Learning in Neural Networks (Gerstner).
Solutions for week 1
PCA & Oja’s rule

Exercise 1

1.1 Show that the fixed points of this equation are eigenvectors of the C matriz.

By definition, the fixed points if the equation are the vectors solutions of

%w =0=Cw— (w Cw)w. (1)

Noticing that (w? Cw) is a scalar and defining A\(w) := (w? Cw), this becomes
Cw = NMw)w. (2)
This is an eigenvalue equation, with an eigenvalue dependent on w. Thus solutions of the differential

equation are also eigenvectors of C.

1.2  Show that the eigenvector ey associated with the largest eigenvalue of C is a stable fixed point.

Hint: Assume that the weight is almost the eigenvector ey, but slightly perturbed in the direction of a
different eigenvector ej: w(t) = a(t)eg + €(t)ej, with e < 1 and €2 + a? = 1.
Let’s rewrite Oja’s rule with our ansatz. The left hand side becomes
d d d
oy = [ = - ) 3
i (dta> ey + (dt€> e, (3)

and the two right hand side terms become

Cw = C(aey, + eej) = aCey + eCej = adger, + €)je; (4)
and
(w? Cw)w = (ce} + eeJT)C(aek + eej)w (5)
= (el + 66?)(04)%61C + eljej)w (6)
= (&P A ef ex Taedj el ej +aed, €] ex +e2 ) €] ej)w (7)
=1 =0 =0 =1
= ((12)% + 62/\j>(a6k + eej). (8)

We used the fact that C being a covariance matrix, it is symmetric so that its eigenvalues are orthog-

onal. We also assumed that the eigenvectors are normalized (thus e;‘-Fek = ;). Remembering the
ansatz €2 + o = 1, we further simplify

(wl Cw)w = ((1 — )M + €))) (aeg + ee;) 9)

=a((1 — A+ ENer + e — (M — Xj)ede;. (10)

Notice that the terms (3), (4) and (10) are all of the form ...ej + ...e;. Since these two vectors are
orthogonal, we can project our rewritten Oja’s rule to one of those. Projecting to e; yields

%6 = 6)\]' — ()\ke - (/\k - )\j)GS) - —()\k - )\j)(f - 63) (11)



This differential equation has 3 fixed points: € = 0 and € = £1. We consider what happens when w
deviates slightly from the ey eigenvector, i.e. |¢] < 1. In that case, %e > 0 when € < 0 and %e <0
when € > 0 (Remember that A\;, > A;). Thus the dynamics will bring € back to zero, and thus « to 1,
making the e vector a stable fixed point of Oja’s rule.

Note that to complete the proof, one should also ensure that
e(to)? +a(ty)? =1=€e(t)? + a(t)? = 1,Vt > t,. (12)

It is equivalent to prove that %(62 + a?) = 0. This is straightforward by noting that
a. %(62 +a?) = 26% + Qa%‘j,

b. we know % from (11) and

c. we can calculate ‘é—? the same way we obtained (11), but projecting on e.

The actual calculation is left as an exercise.

Exercise 2

2.1 Let us consider a neuron that receives an N-dimensional input. Its weight dynamics is given by:

dw o
with
1 05 O 0O ... 0 0.5
05 1 05 0 ... O 0
c—| o o5 1 05 ... 0 o | (14)
05 0 0 0O ... 05 1

Show that for all m € 7Z, the complex vector of components wy = exp (%m), withk=1...N , is
an eigenvector of C. Assume cyclic boundary conditions.

We need to show that Cw = Aw, where A is the eigenvalue. Considering the kth element, we have

2mik
(Cw)r = Aexp < m m) (15)
N
For elements with £k = 2,..., N — 1, the term (Cw)y is
B 2mi(k — 1) 2mik 2mi(k + 1)
(Cw)g = 0.5exp (Nm> + exp (Nm> + 0.5exp (Nm . (16)

Since exp(2min) = exp(2mi(n + 1)), this is actually also true for £ = 1, N. Putting (16) into (15), we
get,

0 =0.5exp <27”(k_1)m> +(1—A)exp <27r]\;km> +0.5exp <2m(;€v+1)m> (17)

oo (225 (030 (Z25m) 4 0 030 (0 s
e (22 (e (22) 1) "




Here we have used the fact that e = cos(x) +isin(z) (and thus €™ + e~ = 2cos(z)). The equation
above only holds if

2mm
=1+ — 2
A cos< N > (20)

This defines N eigenvalues.

2.2 Assume that the neuron receives N input patterns g“ = (&, &, ..., h)T with & =1/ % ((5;; + 5,53“ mod N)H) )

Here, 5,’: denotes the Kronecker symbol, which is 1 if u =k and 0 otherwise. Show that the matriz C
18 produced by:

N

1
Cry = (ghe) = = D_ghel. (21)
pn=1
Let’s calulate the element C}; of the matrix
Chj =+ Zf“f“ (22)
1 N N
_ ~ Z 5 (5];: i 5’(€,u mod N)Jrl) 5 (551 + 6j(u mod N)+1) (23)
- Z Ol 4 opro med MEL gl med N)FLgh g (24)
1| N ( : N ( : N
RN (. mod N)+1 w mod N)+1 cu NS
=3 Zaa +> oL +> 0, o+ st (25)
p=1 p=1 p=1
5? 66 mod N)+1 5{@ mod N)+1 6%
k k j
=05 +0.50(; 1moa ny+1 T 0500 0a Ny 11 (26)
This is indeed the the C' matrix. The 6’“ is the diagonal and the 6(] mod N)+1 is the lower off-diagonal
term: they are 1 only if j = k—1or j = N and £k = 0. The 5€k mod N)+1 element is the upper

off-diagonal term.
Comment on how the weights will evolve given the nature of the input patterns.

Since all eigenvalues of C' are positive (from (20)), the weight vector w will grow exponentially. The
only exception is if N is even and m = N/2, in which case A = 0, which means we have a fixed point
of the rule. This corresponds to the weight vector with components

wy, = exp(mik) = cos(km) + isin(km) = £1. (27)
Exercise 3

We wish to solve the differential equation %w = Cw by writing the dynamics of the synaptic weights
w in the case of a correlation function C(x — ') with continuous variables. Let us consider the case



where:
Clz —a') = e = (28)

We are looking for a base of local eigenfunctions, i.e. eigenfunctions w(z) of C, which by definition
cancel themselves outside the interval [0, L]. These eigenfunctions are generalizations of the eigenvec-
tors of C' that we studied in a previous exercises. To show that w is an eigenfunction, we have to show
that:

L
/0 Clx — 2 )w(z")dz' =  w(x) (29)

where X is an eigenvalue of C'.

Show that w(zx) = cos[u-(x—L/2)] and w(x) = sin[u-(z— L/2)] in the interval [0, L] are eigenfunctions
of C for certain frequencies u. Find theses frequencies and their associated eigenvalue.

Hint:  Use
L L s ’
/ C(x — ') cosfu - (2 — L/2)]da’ = Re/ eV i@ =L/2)] g (30)
0 0
and
L L P
/ C(x —2')sinfu- (2/ — L/2)]d2’ = Im/ e e=alHilu @' =L/2)] gy (31)
0 0

The scope of the exercise is to find the conditions under which the two functions w(z) = cos|u-(x—L/2)]
and w(z) = sinfu - (x — L/2)] are eigenvectors. That is :

L
/0 C(z — 2" )w(z2")dx' = Mw(z) (32)

[u-(z'—L/2)

We therefore calculate the first part by setting w = e I'in order to deal with the two functions

together:

L T L
/ e*'y|zfx’\Jri[u-(:v’fL/Q)]dx/ _ / effy(mfx’)Jri[u-(x’fL/Q)]dm/ + / e'y(:rfx’)+i[u-(z’fL/2)}dxl
0 0 T

_ 1 {’y (2€iu(fo/2) _ e vw—iul/2 _ e’Y(I*L)+wL/2>
,-}/2 + u?

+iu (6—'yx—iuL/2 _ e'y(x—L)—i-iuL/Q)} )
Then we take separately the real and the imaginary part of the above equation. The real part

corresponds to w(x) = cos[u - (x — L/2)] and the imaginary part to w(x) = sinfu - (z — L/2)].
We end up with:

L
Re/ e Me=ltilw @=L/ gat — 9 /(4% + u?) coslu - (x — L/2)] + 1 (33)
0

and

L
Im/ e Mo il (@' =L/2] got — 9~ /(% + u?) sin[u - (x — L/2)] + ¢ (34)
0



with
c1 = (e77% 4 €7@ L)) (—ycos(uL/2) + usin(uL/2)) and
cr = (e77% — Y@= L)) (ysin(uL/2) + ucos(uL/2))

In order that cos[u - (z — L/2)], sin[u - (x — L/2)] are eigenfunctions, both ¢; and ¢z have to be 0.

0= (e—w + eﬂ(r—L)) (=7 cos(uL/2) + usin(uL,2))

< tan(ul/2) = 1,
u

and for the imaginary part,

0= (e‘“’x - 67(“7_1:)) (vsin(uL/2) + wcos(uL/2))

< tan(ul/2) = —% .

These two equations determine the eigenfrequences. Their eigenvalue is given by 2v/(72 + u?).

Exercise 4

Use principal component analysis to reduce the dimensionality of the dataset shown in Fig. 1.
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Figure 1: Original Dataset

a. Center the data by subtracting their mean.

Calculation of the mean:

. . N 11
Similarly, Y = 5.



b. Calculate the covariance matriz of the data.

The covariance matrix takes the form:

C:=- x" —x)(x* —x)7, 36
p;( ) ) (36)
X _ X
Wherex:<y)andx—<y>.
Thus
1 /35 31
0_12(31 35)' (37)

c. Find the eigenvalues & eigenvectors of the covariance matriz end explain their meaning in the
context of PCA.

The characteristic equation of the covariance matrix C is

B 35/12— X 31/12 B
det(C’—AI)-det( 31/12 35/12— A > =0. (38)
Solving the equation, we get two solutions: A\; = 11/2 and Ay = 1/3. The larger eigenvalue

corresponds to the most important eigenvector.

Further, we solve the equations CV; = \V; and C'Va = A\yVa and we find the two (normalized)
eigenvectors:

(%)

and

we ()

V1 corresponds to direction 45° and V5 to 135°. These are the principle components; the new
axes for describing the data sets.

d. Calculate the output data of PCA and discard the less significant component. What are the
principal azes in the original coordinate system? Could you obtain the mew dataset without
making any calculations?

The feature matrix is composed of the eigenvectors (column-wise) in the order of larger to smaller
corresponding eigenvalue:

(VR VR
r=( Ve Vor ) ()

The new data are obtained by multiplying the transposed feature matrix (i.e. with the most
significant eigenvector on top) by a matrix D, whose columns are the mean-centered data x —X:



= O
83
@ I
2z 2
c o
O o>
Ry
mE ° ° ° °
(O]
= ° ° ° °
Ego
o) ° ° ° °
gm
()
&2
O S
as
_4 ‘ ‘ ‘
—4 -2 0 2 4

Direction of the eigenvector
with the larger eigenvalue

Figure 2: Dataset plotted on the new axes formed by V; and Vs.

This will give us the data shown in Fig. 2.

In practice we want to reduce the dimensions of the dataset to the eigenvectors with the larger
eigenvalues, in our case Vi. The feature vector becomes:

FT = (va/2 V3/2) (43)

and the dataset is shown in Fig. 3.
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Figure 3: Reduced dataset plotted on the main principal component V;.

We could have easily foreseen how the reduced dataset would look like. Simply by looking Fig.1,
we can see that the two axes are at 45° and 135°. The projection of the dataset on the axis 45°
gives us Fig. 3.



e. Can you recover the original data? How? Assuming that I have used the whole feature matrix
for calculating the new dataset, we simply need to invert the transformation (42):

D.,=FTD,=FD,, (44)
and then add to the data the means we originally calculated.

For additional information you may read the simple PCA tutorial by Lindsay I Smith.



