
Learning in Neural Networks (Gerstner).
Solutions for week 1
PCA & Oja’s rule

Exercise 1

1.1 Show that the fixed points of this equation are eigenvectors of the C matrix.

By definition, the fixed points if the equation are the vectors solutions of

d

dt
w = 0 = Cw − (wTCw)w. (1)

Noticing that (wTCw) is a scalar and defining λ(w) := (wTCw), this becomes

Cw = λ(w)w. (2)

This is an eigenvalue equation, with an eigenvalue dependent on w. Thus solutions of the differential
equation are also eigenvectors of C.

1.2 Show that the eigenvector ek associated with the largest eigenvalue of C is a stable fixed point.

Hint: Assume that the weight is almost the eigenvector ek, but slightly perturbed in the direction of a
different eigenvector ej: w(t) = α(t)ek + ε(t)ej, with ε� 1 and ε2 + α2 = 1.

Let’s rewrite Oja’s rule with our ansatz. The left hand side becomes

d

dt
w =

(
d

dt
α

)
ek +

(
d

dt
ε

)
ej , (3)

and the two right hand side terms become

Cw = C(αek + εej) = αCek + εCej = αλkek + ελjej (4)

and

(wTCw)w = (αeTk + εeTj )C(αek + εej)w (5)

= (αeTk + εeTj )(αλkek + ελjej)w (6)

= (α2λk e
T
k ek︸︷︷︸
=1

+αελj e
T
k ej︸︷︷︸
=0

+αελk e
T
j ek︸︷︷︸
=0

+ε2λj e
T
j ej︸︷︷︸
=1

)w (7)

= (α2λk + ε2λj)(αek + εej). (8)

We used the fact that C being a covariance matrix, it is symmetric so that its eigenvalues are orthog-
onal. We also assumed that the eigenvectors are normalized (thus eTj ek = δjk). Remembering the

ansatz ε2 + α2 = 1, we further simplify

(wTCw)w = ((1− ε2)λk + ε2λj)(αek + εej) (9)

= α((1− ε2)λk + ε2λj)ek + (λkε− (λk − λj)ε3)ej . (10)

Notice that the terms (3), (4) and (10) are all of the form . . . ek + . . . ej . Since these two vectors are
orthogonal, we can project our rewritten Oja’s rule to one of those. Projecting to ej yields

d

dt
ε = ελj − (λkε− (λk − λj)ε3) = −(λk − λj)(ε− ε3) (11)



This differential equation has 3 fixed points: ε = 0 and ε = ±1. We consider what happens when w
deviates slightly from the ek eigenvector, i.e. |ε| � 1. In that case, d

dtε > 0 when ε < 0 and d
dtε < 0

when ε > 0 (Remember that λk > λj). Thus the dynamics will bring ε back to zero, and thus α to 1,
making the ek vector a stable fixed point of Oja’s rule.

Note that to complete the proof, one should also ensure that

ε(t0)
2 + α(t0)

2 = 1⇒ ε(t)2 + α(t)2 = 1, ∀t > t0. (12)

It is equivalent to prove that d
dt(ε

2 + α2) = 0. This is straightforward by noting that

a. d
dt(ε

2 + α2) = 2εdεdt + 2αdαdt ,

b. we know dε
dt from (11) and

c. we can calculate dα
dt the same way we obtained (11), but projecting on ek.

The actual calculation is left as an exercise.

Exercise 2

2.1 Let us consider a neuron that receives an N-dimensional input. Its weight dynamics is given by:

d~w

dt
= C ~w (13)

with

C =


1 0.5 0 0 . . . 0 0.5

0.5 1 0.5 0 . . . 0 0
0 0.5 1 0.5 . . . 0 0
...

...
...

...
...

...
...

0.5 0 0 0 . . . 0.5 1

 . (14)

Show that for all m ∈ Z, the complex vector of components wk = exp
(
2πik
N m

)
, with k = 1 . . . N , is

an eigenvector of C. Assume cyclic boundary conditions.

We need to show that Cw = λw, where λ is the eigenvalue. Considering the kth element, we have

(Cw)k = λ exp

(
2πik

N
m

)
(15)

For elements with k = 2, . . . , N − 1, the term (Cw)k is

(Cw)k = 0.5 exp

(
2πi(k − 1)

N
m

)
+ exp

(
2πik

N
m

)
+ 0.5 exp

(
2πi(k + 1)

N
m

)
. (16)

Since exp(2πin) = exp(2πi(n+ 1)), this is actually also true for k = 1, N . Putting (16) into (15), we
get

0 = 0.5 exp

(
2πi(k − 1)

N
m

)
+ (1− λ) exp

(
2πik

N
m

)
+ 0.5 exp

(
2πi(k + 1)

N
m

)
(17)

= exp

(
2πik

N
m

)(
0.5 exp

(
−2πi

N
m

)
+ (1− λ) + 0.5 exp

(
2πi

N
m

))
(18)

= exp

(
2πik

N
m

)(
cos

(
2πm

N

)
+ 1− λ

)
(19)



Here we have used the fact that eix = cos(x) + i sin(x) (and thus eix + e−ix = 2 cos(x)). The equation
above only holds if

λ = 1 + cos

(
2πm

N

)
(20)

This defines N eigenvalues.

2.2 Assume that the neuron receives N input patterns ~ξµ = (ξµ1 , ξ
µ
2 , . . . , ξ

µ
N )T with ξµk =

√
N
2

(
δµk + δ

(µ mod N)+1
k

)
.

Here, δµk denotes the Kronecker symbol, which is 1 if µ = k and 0 otherwise. Show that the matrix C
is produced by:

Ckj =
〈
ξµk ξ

µ
j

〉
=

1

N

N∑
µ=1

ξµk ξ
µ
j . (21)

Let’s calulate the element Ckj of the matrix

Ckj =
2

N

N∑
µ=1

ξµk ξ
µ
j (22)

=
1

N

N∑
µ=1

√
N

2

(
δµk + δ

(µ mod N)+1
k

)√N

2

(
δµj + δ

(µ mod N)+1
j

)
(23)

=
1

2

N∑
µ=1

δµk δ
µ
j + δµk δ

(µ mod N)+1
j + δ

(µ mod N)+1
k δµj + δµj δ

µ
k (24)

=
1

2


N∑
µ=1

δµk δ
µ
j︸ ︷︷ ︸

δkj

+

N∑
µ=1

δµk δ
(µ mod N)+1
j︸ ︷︷ ︸

δk
(j mod N)+1

+

N∑
µ=1

δ
(µ mod N)+1
k δµj︸ ︷︷ ︸
δj
(k mod N)+1

+

N∑
µ=1

δµj δ
µ
k︸ ︷︷ ︸

δjk

 (25)

= δkj + 0.5 δk(j mod N)+1 + 0.5 δj(k mod N)+1 (26)

This is indeed the the C matrix. The δkj is the diagonal and the δk(j mod N)+1 is the lower off-diagonal

term: they are 1 only if j = k − 1 or j = N and k = 0. The δj(k mod N)+1 element is the upper
off-diagonal term.

Comment on how the weights will evolve given the nature of the input patterns.

Since all eigenvalues of C are positive (from (20)), the weight vector w will grow exponentially. The
only exception is if N is even and m = N/2, in which case λ = 0, which means we have a fixed point
of the rule. This corresponds to the weight vector with components

wk = exp(πik) = cos(kπ) + isin(kπ) = ±1. (27)

Exercise 3

We wish to solve the differential equation d
dtw = Cw by writing the dynamics of the synaptic weights

w in the case of a correlation function C(x− x′) with continuous variables. Let us consider the case



where:
C(x− x′) = e−γ|x−x

′| (28)

We are looking for a base of local eigenfunctions, i.e. eigenfunctions w(x) of C, which by definition
cancel themselves outside the interval [0, L]. These eigenfunctions are generalizations of the eigenvec-
tors of C that we studied in a previous exercises. To show that w is an eigenfunction, we have to show
that:

∫ L

0
C(x− x′)w(x′)dx′ = λw(x) (29)

where λ is an eigenvalue of C.

Show that w(x) = cos[u·(x−L/2)] and w(x) = sin[u·(x−L/2)] in the interval [0, L] are eigenfunctions
of C for certain frequencies u. Find theses frequencies and their associated eigenvalue.

Hint: Use ∫ L

0
C(x− x′) cos[u · (x′ − L/2)]dx′ = Re

∫ L

0
e−γ|x−x

′|+i[u·(x′−L/2)]dx′ (30)

and ∫ L

0
C(x− x′) sin[u · (x′ − L/2)]dx′ = Im

∫ L

0
e−γ|x−x

′|+i[u·(x′−L/2)]dx′ . (31)

The scope of the exercise is to find the conditions under which the two functions w(x) = cos[u·(x−L/2)]
and w(x) = sin[u · (x− L/2)] are eigenvectors. That is :

∫ L

0
C(x− x′)w(x′)dx′ = λw(x) (32)

We therefore calculate the first part by setting w = ei[u·(x
′−L/2)] in order to deal with the two functions

together:

∫ L

0
e−γ|x−x

′|+i[u·(x′−L/2)]dx′ =

∫ x

0
e−γ(x−x

′)+i[u·(x′−L/2)]dx′ +

∫ L

x
eγ(x−x

′)+i[u·(x′−L/2)]dx′

=
1

γ2 + u2

{
γ
(

2eiu(x−L/2) − e−γx−iuL/2 − eγ(x−L)+iuL/2
)

+iu
(
e−γx−iuL/2 − eγ(x−L)+iuL/2

)}
.

Then we take separately the real and the imaginary part of the above equation. The real part
corresponds to w(x) = cos[u · (x− L/2)] and the imaginary part to w(x) = sin[u · (x− L/2)].

We end up with:

Re

∫ L

0
e−γ|x−x

′|+i[u·(x′−L/2)]dx′ = 2γ/(γ2 + u2) cos[u · (x− L/2)] + c1 (33)

and

Im

∫ L

0
e−γ|x−x

′|+i[u·(x′−L/2)]dx′ = 2γ/(γ2 + u2) sin[u · (x− L/2)] + c2 (34)



with

c1 =
(
e−γx + eγ(x−L)

)
(−γ cos(uL/2) + u sin(uL/2)) and

c2 =
(
e−γx − eγ(x−L)

)
(γ sin(uL/2) + u cos(uL/2))

In order that cos[u · (x− L/2)], sin[u · (x− L/2)] are eigenfunctions, both c1 and c2 have to be 0.

0 =
(
e−γx + eγ(x−L)

)
(−γ cos(uL/2) + u sin(uL/2))

⇔ tan(uL/2) =
γ

u
,

and for the imaginary part,

0 =
(
e−γx − eγ(x−L)

)
(γ sin(uL/2) + u cos(uL/2))

⇔ tan(uL/2) = −u
γ
.

These two equations determine the eigenfrequences. Their eigenvalue is given by 2γ/(γ2 + u2).

Exercise 4

Use principal component analysis to reduce the dimensionality of the dataset shown in Fig. 1.
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Figure 1: Original Dataset

X 3 3 4 4 5 5 6 6 7 7 8 8

Y 3 4 3 5 4 5 6 7 6 8 7 8

a. Center the data by subtracting their mean.

Calculation of the mean:

X =

p∑
i=1

Xi

p
=

6 · 11

12
=

11

2
(35)

Similarly, Y = 11
2 .



X̃ -2.5 -2.5 -1.5 -1.5 -0.5 -0.5 0.5 0.5 1.5 1.5 2.5 2.5

Ỹ -2.5 -1.5 -2.5 -0.5 -1.5 -0.5 0.5 1.5 0.5 2.5 1.5 2.5

b. Calculate the covariance matrix of the data.

The covariance matrix takes the form:

C :=
1

p

p∑
µ=1

(xµ − x)(xµ − x)T , (36)

where x =

(
X
Y

)
and x =

(
X

Y

)
.

Thus

C =
1

12

(
35 31
31 35

)
. (37)

c. Find the eigenvalues & eigenvectors of the covariance matrix end explain their meaning in the
context of PCA.

The characteristic equation of the covariance matrix C is

det(C − λI) = det

(
35/12− λ 31/12

31/12 35/12− λ

)
= 0. (38)

Solving the equation, we get two solutions: λ1 = 11/2 and λ2 = 1/3. The larger eigenvalue
corresponds to the most important eigenvector.

Further, we solve the equations CV1 = λ1V1 and CV2 = λ2V2 and we find the two (normalized)
eigenvectors:

V1 =

( √
2/2√
2/2

)
(39)

and

V2 =

(
−
√

2/2√
2/2

)
. (40)

V1 corresponds to direction 45o and V2 to 135o. These are the principle components; the new
axes for describing the data sets.

d. Calculate the output data of PCA and discard the less significant component. What are the
principal axes in the original coordinate system? Could you obtain the new dataset without
making any calculations?

The feature matrix is composed of the eigenvectors (column-wise) in the order of larger to smaller
corresponding eigenvalue:

F =

( √
2/2 −

√
2/2√

2/2
√

2/2

)
(41)

The new data are obtained by multiplying the transposed feature matrix (i.e. with the most
significant eigenvector on top) by a matrix Dc whose columns are the mean-centered data x−x:
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Figure 2: Dataset plotted on the new axes formed by V1 and V2.

Dn = F TDc. (42)

This will give us the data shown in Fig. 2.

In practice we want to reduce the dimensions of the dataset to the eigenvectors with the larger
eigenvalues, in our case V1. The feature vector becomes:

F T =
( √

2/2
√

2/2
)

(43)

and the dataset is shown in Fig. 3.

−4 −2 0 2 4
−1

−0.5

0

0.5

1

Direction of the eigenvector 
with the larger eigenvalue

Figure 3: Reduced dataset plotted on the main principal component V1.

We could have easily foreseen how the reduced dataset would look like. Simply by looking Fig.1,
we can see that the two axes are at 45 ◦ and 135 ◦. The projection of the dataset on the axis 45 ◦

gives us Fig. 3.



e. Can you recover the original data? How? Assuming that I have used the whole feature matrix
for calculating the new dataset, we simply need to invert the transformation (42):

Dc = F−TDn = FDn, (44)

and then add to the data the means we originally calculated.

For additional information you may read the simple PCA tutorial by Lindsay I Smith.


