CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solutions for week 7
Policy gradient methods

Exercise 1: Single neuron as an actor’

Assume an agent with binary actions ¥ € {0,1}. Action y = 1 is taken with a probability
7(Y = 1|Z; W) = g(W - &), where @ are a set of weights and & is the input signal that contains the state
information. The function g is monotonically increasing and limited by the bounds 0 < g < 1.

For each action, the agent receives a reward R(Y, ¥).

a. Calculate the gradient of the mean reward E[R] = >y > R(Y, )7 (Y| W) P(Z) with respect to
the weight w;.
Hint: Insert the policy n(Y = 1|Z;%W) = g(>, wrxy) and 7(Y = 0|Z;0) = 1 — g(>_, wrxy).
Then take the gradient.

b. The rule derived in (a) is a batch rule. Can you transform this into an ‘online rule’?

Hint: Pay attention to the following question: what is the condition that we can simply ‘drop
the summation signs’?

Solution:

a. so-E[R] = 32; P(Z)[R(y = 1,7) — R(y = 0,2)]g' (& - T)a;

b. If the online statistics matches the true statistics of the data in the batch, then we can
drop the sum-signs. However, here this is not the case because the two outcomes y = 1
and y = 0 do not have equal probabilities. Therefore, the weight-factors in y need to be
added. This can be done by the log-likelihood trick explained in class.

Exercise 2: Policy gradient for binary actions

a. Find an online policy gradient rule for the weights w for the same setup as in Exercise 1 by
calculating the gradient of the log-likelihood log 7 (Y'|Z;w) with respect to the weights.
1-Y ¥

Hint: the policy 7 can be written as w(Y'|Z; W) = (1 — p) with p = g(w - ©).

b. Rewrite your update rule for weight w; in the form
Awj; = F(Z,%,R)[Y —E[Y]] z;

and give the expression for the function F'.

Hint: Take your result from part a, use E[y] = g(& - Z) and pull out a factor ﬁ.

c. Interpret your result from b as a three-factor rule. How could biology implement this?

Hints: Think about the following: Is there a "Hebbian condition’? Is there an ’eligibility trace’?
Is there a ’global signal’ and what does it represent?

Solution:

'Will be started in class.
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a. Let’s first calculate the derivative of log 7(Y'|2; W) with respect to w;, using the hint:
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where we multiplied by 7(-)/7(-) = 1 and identified the derivative of the log. This suggest
an online rule with an update term:

- ioﬁ Z0) = X—(l_Y) "W - )
o, = R o) = |3 = = o0 2 .

b. Equation 1 can be simplified as

Y —»p Rg
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which has the form of Aw; = F(Z, @, R) [Y — E[Y]] z; with

By = | L2 (i) = v - B[] 2

F(Z,W,R) =

c. Overall the weight update is a function of the presynaptic input z;, the post-synaptic
activity g(w - Z) and its derivative g/(@ - Z), the reward R, and the term [Y — E[Y]]. This
can be interpreted as a Hebbian setup where the update is a function of pre-synaptic
terms, post-synaptic terms, and a third factor that is a global signal, the reward R. The
global signal of reward can be represented in biology by a largely diffused neuromodulator
such as dopamine. The term [Y — E[Y]] fits in this Hebbian setup as a postsynaptic term:
E[Y] is simply the post-synaptic activity g(« - Z) (could be represented by membrane
potential), and Y is the chosen action/outcome of the neuron (for example the emission
of a spike).
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Exercise 3: Subtracting the mean

You have two stochastic variables, x and y with means E[z] and E[y]. Angles denote expectations.
We are interested in the product z = (x — b)(y — E[y|]) with a fixed parameter b.

a. Show that E[z] is independent of the choice of the parameter b.

b. Show that E[2?] is minimal if b = ]E[[xf((yy))]], where f(y) = (y — E[y))%

Hint: write E[2?] = F(b) and set £ = 0.

c. What is the optimal b, if 2 and f(y) are approximately independent?

d. Make the connection to policy gradient rules.

Hint: take x = r (reward) and y the action taken in state s. Compare with the policy gradient
formula of the simple 1-neuron actor. What can you conclude for the best value of b7 Consider
different states s. Why should b depend on s?

e. Make a connection to three-factor rules. What is now the interpretation of the global signal?

Solution:
Elz] = E[(z — b)(y — E[y])]
= E[zy] — E[z]E[y] — bE[y] + bE[y]
= E[zy] — E[z]E[y]
b.
F(b) =E [(z = b)*f(y)]
0= %F(b) —2E [(z — b)f(y)]
= 0=E[zf(y)] — 0E[f(y)]
_ Elzf(y)]
T

c. If z and f(y) are approximately independent, E[z f(y)] = E[z]E[f(y)] and we find b ~ E[z].

d. If we set r = x and introduce states s as a further stochastic variable, we see that y — E[y]
appears in the derivative of the log-policy. E.g. for a Gaussian policy

% log ((1/\/%) exp(—(y — ws)2/2)> = (y — ws)s

with ws = E[y]; see also previous exercise. Thus (r—b)(y—E[y]) o< (r—b) 2 log 7 (y|s; w) =
%R(y, s). Since r and y are now state dependent, the optimal baseline b should also be
state-dependent.

e. Here we see that the weight update is proportional to ;= R(y, s) o (r —b)(y — E[y]), where
(y —E[y]) is , as in the previous exercise, a postsynaptic term. This time the global third
factor is r — b, the 'reward minus expected reward’.

Exercise 4: Policy gradient
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a. Other parameterizations of Exercise 2: Consider your solution to Exercise 2. What happens
to the policy gradient rule if the likelihood p of action 1 is parameterized not by the weights
but by other parameters: p = p(6)? Derive a learning rule for 6.

b. Generalization to the natural exponential family: The natural exponential family is
a family of probability distributions that is widely used in statistics because of its favorable
properties. These distributions can be written in the form

p(Y) = h(Y) exp (Y — A(9)) .

This family includes many of the standard probability distributions. The Bernoulli, the Poisson
and the Gaussian distribution are all member of this family. A nice property of these distributions
is that the mean can easily be calculated from the function A(6):

E[Y] = A'(6) = %(9).

Assume that the policy w(Y|Z; ) is an element of the natural exponential family. Show that the
online rule for the policy gradient has the shape:

Af = R(Y —E[Y]).
Can you give an intuitive interpretation of this learning rule?

c. The Bernoulli distribution: Apply your result from (b) to the case of Exercise 2.
Solution:

a. Other parameterizations: Replacing @ - & by 6, we can follow the same steps as in
Exercise 2. The only difference comes in the expression of %, for which we don’t have an
explicit expression anymore. The learning rule is:

_ Z_(l—Y) /
M_R{p (l—p)}p@' @)

b. Generalization to the natural exponential family: Let’s calculate % logp(Y):
0 log p(Y) 0 log [A(Y) exp (Y — A(0))]
_ e X —
90 gp By g p
1
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—Y — A(0) = (Y —E[Y)).

Therefore:

Af = R% log P(y) = R(Y —E[Y]) .

This learning rule will look for correlation between the reward and the deviations of Y
from its expectation value. If R is systematically positive when Y is higher than its
expectation value, 6 will increase, leading to higher probabilities of higher Y. Inversely,
if R is systematically negative when Y is higher than its expectation value, theta will
decrease and the probability of lower Y will decrease.

c. For the Bernoulli distribution with Y € {0,1} and p(Y = 1) = p, we have

1
p(Y)=p"(1=p)"" =exp (Y log —— —log )

1—p 1—0p
= h(Y)exp (0Y — A(0)) ,
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where
hY)=1
1
9:1 = —
Ogl—p<:>p 1+e?
1
A(f) =log 7— = log (1+e¢).

From part (b), we know that A0 = R (Y — E[Y]). To apply apply this update rule to the
case of Exercise 2, we first use the fact that p = g(@ - Z) and write

- =

g(@ - )
1—g(w-z)

0 = log = log

L—p

We can use this and write

ij:%E[R]ZQE[R]ﬁ:M ( D Jog I 7) )
J

where

Putting everything together, we have
Aw; = R(Y —E[Y]) ————x;

which is the same as Aw; in Equation 2.

Exercise 5: Computer exercises: Environment 2 (part 1)

Download the Jupyter notebook of the 2nd computer exercise and complete it.



