: Matching redundant inputs

redundant
inputA <— inputB

Y |
matching

computer computer
e A8

' '

Redundant inputs may differ in:

» value (different sensors, sampling)
* timing (even when coming from the same sensor, different delays)

Matching: reaching a consensus value used by all replicas
To reach a consensus, each computer must know the input value received by the
other computer(s), through some (often dedicated) communication link.

M
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Workby: Input matching

The matched value depends on the semantics of the variables.
Matching needs knowledge of the dynamic and physical behaviour.
Matching stretches over several consecutive values of the variables.

_ _ jitter
Binary variables: —= =~—

Yyl

A

| -

B

time

-

agree on value stable
during a time window,
biased decision,...

Analog variables: j
A

N\
w

AN
/4
N\

/ \

A

—

agree on median value,
time-averaged value,
exclude not plausible
values,...

time

Therefore, matching is application-dependent !

M
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Consensus Issue - Byzantine Faults and Failures

* Byzantine fault
» Any fault presenting different symptoms to different observers

« Byzantine failure

« The loss of a system service due to a Byzantine fault in systems that require
consensus

Worst-case scenario... but they may happen!
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The Byzantine Generals” Problem

For success, all generals must take the same decision, in spite of 't' traitors.

attack attack

A is a traitor attack B is a traitor

retreattack attack attack
attack attack

C cannot distinguish who is the traitor, A or B

In the computer world, A can be a faulty processing
unit or the link to B and C can be not reliable.

Industrial Automation Dependable Architectures - 35



Exercise: Byzantine Faults

Assume that a dependable computer system consists of four computers.
Each of the computers has a point-to-point data link to the other three computers.

Each of these computers reads an input value from a sensor to which it is
connected. However, the sensor reading is unreliable and thus the computer
connected to it has to confirm the sensor reading by agreeing with the other
computers.

a) Assume that one of the computers fails in such a way that its outputs to
different computers can be different. Can the remaining three fault-free
computers agree on a common sensor value?

b) Assume that there are two “Byzantine” computers. Is the answer different?

i L Industrial Automation Dependable Architectures - 36



The Byzantine Generals” Problem

For success, all generals must take the same decision, in spite of 't' traitors.

attack attack

A is a traitor attack B is a traitor

retreattack

attack attack

attack attack

C cannot distinguish who is the traitor, A or B

Solutions: No solution for <3t parties in presence of t faults.
Encryption (source authentication)
Reliable broadcast

Sources: Lamport, Shostak, Pease, "Reaching Agreement”, J Asso. Com. Mach, 1980, , 27, pp 228-234.

This is a general problem also affecting replicated databases and blockchains

M
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Matching - not so easy
Extract from a Boeing Patent :

Midvalue signal selection and fault detection apparatus and method

/54 %)
TO AVALANCHE 190
(Ec-EL) WARNING BIT v}
0 (EL- ER) /50 770 RESET &
\ (ER-ECY 50 60 o
90 W) (et E
O,
=
B
(F8)
S
Pk
el
x
/0
CENTER]| (5¢)
SENSOR
w
=
(¢
Q
/! —_
[ zeFT | (5L) So, SELECTED ) 2
SENSOR| SIGNAL o
70
FAULT ISOLATION
SWITCHES
/2
L RIGHT | (SR) B
SENSOR \i\)
Ny
=)
N7 o
i
0o

M
"1
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CPU 1

synchronized
CPU (same clock)

CPU 2

Workby: Interrupt Synchronisation

instruction number

interrupt request

just before

101 102 103 104 105 106
I I I 407 | 408
101 102 103 104 \ N
just after N 407 408
» fime

Instructions may affect the control flow

Interrupts must be matched, like any other input data
All decisions which affect the control flow (task switch) require previous matching.

The execution paths diverge, if any action performed is non-identical

Solution: do not use interrupt, poll the interrupt vector after a certain number of instructions

PrL

M
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Workby synchronisation: fundamental metastability limit

The synchronization of asynchronous inputs by hardware means is only
possible with a certain probability

Circuit (D-flip-flop) clock A /\
D a k
D Q
Clock —> QA =
Y
- >
100 ns

When input signal changes extremely close (simultaneously) to the clock edge
» Output signal may enter a metastable state (value which is neither 0 nor 1)
» Qutput signal will eventually settle randomly to either O or 1

Effect can be reduced (but not totally avoided) by cascading flip-flops (synchronizer)

M
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Workby: Output Comparison and Voting

The synchronized computers operate preferably in a cyclic way so as to
guarantee determinism and easy comparison.

read inputs read inputs read inputs
I I I
build 3 > build - build
consensus consensus [ consensus
A | A [ A I
compute compute compute
synchro 5 »| synchro g synchro
outputs outputs [ outputs

), ), ),

The last decision on the correct value must be made in the process itself.
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Workby with massive (static) redundancy: the plant votes

control
surfaces

damaged unit

power
electronics
and control

the damaged unit is outvoted by the working units. If the damaged unit can be passivated,
(i.e. autodetects its faults and disengages), impact is reduced.
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Voters — Not So Simple

* Majority voting:
» Select the value that appears on at least ln/2J+ 1 of the n inputs
* Number n of inputs is usually odd, but does not have to be
Example: vote(1, 2, 3, 2, 2) =2

Xy

Sometimes we can not use strict equality
o If|x-y| <A, thenx=y

Majority
voter

Simple implementation with comparator and muxes
* |n case of 3-way disagreement, any value is chosen

1 A@Diﬁ_@gr?

X2 A

X3
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Voters

Plurality voting

» Select the value that occurs the most or a number of time defined by the developper

« Example: vote(0,1,3,2,3,5,4)=3

Median voting
» Select the median value of the set of inputs
« Example: vote (1.00, 3.00, 0.99, 3.00, 1.01) = 1.01

« |tis another way of dealing with approximation

Threshold voting
« OQOutput is 1 if at least k out of n inputs is 1
» Majority voting is a special case of threshold voting

Weighted threshold voting

M

P
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Workby: teaching

When a workby unit is repaired and reintegrated, it is brought to the state of the
running unit before it can serve as workby unit again.

To this effect, the state of the running unit is copied to the repaired unit while it is
operating.

Since the state of the running unit is continuously changing, the copying must take
place much faster than the changes to the state.

This is only possible if the state is handled at a high abstraction level (for speed
reasons) and states are tagged (to retransmit them if they changed in between).
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State restoration

State saving and restoring applies in a modified form to reintegration of
repaired units.

This applies especially to standby computers, that must be reinitialized to the
state of the running machine.

This requires the on-line unit to spare a portion of its computing power to
restore the state of the reintegrated unit and bring it to synchronism.

This is a more challenging task than just switching over in case of failure.
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4 Standby

réserve asynchrone, unbeteiligte Redundanz

1 Error detection
- check redundancy
- duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

4 Standby Redundancy Structures
- Checkpointing
- Recovery
3 Examples of Dependable Architectures

- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Standby

Hot standby Warm standby
Y Y
E | sync E E
on-line >Iistandb on-line storage
D y D D g
Y Y
Standby unit is not computing Standby is not operational
Error detection is needed. Error detection needed.
Easy switchover in case of failure. Long switchover period with loss of state info.
Easy repair of reserve unit. Smaller failure rate of storage unit
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Standby: cold, warm hot

Standby consists in restarting a failed computation from a known-good state.

The basic techniques for state saving are the same as for the back-up in a
personal computer or on mainframe computers.

At the simplest, restart can be done on the same machine when only transient
faults are considered -> “automatic restart”, “warm start”.

Restart after repair requires a more elaborate state saving.

Standby relies on the existence of a stable storage in which the state of the
computation is guarded, either in a non-volatile memory (Non-Volatile RAM, disk)
or in a fail-independent memory (which can be the workspace of the spare
machine).

Standby requires a periodic checkpointing to keep the stable storage up-to-date.

There is always a lag between the state of computations and the state of stable
storage, because of the checkpointing interval or because of asynchronous
input/outputs.

M

P

=
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Actualization of state in standby vs. workby

a) Standby inputA  b) Workby input”
input ED = Error Detection input
|
Y
error
detection track /O l @
| Y save t ¢
N restor
E i | back-up | E E i back-up E
D | °"Ne |, (standby) | D p | on-fine (work-by) | D
t * t
restore resiore
on-line * | + back-up on-line back-up
Q plant can
0 use either
output \/ switchover Y output
unit
The on-line unit regularly actualises on-line and back-up are synchronized by
the state of the stand-by unit, which parallel operation (synchronized inputs)
otherwise remains passive. restore for hot reintegration, no save.
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Standby: Checkpointing for state transfer

Checkpoints save enough information to reconstruct a previous, known-good state.
To limit the data to save (checkpoint duration, distance between checkpoints),
only the parts of the state modified since last checkpoint are saved.

failure
CP CP CP CP

full delta
back-up back-up CP CP

On-line unit

=— | NN e BN . H H H
¥ ¥ ¥ ¥
stable ] b O [ 1 A 1 {1
storage
, reconstructed
(e.g. stand-by's memory) recover

trusted state
L CP CP CP

Stand-by unit

reconstruct initial state %
by applying deltas to full back-up

Checkpointing requires identification of the parts of the context modified since
last checkpoint — this is application dependent !
To speed up recovery, the stand-by can apply the deltas to its state continuously.

M
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Standby: Checkpointing

The amount of data to save to reconstruct a previous known-good state
depend on the instant the checkpoint is taken.

Recovery depends on which parts of the state are trusted after a crash (trusted
storage), on which are not (volatile storage) and on which parts are relevant.

processor
microregister

registers

cache

RAM

disk

other computers in the network

world (cannot be rolled back !)
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Standby: Checkpointing Strategy

Checkpoints are difficult to insert automatically, unless every change to the trusted
storage is monitored.

This requires additional hardware (e.g. bus spy).

Many times, the changes cannot be controlled since they take place in cache.
The amount of relevant information depends on the checkpoint location:

« after the execution of a task, its workspace is not anymore relevant.

« after the execution of a procedure, its stack is not anymore relevant

» after the execution of an instruction, microregisters are no more relevant.

Therefore, an efficient checkpointing requires that the application tags the data to save
and decide on the checkpoint location.

Problem: how to keep control on the interval between checkpoints if the execution time
of the programs is unknown ?

M
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Standby: Logging

For faster recovery and closer checkpointing, the stand-by monitors the

input-output interactions of the on-line unit in an interaction log.

After reconstructing a known-good state from the full copy and incremental back-ups,
the stand-by resumes computation and applies the log of interactions to it:

Checkpoint _
fullbackup  T1EEER Checkpoint (?)
! | A
On-line - W N g
// 7
[ external world ]
\ A NS 0 S8 N S S " heckpoint
Stand-by . O® O® =1
. r ,
log entries reconstruct
J known-good state relglgy ogee?’g!t?c:n

*It takes its input data from the log instead of reading them directly.
— |t suppresses outputs if they are already in the log (counts them)
It resumes normal computations (and checkpointing) when the log is void.
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Standby: Domino Effect

As long as a failed unit does not communicate with the outer world, there is no harm.
The failure of a unit can oblige to roll back another unit which did not fail,because it acted
on incorrect data.

This roll-back can propagate under evil circumstances ad infinitum (Domino-effect)

This effect can be easily prevented by placing the checkpoints in function of
communication - each communication point should be preceded by a checkpoint.

® @ ®

Process 1 O O L O 3 O AV
NI
N

Process 2 O

Process 3 ~
U/
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Recovery times for various architectures

A

degree of

- 2/3 voting
coupling

workby/

Standby
’ standby
o daes

el
ide area
‘l ‘l ‘l | | >
10ms 0.1s 1s 10s 100 s recovery time

The time available for recovery depends on the tolerance of the plant against outages.

When this time is long enough, stand-by operation becomes possible

M
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5 Example Architectures

1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

2 Fault-Tolerant Structures

3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

4 Standby Redundancy Structures
- Checkpointing
- Recovery
3 Examples of Dependable Architectures

- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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ABB 1/2 Multiprocessor for HYDC substation

side A side B
E E E E E E
p| P | p| P ‘D P o P | p|P| pP
: usu =
5 M| [g|lio Eo| [f m

duplicated
nput/output
L % ° L commutator

input output input”

Synchronizing multiprocessors means: synchronize processors with the peer
processor, and pairs with other pairs.

The multiprocessor bus must support a deterministic arbitration.

The Update and Synchronization Unit USU enforces synchronous operation.
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Redundant control system

Central repository
— Redundant 2003

Duplication of connectivity severs
— each maintains its own A&E and history log

Network

— Dual lines, dual interfaces, Connectivity Aspect
dual ports on controller CPU Server Server

Controller CPU

— Hot standby, 1002 = 'E:.J == %j ﬁ
Fieldbus line redundancy I ~ i =y I'\ I\ | = |

— Dual physical lines

|
L
Fieldbus device redundancy LW 3 W =5 - _‘*\'\ );.
— Duplicated bus interfaces \*)T ; A} ! ;

Redundant I/O, remote, 1002

Dual power supplies
— Supervision of A and B power lines

Power back-up for workplaces and servers
— UPS (Uninterruptible Power Supply) technology
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Full redundant system

Operator Engineering
Workplace Workplace '

Firewall %} = = ‘E_ ,E-_J # Mobile

=8 - - | /' Operator
— oy
| | I

Intranet

Plant network ‘i| o | o
ol | |

[;J EJ Connectivity -\F [;j Databases I;J Application | ll ? Engineering

B control ﬁ— B

~

Control Networl ||

Redu nda nt touch-screen
Fieldbus PLC Fieldbus
=
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Example: Flight Control Display Module for helicopters

Sensors

(Attitude Heading Reference System)
\

AHRS AHRS

ICP

ICP

e

instrument control panel

primary flight display /
navigation display

source: National Aerospace Laboratory, NLR

g .
ND / vle ND

reconfiguration unit:

the pilot judges which
FCDM to trust in case of
discrepancy

Flight Control Display Module
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B777: airplane

Sngke
Rudder

P artial Span
Tab

b=

Spolers "Ff E lavalor

(T Per5he) Single Span

=lals

uﬂ“m‘ﬂ S labllzer
nd

L
o EI h
FIGURE 1 777 FLIGHT CONTROL SURFACES

Source: Boeing
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Triple-triple redundant 777 primary flight computer

Abstract:

“The flight control system for the Boeing 777 airplane is a Fly-By-Wire (FBW) system.
The FBW system must meet extremely high levels of functional integrity and availability.
The heart of the FBW concept is the use of triple redundancy for all hardware
resources: computing system, airplane electrical power, hydraulic power and
communication path. The Primary Flight Computer (PFC) is the central computation
element of the FBW system. The triple modular redundancy (TMR) concept also applies
to the PFC architectural design. Further, the N-version dissimilarity issue is integrated to
the TMR concept. The PFCs consist of three similar channels (of the same part
number), and each channel contains three dissimilar computation lanes. The 777
program design is to select the ARINC 629 bus as the communication media for the
FBW.”

“each PFC ( primary fight computer ) channel contains three dissimilar processor lanes,
and software from Ada source code using three different Ada compilers to provide triple
dissimilarity”

M

P

I=L Industrial Automation

Dependable Architectures - 63



B777 control architecture
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B777 control surfaces
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B777 Modules
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B777 Primary Flight Control: example of diverse programming

sensor inputs

!

v triplicated
Y input bus
YYY YYY
YYY YYY YYY
input signal mgt. Primary
[ [ I Flight
Motorola Intel AMD Computer PFC2| |PFC3
68|O40 80486 | | 29050 | (PFC 1) (Intel) | |(AMD)
A A
V|
A A
Y v triplicated
Y output bus
YYY YYY YYY

actuator control

actuator control

actuator control

left actuator

centre actuator
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Airbus

« Airbus Fly-byWire: a total approach to dependability

. https://link.springer.com/content/pdf/10.1007 %252F 978-1-4020-8157-6_18.pdf AIRBUS FLY-BY-WIRE: A TOTAL APPROACH

TO DEPENDABILITY

Pascal Traverse, Isabelle Lacaze and Jean Souyris
Airbus, 316, route de Bayonne, 31060 Toulouse, France

* Ai rb u S ﬂ ig h t CO n tro | Syste m {pascal.traverse, isabelle.lacaze, jean.souyris)@airbus.com

. https://ifs.host.cs.st-andrews .ac.uk/Resources/CaseStudies/Airbus/Airbus-fcs .pdf Abstact:  This paper deals with the digital electrical flight control system of the Airbus
. airplanes. This system is built to very stringent dependability requirements
. 1005 ﬂ|ght CcO ntr0| ComputeI’S redundan Cy both in terms of safety (the systems must not output erroneous signals) and
. ) . availability. System safety and availability principles are presented with an
. Primary (3 units) and secondary (2 units) computers is on their evolution and on future chall
. U se d |fferent com pute rs Key words:  dependability, fault-tolerance, safety, proof, human factors, system design,
airplane, fly-by-wire, flightcontrols

* Designed and supplied by different companies

*  Processor chips from different manufacturers L INTRODUCTION

1.1 Background

The first electrical flight control system (a.k.a. Fly-by-Wire) for a civil
aircraft was designed by Aerospatiale and installed on Concorde. This is an
analogue, full-authority system for all control surfaces and copies the stick
commands onto the control surfaces while adding stabilizing terms. A
mechanical back-up system is provided on the three axes.

The first generation of electrical flight control systems with digital
technology appeared on several civil aircraft at the start of the 1980's
including the Airbus A310. These systems control the slats, flaps and
spoilers. These systems have very stringent safety requirements (in the sense
that the runaway of these control surfaces is generally classified as
Catastrophic and must then be extremely improbable). However, loss of a
function is permitted, as the only consequences are a supportable increase in
the crew’s workload.
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Airbus 330

1)  Aflight computer (ADIRU) that does not disengage in
case of malfunction will poison the remaining good
units ! = fail silent did not work

2) In case of sensor problems, no consensus can be built.
all units could disengage !

AOA

PRIM 1

. PRIM2

ADIRU 1
sensor 1 :>
AOA ADIRU 2
senfor 2 :>
AO ‘ ADIRU 3
sensokﬁ% :>

\

PRIM 3 Quantas airbus after ADIRU failure
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Space Shuttle PASS Computer

/ Discrete inputs and analog IOPs, control panels, and mass memories

Control

GPC 1 GPC 2 GPC 3 GPC 4 GPC 5
CPU 1 CPU 2 CPU 3 CPU 4 CPU 5
|OP 1 IOP 2 |IOP 3 |IOP 4 IOP 5

Intercomputer (5)
Mass memory 2pfmpm
Display system (4)

Payload operatlon (2)

Launch function (2)
Flight instrument (5;1 dedlcated per GPC)

]
Flight - critical sensor and control (8)

. GNC.sen.sors Mass CRT ﬁ’:glr?:ge' S(t))Iid r?cket
Main engine interface memory Telemetry display | | Manipulator oosters
Aerosurface actuators units uplink Géounddumblllcals

round support

Thrust - vector control
actuators
Primary flight displays
Mission event controllers
Master time
Navigation aids

equipment

Panels

28
1-MHz
- serial data
buses
(23 shared,
5 dedicated )
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Wrap-up

Fault-tolerant computers offer a finite increase in availability (safety ?)
All fault-tolerant architectures suffer from the following weaknesses:
- assumption of no common mode of error
hardware: mechanical, power supply, environment,
software: no design errors
- assumption of near-perfect coverage to avoid lurking errors and ensure fail-silence.

-assumption of short repair and maintenance time

-increased complexity with respect to the 1001 solution

ultimately, the question is that of which risk is society willing to accept.
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