

Solutions for week 10

Intrinsically motivated exploration

Exercise 1: How fast can we find the goal state with a stationary policy?

Consider an environment with the state space \mathcal{S} , a goal (terminal) state $G \in \mathcal{S}$, and an action space \mathcal{A} in non-goal states (i.e., $\mathcal{S} - \{G\}$). After taking action $a \in \mathcal{A}$ in state $s \in \mathcal{S}$, the agent moves to state $s' \in \mathcal{S}$ with the transition probability $p(s'|s, a)$. These transition probabilities are unknown to the agent. We use T to denote the first time an agent finds the goal state G , i.e., $s_T = G$. If we assume that the agent uses a stationary policy π , then we can define the average of T given each initial state $s \in \mathcal{S}$ as

$$\mu_\pi(s) := \mathbb{E}_\pi[T|s_0 = s],$$

where s_0 is the state at time $t = 0$. In this exercise, we study $\mu_\pi(s)$ in its most general case.

a. What is the value of $\mu_\pi(G)$?

Hint: Note that T is equal to the smallest $t \geq 0$ when we have $s_t = G$.

b. What is the relationship between $\mathbb{E}_\pi[T|s_1 = s]$ and $\mu_\pi(s)$?

Hint: Note that $\mu_\pi(s)$ is the average of T if the agent starts in state s at time $t = 0$, whereas $\mathbb{E}_\pi[T|s_1 = s]$ is the average of T if the agent starts in state s at time $t = 1$.

c. Find a system of linear equations for finding $\mu_\pi(s)$ for $s \in \mathcal{S} - \{G\}$.

Hint: Use the fact that $p_\pi(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s)p(s'|s, a)$.

Solution:

a. By definition, we have $\mu_\pi(G) = 0$.

b. Using the Markovian property of the environment, we have

$$\mathbb{E}_\pi[T|s_1 = s] = 1 + \mathbb{E}_\pi[T|s_0 = s] = 1 + \mu_\pi(s).$$

c. We use the law of total expectation as well as the Markovian property of the environment and write

$$\mu_\pi(s) = \mathbb{E}_\pi[T|s_0 = s] = \mathbb{E}_\pi \left[\mathbb{E}_\pi [T|s_1] \mid s_0 = s \right] = \sum_{s' \in \mathcal{S}} p_\pi(s'|s) \mathbb{E}_\pi [T|s_1 = s'].$$

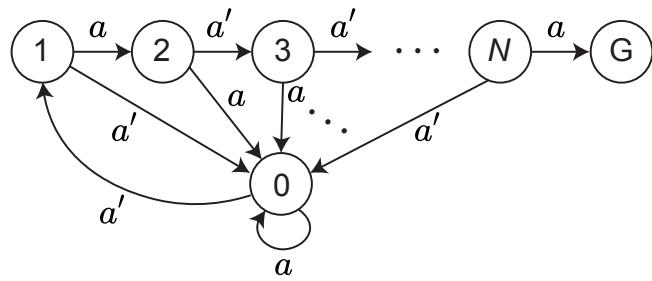
We can then use part b and write

$$\mu_\pi(s) = 1 + \sum_{s' \in \mathcal{S}} p_\pi(s'|s) \mu_\pi(s') = 1 + \sum_{s' \in \mathcal{S} - \{G\}} p_\pi(s'|s) \mu_\pi(s'), \quad (1)$$

where we used the fact that $\mu_\pi(G) = 0$.

Exercise 2: The magic of seeking novelty.

Consider a special case of the environment in [Exercise 1](#) with $N + 2$ states: $\mathcal{S} = \{0, 1, \dots, N, G\}$, where G is the goal (terminal) state. At each non-goal state $s \in \{0, \dots, N\}$, two actions a and a'

Figure 1: Environment of [Exercise 2](#)

are available that connect different states through deterministic transitions shown in [Figure 1](#). In this exercise, we study how fast an agent that does not know the environment's structure can find the goal state G .

Part I. Random exploration. First, we consider purely random exploration: $\pi(a|s) = \pi(a'|s) = 0.5$. Because of the particular structure of the environment in [Figure 1](#), solving the system of linear equations that you found in [Exercise 1](#) for $\mu_\pi(s)$ becomes exceptionally easy:

- a. Find $\mu_\pi(N)$ as a function of $\mu_\pi(0)$.

Hint: Use the system of linear equations you that found in [Exercise 1c](#).

- b. Find $\mu_\pi(n)$, for $n < N$ as a function of $\mu_\pi(0)$ and n .

Hint: Repeatedly apply the trick of part a for state $N-1$, $N-2$, down to $n < N$.

- c. Find $\mu_\pi(0)$ as a function of N . How does it scale with N for large N ?

Hint: Use part b and write $\mu_\pi(0)$ as a function of itself. Then solve the equation.

Part II. Novelty-seeking. To gain intuition about novelty-seeking, we consider a simple cartoon example: We assume

- The state space is very big, i.e., $N \gg 1$.
- The agent starts in state 0 and explores the environment for $T_0 \ll \mu_\pi(0)$ steps with *random exploration*.
- The agent does not find the goal state in these T_0 steps of random exploration.
- $s_{T_0} = 0$.

By the end of the initial T_0 steps of random exploration, the agent has encountered state 0 many times, so the novelty of state 0 is on average much smaller than novelty of other states. This implies that, at the end of the initial T_0 steps of random exploration, state 0 is considered as a ‘bad’ state by an agent that seeks novelty.

Starting from $t = T_0$, we consider the following simple *novelty-seeking* policy:

- $t \leftarrow T_0$
- While $s_t \neq G$:
 - If it is the first time in state s_t **after** the first T_0 steps:
 - * Pick action $a_t \in \{a, a'\}$ at random.
 - * Observe state s_{t+1} .
 - * If $s_{t+1} = 0$
 - $a_{\text{bad}}(s_t) \leftarrow a_t$ and $a_{\text{good}}(s_t) \leftarrow !a_t$,
where $!a_t$ is the non-chosen action (e.g., if $a_t = a$, then $!a_t = a'$).
 - else
 - $a_{\text{good}}(s_t) \leftarrow a_t$ and $a_{\text{bad}}(s_t) \leftarrow !a_t$,
where $!a_t$ is the non-chosen action (e.g., if $a_t = a$, then $!a_t = a'$).
 - If it is **not** the first time in state s_t **after** the first T_0 steps:

- * Pick action $a_t = a_{\text{good}}(s_t)$.
- * Observe state s_{t+1} .
- $t \leftarrow t + 1$

Let $T(s) \geq T_0$ be the 1st time after T_0 that the agent visit state s , e.g., $T(0) = T_0$.

a. For $n \in \{1, \dots, N\}$, what is the minimum value of $T(n)$ for the novelty-seeking policy described above? We denote this value $T_{\min}(n)$.

Hint: $T_{\min}(n)$ corresponds to the case where the random action-selection step of novelty-seeking always picks the ‘good’ action.

b. For $n \in \{1, \dots, N\}$, what is the maximum value of $T(n)$ for the novelty-seeking policy described above? We denote this value $T_{\max}(n)$.

Hint: $T_{\max}(n)$ corresponds to the case where the random action-selection step of novelty-seeking always picks the ‘bad’ action.

c. Find the corresponding values for $T_{\min}(G)$ and $T_{\max}(G)$. How do these values scale with N for large N ? Compare your results with the scaling of $\mu_{\pi}(0)$ for random exploration.

Solution:

Part I. Random exploration.

a. Using [Equation 1](#), we have

$$\mu_{\pi}(N) = 1 + \frac{\mu_{\pi}(0)}{2}.$$

b. By repeating the same procedure as in a for $N - 1, N - 2$, down to $n < N$, we have

$$\mu_{\pi}(n) = \left(1 + \frac{\mu_{\pi}(0)}{2}\right) \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{N-n}}\right) = (2 + \mu_{\pi}(0)) \left(1 - \frac{1}{2^{N+1-n}}\right).$$

c. Using the result of b, we have

$$\mu_{\pi}(0) = (2 + \mu_{\pi}(0)) \left(1 - \frac{1}{2^{N+1}}\right) \Rightarrow \mu_{\pi}(0) = 2^{N+2} - 2 = \mathcal{O}(e^{N \log 2}).$$

It scales exponentially.

Part II. Novelty seeking.

a. The minimum value of $T(n)$ corresponds to the case where the random action-selection step of novelty-seeking always picks the ‘good’ action, resulting in the sequence of states

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \dots \rightarrow n.$$

Hence, we have

$$T_{\min}(n) = T_0 + n.$$

b. The maximum value of $T(n)$ corresponds to the case where the random action-selection step of novelty-seeking always picks the ‘bad’ action, resulting in the sequence of states

$$0 \overbrace{\rightarrow 0}^{2 \text{ steps}} \rightarrow 1 \overbrace{\rightarrow 0 \rightarrow 1}^{3 \text{ steps}} \rightarrow 2 \overbrace{\rightarrow 0 \rightarrow 1 \rightarrow 2}^{4 \text{ steps}} \rightarrow 3 \rightarrow 0 \rightarrow \dots \rightarrow n.$$

Hence, we have

$$T_{\max}(n) = T_0 + 2 + 3 + \dots + (n+1) = \frac{n(n+3)}{2} = T_0 + \frac{n^2 + 3n}{2}.$$

c. Using the structure in [Figure 1](#), we have

$$T_{\min}(G) = T_{\min}(N+1) = T_0 + N + 1 = \mathcal{O}(N),$$

and

$$T_{\max}(G) = T_{\max}(N+1) = T_0 + \frac{(N+1) \cdot (N+4)}{2} = T_0 + \frac{N^2 + 5N + 4}{2} = \mathcal{O}(N^2).$$

Switching from random exploration to novelty-seeking decreases the average search time of $\mathcal{O}(e^{N \log 2})$ to a maximum search time of $\mathcal{O}(N^2)$