
CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solutions for week 7
Policy gradient methods

Exercise 1: Single neuron as an actor1

Assume an agent with binary actions Y ∈ {0, 1}. Action y = 1 is taken with a probability
π(Y = 1|~x; ~w) = g(~w ·~x), where ~w are a set of weights and ~x is the input signal that contains the state
information. The function g is monotonically increasing and limited by the bounds 0 ≤ g ≤ 1.

For each action, the agent receives a reward R(Y, ~x).

a. Calculate the gradient of the mean reward E[R] =
∑

Y,~xR(Y, ~x)π(Y |~x; ~w)P (~x) with respect to
the weight wj .

Hint: Insert the policy π(Y = 1|~x; ~w) = g(
∑

k wkxk) and π(Y = 0|~x; ~w) = 1 − g(
∑

k wkxk).
Then take the gradient.

b. The rule derived in (a) is a batch rule. Can you transform this into an ‘online rule’?

Hint: Pay attention to the following question: what is the condition that we can simply ‘drop
the summation signs’?

Solution:

a. ∂
∂wj

E[R] =
∑

~x P (~x)[R(y = 1, ~x)−R(y = 0, ~x)]g′(~w · ~x)xj

b. If the online statistics matches the true statistics of the data in the batch, then we can
drop the sum-signs. However, here this is not the case because the two outcomes y = 1
and y = 0 do not have equal probabilities. Therefore, the weight-factors in y need to be
added. This can be done by the log-likelihood trick explained in class.

Exercise 2: Policy gradient for binary actions

a. Find an online policy gradient rule for the weights ~w for the same setup as in Exercise 1 by
calculating the gradient of the log-likelihood log π(Y |~x; ~w) with respect to the weights.

Hint: the policy π can be written as π(Y |~x; ~w) = (1− ρ)1−Y ρY with ρ = g(~w · ~x).

b. Rewrite your update rule for weight wj in the form

∆wj = F (~x, ~w,R) [Y − E[Y ]]xj

and give the expression for the function F .

Hint: Take your result from part a, use E[y] = g(~w · ~x) and pull out a factor 1
g(1−g) .

c. Interpret your result from b as a three-factor rule. How could biology implement this?

Hints: Think about the following: Is there a ’Hebbian condition’? Is there an ’eligibility trace’?
Is there a ’global signal’ and what does it represent?

Solution:
1Will be started in class.



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

a. Let’s first calculate the derivative of log π(Y |~x; ~w) with respect to wj, using the hint:

∂

∂wj
log π(Y |~x; ~w) =

1

π(Y |~x; ~w)

∂

∂wj
π(Y |~x; ~w)

=
1

(1− ρ)1−Y ρY
∂

∂wj

[
(1− ρ)1−Y ρY

]
=

1

(1− ρ)1−Y ρY
[
−(1− Y )(1− ρ)−Y ρY + Y (1− ρ)1−Y ρY−1

] ∂

∂wj
ρ

=

[
−(1− Y )(1− ρ)−Y

(1− ρ)1−Y
+
Y ρY−1

ρY

]
g′(~w · ~x)xj

=

[
−(1− Y )

(1− ρ)
+
Y

ρ

]
g′(~w · ~x)xj.

Now let’s consider the term ∂
∂wj

E[R] again. We can write

∂

∂wj
E[R] =

∑
Y,~x

R(Y, ~x)
∂

∂wj
π(Y |~x; ~w)P (~x)

=
∑
Y,~x

R(Y, ~x)π(Y |~x; ~w)
1

π(Y |~x; ~w)

∂

∂wj
π(Y |~x; ~w)︸ ︷︷ ︸

∂
∂wj

log π(Y |~x;~w)

P (~x)

= E
[
R

∂

∂wj
(log π)

]
,

where we multiplied by π(·)/π(·) = 1 and identified the derivative of the log. This suggest
an online rule with an update term:

∆wj = R
∂

∂wj
log π(Y |~x; ~w) = R

[
Y

ρ
− (1− Y )

(1− ρ)

]
g′(~w · ~x)xj. (1)

b. Equation 1 can be simplified as

∆wj = R

[
Y − ρ
ρ(1− ρ)

]
g′(~w · ~x)xj =

Rg′

g(1− g)
[Y − E[Y ]]xj, (2)

which has the form of ∆wj = F (~x, ~w,R) [Y − E[Y ]]xj with

F (~x, ~w,R) =
Rg′(~w · ~x)

g(~w · ~x) (1− g(~w · ~x))
.

c. Overall the weight update is a function of the presynaptic input xj, the post-synaptic
activity g(~w · ~x) and its derivative g′(~w · ~x), the reward R, and the term [Y − E[Y ]]. This
can be interpreted as a Hebbian setup where the update is a function of pre-synaptic
terms, post-synaptic terms, and a third factor that is a global signal, the reward R. The
global signal of reward can be represented in biology by a largely diffused neuromodulator
such as dopamine. The term [Y − E[Y ]] fits in this Hebbian setup as a postsynaptic term:
E[Y ] is simply the post-synaptic activity g(~w · ~x) (could be represented by membrane
potential), and Y is the chosen action/outcome of the neuron (for example the emission
of a spike).



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercise 3: Subtracting the mean
You have two stochastic variables, x and y with means E[x] and E[y]. Angles denote expectations.
We are interested in the product z = (x− b)(y − E[y]) with a fixed parameter b.

a. Show that E[z] is independent of the choice of the parameter b.

b. Show that E[z2] is minimal if b = E[xf(y)]
E[f(y)] , where f(y) = (y − E[y])2.

Hint: write E[z2] = F (b) and set dF
db = 0.

c. What is the optimal b, if x and f(y) are approximately independent?

d. Make the connection to policy gradient rules.

Hint: take x = r (reward) and y the action taken in state s. Compare with the policy gradient
formula of the simple 1-neuron actor. What can you conclude for the best value of b? Consider
different states s. Why should b depend on s?

e. Make a connection to three-factor rules. What is now the interpretation of the global signal?

Solution:

a.

E[z] = E[(x− b)(y − E[y])]

= E[xy]− E[x]E[y]− bE[y] + bE[y]

= E[xy]− E[x]E[y]

b.

F (b) = E
[
(x− b)2f(y)

]
⇒ 0 =

d

db
F (b) = −2E [(x− b)f(y)]

⇒ 0 = E[xf(y)]− bE[f(y)]

⇒ b =
E[xf(y)]

E[f(y)]

c. If x and f(y) are approximately independent, E[xf(y)] ≈ E[x]E[f(y)] and we find b ≈ E[x].

d. If we set r = x and introduce states s as a further stochastic variable, we see that y−E[y]
appears in the derivative of the log-policy. E.g. for a Gaussian policy

∂

∂w
log
(

(1/
√

2π) exp(−(y − ws)2/2)
)

= (y − ws)s

with ws = E[y]; see also previous exercise. Thus (r−b)(y−E[y]) ∝ (r−b) ∂
∂w

log π(y|s;w) =
∂
∂w
R(y, s). Since r and y are now state dependent, the optimal baseline b should also be

state-dependent.

e. Here we see that the weight update is proportional to ∂
∂w
R(y, s) ∝ (r−b)(y−E[y]), where

(y−E[y]) is , as in the previous exercise, a postsynaptic term. This time the global third
factor is r − b, the ’reward minus expected reward’.

Exercise 4: Policy gradient



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

a. Other parameterizations of Exercise 2: Consider your solution to Exercise 2. What happens
to the policy gradient rule if the likelihood ρ of action 1 is parameterized not by the weights ~w
but by other parameters: ρ = ρ(θ)? Derive a learning rule for θ.

b. Generalization to the natural exponential family: The natural exponential family is
a family of probability distributions that is widely used in statistics because of its favorable
properties. These distributions can be written in the form

p(Y ) = h(Y ) exp (θY −A(θ)) .

This family includes many of the standard probability distributions. The Bernoulli, the Poisson
and the Gaussian distribution are all member of this family. A nice property of these distributions
is that the mean can easily be calculated from the function A(θ):

E[Y ] = A′(θ) :=
dA

dθ
(θ) .

Assume that the policy π(Y |~x; θ) is an element of the natural exponential family. Show that the
online rule for the policy gradient has the shape:

∆θ = R(Y − E[Y ]) .

Can you give an intuitive interpretation of this learning rule?

c. The Bernoulli distribution: Apply your result from (b) to the case of Exercise 2.

Solution:

a. Other parameterizations: Replacing ~w · ~x by θ, we can follow the same steps as in
Exercise 2. The only difference comes in the expression of dρ

dθ
, for which we don’t have an

explicit expression anymore. The learning rule is:

∆θ = R

[
Y

ρ
− (1− Y )

(1− ρ)

]
ρ′(θ). (3)

b. Generalization to the natural exponential family: Let’s calculate ∂
∂θ

log p(Y ):

∂

∂θ
log p(Y ) =

∂

∂θ
log [h(Y ) exp (θY − A(θ))]

=
1

h(Y ) exp (θY − A(θ))
· h(Y ) exp (θY − A(θ)) · (Y − A′(θ))

= Y − A′(θ) = (Y − E[Y ]).

Therefore:

∆θ = R
∂

∂θ
logP (y) = R (Y − E[Y ]) .

This learning rule will look for correlation between the reward and the deviations of Y
from its expectation value. If R is systematically positive when Y is higher than its
expectation value, θ will increase, leading to higher probabilities of higher Y . Inversely,
if R is systematically negative when Y is higher than its expectation value, theta will
decrease and the probability of lower Y will decrease.

c. For the Bernoulli distribution with Y ∈ {0, 1} and p(Y = 1) = ρ, we have

p(Y ) = ρY (1− ρ)1−Y = exp

(
Y log

ρ

1− ρ
− log

1

1− ρ

)
= h(Y ) exp (θY − A(θ)) ,



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

where

h(Y ) = 1

θ = log
ρ

1− ρ
⇔ ρ =

1

1 + e−θ

A(θ) = log
1

1− ρ
= log

(
1 + eθ

)
.

From part (b), we know that ∆θ = R (Y − E[Y ]). To apply apply this update rule to the
case of Exercise 2, we first use the fact that ρ = g(~w · ~x) and write

θ = log
ρ

1− ρ
= log

g(~w · ~x)

1− g(~w · ~x)
.

We can use this and write

∆wj =
∂

∂wj
E[R] =

∂

∂θ
E[R]

∂θ

∂wj
= ∆θ

(
∂

∂wj
log

g(~w · ~x)

1− g(~w · ~x)

)
,

where

∂

∂wj
log

g(~w · ~x)

1− g(~w · ~x)
=

(
g′

g
+

g′

1− g

)
xj =

g′

g(1− g)
xj.

Putting everything together, we have

∆wj = R (Y − E[Y ])
g′

g(1− g)
xj

which is the same as ∆wj in Equation 2.

Exercise 5: Computer exercises: Environment 2 (part 1)
Download the Jupyter notebook of the 2nd computer exercise and complete it.


