
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks

from brain-style computing to neuromorphic computing

Objectives for today:

- review three-factor rules/brain-style computing

- local learning rules for hardware

- neuromorphic chips

- alternative computing hardware

- reducing energy consumption 



Background reading:
University of Zurich/ETHZ Institute of Neuroinformatics.

Rubino∗, Cartiglia∗, Payvand, Indiveri, Neuromorphic analog circuits for robust on-chip always-on learning in spiking neural 
networks (2023)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168620

University of Heidelberg: Schmitt et al. Neuromorphic Hardware in the loop (2017), 

https://ieeexplore.ieee.org/abstract/document/7966125

IBM research lab
Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)
https://en.wikichip.org/wiki/intel/loihi

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

EPFL

A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougne and Romain Fleury, Backpropagation-free training of deep physical neural networks, 
Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474

Recent Development (IBM and INTEL):

Chip companies invest in neuromorphic

Potential reduction of energy consumption with SNN and three-factor rules.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168620
https://ieeexplore.ieee.org/abstract/document/7966125
https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf


Our computers work well, where is the problem?

Machine learning gets better, where is the problem?

Energy consumption!

  - Deep Learning/LLM burns huge amounts of energy

  - Big companies buy (or build) power plants

  - Inference (usage after training) = 90 percent of energy

  - training GPT3 costs 500 000kg Co2 equivalent emission

BUT:

Brain uses 24 – 30 Watt   (5 modern light bulbs)

Carbon Emissions and Large Neural Network Training

D. Patterson, et al. (2021) https://arxiv.org/abs/2104.10350

https://arxiv.org/search/cs?searchtype=author&query=Patterson,+D


(previous slide)

Carbon Emissions and Large Neural Network Training (2021)

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud 

Texier, Jeff Dean

https://arxiv.org/abs/2104.10350

https://arxiv.org/search/cs?searchtype=author&query=Patterson,+D
https://arxiv.org/search/cs?searchtype=author&query=Gonzalez,+J
https://arxiv.org/search/cs?searchtype=author&query=Le,+Q
https://arxiv.org/search/cs?searchtype=author&query=Liang,+C
https://arxiv.org/search/cs?searchtype=author&query=Munguia,+L
https://arxiv.org/search/cs?searchtype=author&query=Rothchild,+D
https://arxiv.org/search/cs?searchtype=author&query=So,+D
https://arxiv.org/search/cs?searchtype=author&query=Texier,+M
https://arxiv.org/search/cs?searchtype=author&query=Texier,+M
https://arxiv.org/search/cs?searchtype=author&query=Dean,+J


brain 

Distributed Architecture

10 billions neurons

memory in the connections

10 000   connexions/neurons

10 000 neurons

3 km of wire
1mm

1mm

Review: Neurons and Synapses form a big network

No separation of 

processing and memory

non-von-Neumann

computing &hardware

‘brain-style computing’



Previous slide.  Review from previous lectures. 

In the first lecture it was mentioned that the brain is radically different from the 

classical von-Neumann architecture that lead to our standard compute devises.

Particularly important differences are that the brain-style computing architecture is 

completely distributed, without centralized clock, no centralized controller and no 

separation of computing and memory.

We take in the following the learning rules of RL as a starting point of what this 

means and mention at the end novel hardware.



brain algorithms

non-von-Neumann

computing &hardware

‘brain-style computing’

Review: Learning Rules of Reinforcement Learning  



Previous slide.  Review from previous lectures. 

RL has two roots: optimization and Markov Decision Problems and Brain 

sciences.

We take in the following the learning rules of RL to see how they lead to 

alternative computing paradigms.



brain algorithms

The learning rule of the (advantage) actor-critic or

REINFORCE with eligibility traces are both compatible

with three-factor rules 

Updates proportional to the reward r or TD error 𝛿𝑡

𝑤𝑙𝑘=  𝑟𝑡 𝑧𝑙𝑘
𝑤𝑙𝑘=  𝛿𝑡 𝑧𝑙𝑘

Review: Three-factor Learning Rules of Reinforcement Learning  

Change of all weights

𝑧𝑙𝑘 ← 𝑧𝑙𝑘𝜆𝑧

Update of all eligibility traces 

𝑧𝑙𝑘 ← 𝑧𝑙𝑘 +
𝑑

𝑑𝑤𝑙𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑙𝑘)]



Previous slides. 

Review of algorithm with actor-critic architecture with eligibility traces.

The Advantage actor critic has parameter updates proportional to the TD error.

Reinforce/policy gradient has updates proportional to the momentary reward.

Apart from this difference, the overall structure of the two algorithms is very 

similar. 



‘learning rule’

of Advantage

Actor-Critic

with eligibility trace

→ Learning rules of other ONLINE RL policy gradient models 

are special cases of (1).

→We take (1) as a starting point to discuss the relation 

with the brain and with hardware 

(1)

Can such a learning rule be implemented in the brain?

Can such a learning rule be implemented in hardware?

Review: Learning Rules of Reinforcement Learning  



Previous slide.  Review from  previous lecture.

In the following we take the Advantage Actor Critic as our Reference Model. 

As we have seen earlier, other Algorithms in the Family of Policy Gradients can 

be identified as special cases. 

Last week we have seen how such a learning rule (update algorithm) be 

implemented in the brain. 

In this lecture we ask: how could an implementation of the actor-critic look like in 

the brain? And in hardware?



𝐿𝐶𝐿𝐴𝑃𝑃
𝑡,𝑙 = max(0,1 − 𝑦𝑡 ⋅ 𝑢𝑡

𝑡+𝛿𝑡,𝑙)

𝑢𝑡
𝑡+𝛿𝑡,𝑙 = 𝒛𝑡+𝛿𝑡,𝑙𝑾𝑝𝑟𝑒𝑑,𝑙𝒄𝑡,𝑙

𝑦𝑡 =
1 𝑖𝑓 𝑠𝑎𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

−1 𝑖𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

                               

Review:  CLAPP Loss

𝑦𝑡 = sameness signal/contrastive signal

𝑢𝑡
𝑡+𝛿𝑡,𝑙 = similarity:

  feedforward vs lateral prediction

Illing,  et al. NeurIPS 2021

Can such a learning rule be implemented in hardware?

→ Biologically plausible local learning rule



Previous slide.

The small index l is the layer index. The last layer is l=L.

Let us look at the loss in the last layer. It is a hinge-loss (picture on the next slide): either 

zero or linear in u.

The variable u  is a measure of the similarity between  the activity state vector z in layer l 

and the lateral prediction from OTHER neurons c = z in the same layer.

If variable y tells whether the prediction comes from the SAME object (y=1) or a different 

object (y=-1).

The boldface z refers to all neuron in a layer. For an interpretation it is easier to look at 

individual neurons such as neuron i in layer l.  Its activity depends ONLY on the 

feedforward pathway 

𝑧𝑖
𝑡+𝛿𝑡,𝑙 = 𝑔(σ𝑗𝑤𝑖𝑗

𝑙 𝑧𝑗
𝑡,𝑙−1 )



brain algorithms

non-von-Neumann

computing &hardware

Local Learning Rules, Spiking Neurons, 

Neuromorphic hardware



Previous slide:

The lecture last week covered the relation between learning rules used by the brain and those implemented 

in modern reinforcement learning algorithms.

This lecture will make the link to recent developments in modern neuromorphic computing architectures that 

are completely different than the class model of von-Neumann computing architectures.

One aspect is that these hardware approaches explore potential advantages of Spiking Neural Networks.

Another aspect is that they rely on local learning rules, in particular three-factor rules.

A third aspect is that they could potentially reduce energy consumption.

This lecture today provides  an outlook onto current developments for specialized, bio-inspired chips that will 

eventually use much less energy than conventional chips. The category of chips is often called neuromorphic 

chips since they take inspiration from biological principles in neuroscience.

In particular, they use communication with spiking neurons and local learning rules.



i

𝜗

note spike+reset to

linear

threshold

Spike emission

reset𝜗I

j

Review: Spiking Neurons – Leaky Integrate-and-Fire Model
(continuous time formulation)

Ii t = 𝑠ℎ𝑜𝑟𝑡 𝑝𝑢𝑙𝑠𝑒𝑠 = σ𝑗𝑤𝑖𝑗 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

𝑢 𝑡 = 0

𝜏𝑚
𝑑
𝑑𝑡
𝑢𝑖 = −𝑢𝑖 𝑡 + 𝐼𝑖 𝑡

𝑢𝑖 𝑡 = 𝜗if

𝑢𝑖



Previous slide: 

The Leaky integrate-and-fire model written in continuous time involves a LINEAR differential equation that 

can be interpreted as an electrical RC circuit charged by a current I(t). Such a circuit is straightforward to 

implement in ANALOG hardware!

The current I(t) consists here of short electrical pulses that present spike arrivals. The 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

denotes the Dirac delta function for each presynaptic spike arrival at times 𝑡𝑗
𝑝𝑟𝑒

and 𝑤𝑖𝑗 are the weights. We 

can interpret  𝑤𝑖𝑗 as the charge delivered by the current pulse at time 𝑡𝑗
𝑝𝑟𝑒

. Again, this is easy to 

implement in analog hardware.

The linear equation is combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero. Easy to implement.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant 

𝜏 = 𝑅𝐶 . Therefore after each short current pulse, the voltage  (membrane potential) decays 

exponentially back to zero with time constant  𝜏 = 𝑅𝐶 .

The time constant of modern hardware is 10’000 times shorter than that of biology! Three years of human 

learning time translates into 2 hours of training neuromorphic hardware.



Review:  Coincidence detection  rule of STDP

Xie and Seung 2003,, Izhikevich, 2007;  Florian, 

2007;  Legenstein et al., 2008,

Fremaux et al. 2010, 2013

Hebb rule/eligibility trace

Success signal

success

Success signal:

TD error 

post

i

pre

j

STDP condition

10 ms

Eligibility trace:

Weight

𝑧𝑖𝑗 > 0 𝑖𝑓 ′STDP − condition′

𝑤𝑖𝑗 = 𝑧𝑖𝑗 𝑆

),,( SUCCESSpostpreFwij 



Previous slide:

A specific biologically plausible three-factor rule with eligibility traces would be the following:

- Spike-Timing-Dependent Plasticity (STDP) picks up coincidences between pre and postsynaptic spikes on 

a time scale of 10 milliseconds. STDP is hence a spike-based version of Hebbian learning. 

- If furthermore the success signal arrives within one second, then the weight is updated.



Review: Three-factor rules with eligibility trace

𝑧𝑖𝑗 = 𝑓(𝜑𝑖) 𝑔(𝑥𝑗) 

𝑀 𝑆 Ԧ𝜑, Ԧ𝑥 𝑧𝑖𝑗

pre

post
ij

Success signal

𝑀(𝑆 Ԧ𝜑, Ԧ𝑥 )𝑥𝑗 = activity-trace left by of presynaptic neuron

𝜑𝑖 = activity-trace left by of postsynaptic neuron

𝑤𝑖𝑗 = 

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑧𝑖𝑗 ← 𝜆𝑧𝑧𝑖𝑗
Step 3: eligibility trace translated into weight change

Three-factor rule defines a framework



Previous slide:

There are many different Hebbian rules or STDP rules. Similarly, there is not a single three-factor rule. 

Rather three-factor rules are a framework formulated as follows:

- The trace left by presynaptic activity contributes some nonlinear factor  𝑔(𝑥𝑗) 

- The trace left by postsynaptic activity contributes some nonlinear factor 𝑓(𝜑𝑖) 

- The eligibility trace 𝑒𝑖𝑗 is changed proportional to the two factors f times g

- The eligibility trace decays by a factor 𝜆𝑧 corresponding to a time scale of about one second 

- Weights are updates proportional to eligibility trace 𝑒𝑖𝑗 times M  with a modulator M that is a nonlinear 

function of the success S. The modulator is the ‘third factor’ in the update rule.

- The modulator M adjusts not only the learning speed but also the direction of change. In other words, the 

sign of the update  (increase/decrease) depends on the sign of M.

𝜆𝑧



brain algorithms

non-von-Neumann

computing &hardware

Three- factor Learning Rules and Spiking Neurons 
Summary:
- Neurons communicate by 

short pulses

- EPSPs decay over 10ms

- Pulses last 1ms

- Pulses are rare events

- A pulse timing pre-before-

post (within 20ms) sets an 

eligibility trace

- The eligibility trace decay 

over 1s

- Dopamine, a global 

neuromodulator, sends a 

TD signal 
Exploit: spikes are ‘rare’ events.

(most of a time a neuron does not a emit a spike)



Previous slide:

After this introduction to spiking neurons, and  review of three-factor rules, we make a small detour to an 

application that you have seen already at several occasions.

And then we are  prepared to look at the first hardware implementation.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks : 

from brain-style computing to neuromorphic computing

1.   Review: brain-style computing

2. Spikey Chip/BrainScales (Univ. Heidelberg) 



(previous slide)

Neuromorphic hardware is a hot topic.

Many (but not all) neuromorphic chips use spiking neurons.

Gläscher et al. 2010



University of Heidelberg: Brainscales/Spikey

Integrate-and-fire neurons on chip. STDP on chip.

Analog hardware (physical realization).

Pfeil et al., Front. Neurosci. 2013

https://doi.org/10.3389/fnins.2013.00011

https://doi.org/10.3389/fnins.2013.00011


Pfeil et al., Front. Neurosci. 2013



University of Heidelberg: Brainscales/Spikey

Schmitt et al.

2017 International Joint Conference on Neural Networks 

(IJCNN), DOI: 10.1109/IJCNN.2017.7966125

Waverscale integration:

-512 neurons/chip

-384 chips/waver

-analog neurons (RC circuit)

-digital communication

-energy: 0.1 nJ per syn. event

-learning with hardware in the 

loop

https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding
https://doi.org/10.1109/IJCNN.2017.7966125


(previous slide)



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Spikey Chip (Univ. Heidelberg) 

3. Loihi Chip (INTEL)



brain algorithms

non-von-Neumann

computing &hardware

Three-factor Learning Rules 

Spiking neurons (event-based signal transmission)



INTEL:

Loihi (announced 2017, appeared 2018)

Loihi2 (announced fall 2021): 1 chip = 1Mio neurons 



Previous slide:

The Loihi chip of Intel that appeared as a research support chip in 2017/2018 is interesting because it gives 

a direct implementation of three-factor rules where the third factor is a GLOBAL signal

The modern chip Loihi2 moved away from this concept. There is still a third factor but it is now LOCAL per 

neuron. This also enables to implement BackProp algorithms



INTEL, Loihi research chip

Computing Architectures

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf



Previous slide:

This slide from INTEL emphasize the differences in the computing architecture of LOIHI (first chip).

LEFT: classical von Neumann computing with separation of CPU and memory. Compute operations are 

mapped to logical operations performed in discrete time.

MIDDLE: Parallel computing and GPU architectures. The separation of computing and memory remains, and 

operations are still performed in discrete time. The only difference is that certain operations (such as 

convolutions) or updates of layer-wise dynamics in ANNs can be performed in parallel.

RIGHT: Neuromorphic computing architectures. Neurons compute with spikes which leads to nonlinear 

compute operations and signal transmission at rare moments in time defined by the moments of threshold-

crossing.  In between neurons are updated  in ‘subthreshold’ mode with simple linear operations (leaky 

integration). Ideally, computing is asynchronous and in continuous time (even though this specific INTEL 

hardware implementation is still ‘digital’).

More recently the first generation of Loihi has been replaced by Loihi2 with more general functionalities.



Two related arguments:

- energy consumption:

Loihi < 1 W  (GPU > 300W)

- asynchronous computing/event-based messaging

1 chip = mesh of 128 neuromorphic cores

Spiking neural network (SNN)

1 core = 1024 simple spiking neurons:

leaky integrate-and-fire 

On-chip integrated learning rule

https://en.wikichip.org/wiki/intel/loihi

https://en.wikichip.org/wiki/intel/loihi


Previous slide:

Why would one want to change the computing architecture?

Essentially because asynchronous, event-based computing could lead to enormous reductions in energy 

consumptions, since the expensive nonlinear processing steps and transmission steps are sparse in time: 

they are rare compared to the elementary time step in a discrete-time implementation.

1 chip contains 128 cores, each one able to simulate about 1000 simple leaky integrate-and-fire neurons.



Loihi: (first chip, 2018)

- 128 neuron cores per chip

- Up to 128’000 neurons per chip

- 2 billion transistors

- Fully digital chip

- Standard integrate-fire

neuron model

- Three-factor learning rule

trace(pre) trace(post) success

‘each spike leaves a synaptic trace’

→ STDP coincidence (time scale 10ms in biology)



Previous slide:

Importantly, the framework of the  learning rule that is possible on the Loihi chip is exactly that of three-factor 

rules explained above.

Each presynaptic spike leaves a trace (synaptic trace/NOT eligibility trace). The combination with the trace 

left by a postsynaptic spike gives the coincidence signal. Further combination with a success signal defines 

the weight update.



Learning rules

→Loihi (2017): Three-factor learning rules 
presynaptic factor, postsynaptic factor, global success

→ single-layer RL algorithms

→ Loihi2 (2022): Detailed three-factor learning rules

presynaptic factor, postsynaptic factor, neuron-specific feedback

→ approximate BackProp in Multi-Layer RL



Previous slide:

In the new version, they generalized the learning rule so that it can now also implement an approximate 

version of BackProp. 





Previous slide:

Official INTEL slide.



Loihi2 (2022):

- 128 neuron cores per chip

- Up to 1 Mio neurons per chip

- 2 billion transistors

- programmable neuron model

- programmable learning rule

f(pre),g(post),3rd(neuron_i)

- spike broadcast at 

destination chip

- convolutional networks

- outer-product weight matrix

- Linked to C/Phython

programming interface



Previous slide:

Apart from spike broadcast (as opposed to targeted delivery lines), the chip also implements features such 

as weight matrices compatible with convolutional neural networks and outer-product weight matrices 

(factorial, see conv-net lecture).

Importantly, the learning rule framework now enables the user to switch from a GLOBAL third factor to a use-

defined programmable NEURON-specific third factor.



The 80-percent question again:

[ ] In this hardware part, at least 60 percent of the 

material was new to me.

[ ] for this hardware part,  I have the feeling that I  

understood at least 80 percent of the material

(at the rough level at which it was presented)



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : 

from brain-style computing to neuromorphic computing

1. Detour:  Spiking Neural Networks (SNN)

2. Example: Navigation in a Maze  (Model Study)

3. Loihi Chip (INTEL)

4. Memristor technology (IBM)



© 2020 IBM Corporation

Bert Jan Offrein

Analog synaptic signal processing 
for neural network inference and training

Neuromorphic Devices and Systems Group, IBM Research Europe - Zurich



Reading
Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic 

devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

The slides are adapted from a presentation of Bert Offrein who 

leads a group of neuromorphic computing at IBM research in 

Zurich-Ruschlikon.

https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915


Accelerating Neuromorphic Workloads – Innovation required at all levels

IBM slide



Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix 

elements as a result of a learning rule (‘algorithm’, right). 



Three pillars for Si technology
Packaging in 3 dimensions

ScalingNew combinations of Materials

www.semi.org

The traditional scaling law (‘Moore’s law’) is dead! IBM slide



Previous slide:

In the IBM research the focus is more on new materials that enable faster and energy-efficient matrix 

multiplication as well as weight-update rules.

The three drivers of the changes are:

Left: New materials combine many more elements than older ones.

Middle: Moore’s law, the traditional scaling law of hardware performance increase, has come to its end.

Right: Packaging has to go from 2-dim to 3-dim arrangements.



Experiment: “Human Brain vs. Computer”

Task 1: Mathematics

2= ?

Task 2: Image recognition

Traditional silicon scaling ended

New types of problems gain interest

Explore new functionalities, More than Moore

Explore new computing paradigms

- approximate computing

- large parallel data streams



Previous slide:

This shows a simple theoretical experiment, where we want to compare the performance of the human brain 

with a computer based on two different tasks.

In task 1, both candidates have to calculate the square root of 2 as fast as possible.

In task 2 both candidates have to interpret a scene.

The point is that that task requirements in task 2 are very different!

For example, a single noisy pixel (or noisy compute process) is less relevant. Handling of large data streams 

is more important.



Review Brain inspired computing:

• Feed-forward sequential processing

• Information encoded in signal amplitude 

• Neuron activation: Accumulate + 
Threshold 

• Training: Backpropagation Algorithm

Deep Artificial Neural Network:Brain-like Neural network:

Simplify

“Cat”

“Dog”

“Mouse”

▪ Omni-directional signal flow

▪ Asynchronous pulse signals

▪ Information encoded in signal 
timing/Spiking Neural Networks

➔ Difficult to implement efficiently on 
standard computer hardware

Information processing flow

“Mouse”

“Dog”

“Cat”

IBM slide



Previous slide:

Standard comparison of a few differences Brain vs ANN. Not shown in class.



For many training cases x with target response t:

1. Forward Propagate:

2. Determine output error:

3. Backward Propagate: Determine neuron input 

influence 𝛿 on error E:

4. Adjust the active weights, proportional to their 
influence on the error:   Δ𝑊 = −𝜂 𝒙⨂𝜹

Review:  Training with  Backpropagation algorithm

: Signal vector

: Synaptic weight matrix

: Per-element neural activation     
function (sigmoid)

𝑊𝑛

𝜎

Neural net as chain of vector operations:

x 𝑊1 𝜎 𝑊2 𝜎 y

Input Output

𝑊3 𝜎

Backpropagation algorithm:

x 𝑊1 𝜎 𝑊2 𝜎 y𝑊3 𝜎
𝑥1 𝑥2 𝑥3

(𝒚 − 𝒕)2 E

x 𝜎′ 𝜎′ E𝑊3
𝑇 𝜎′𝑊2

𝑇𝑊1
𝑇

𝛿1 𝛿2 𝛿3

x Δ𝑊1 𝜎 Δ𝑊2 𝜎 yΔ𝑊3 𝜎
𝑥1 𝑥2 𝑥3𝛿1 𝛿2 𝛿3

𝑥

𝜎
(𝑥
)

0

1

0 IBM slide



Previous slide: not shown in class

Backpropagation involves 

- multiple Matrix multiplications (weight matrix per layer)

- Update of the matrix elements (learning rule)



Analog signal processing for scalability

▪ Limiting factors of von 

Neumann architecture
▪ Memory access

▪ Sequential operations

▪ Digital signal processing

61

▪Overcome by
▪ In-memory computing

▪ Parallel operations

▪ Analog signal processing

Processing 
Unit

Compute effort ~O(#Neurons2) Compute effort ~O(N)

Electrical (and optical solutions) are viable candidates

IBM slide



Previous slide:

For these kind of matrix operations we should exploit new computing concepts.

The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons 

per layer increases.



Training of Artificial Neural Networks: many matrix multiplications  

Training by Backpropagation Method: 

• Processing dominated by many large matrix operations

• Forward Propagation: 𝑊1,2..

• Backward Propagation:  𝑊1,2..
𝑇

• Weight Update:              ∆𝑊1,2..

Scale ∝ 𝑁2

GPU▪ Inefficient on standard Von Neumann systems:
– (Mostly) Serial processing
– Low computation to IO ratio →Memory 

bottleneck

For fast and efficient neural network data processing:

▪ Fully parallel processing

▪ Tight integration of processing and memory

▪ Analog signal processing

Neurons/layer

 G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016–Febru, no. 408, p. 4.4.1-4.4.4, 2016.

 T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1–13, 2016.

Crossbar arrays
• Electrical
• Optical

𝒙

𝑾𝒙

IBM slide



Previous slide:

Top:

In the week on BackPropagation we already discussed the scaling:

The algorithm scale proportional to the number of weights.

Assume that we have many layers and N neurons per layer. Then the scaling is O(𝑁2).

This is true for each of the three steps: forward pass, backward pass, weight update. 

Bottom:

With analog implementation of the matrix multiplication we should be able to achieve a better scaling:

Forward pass: O(1)

Backward pass: O(1)

Weight update: O(𝑁2) ????



Efficient training of Deep Artificial Neural Networks:

𝒙

𝑾𝒙

Matrix multiplication = Ohms law:  V=R I → I=V/R

Input signal 𝑥𝑗 = 𝑉𝑗 voltage of neuron j 

Weight        𝑤𝑖𝑗 = 1/𝑅𝑖𝑗   resistor at crossing

Output   𝐼𝑖 = σ𝑗

𝑉𝑗

𝑅𝑖𝑗
=σ𝑗𝑤𝑖𝑗 𝑥𝑗 current into neuron i

Electrical crossbar array: 

Images: IBM



Previous slide:

Each blue bar is a perfect conductor. The red crossing points are tunable resistors that play the role of 

synaptic weights.

From Ohm’s law follows that the current from neuron j to neuron i is 𝐼𝑖𝑗 = 𝑉𝑗/𝑅𝑖𝑗.

Kirchhoff’s law (conservation of current) gives the final summation equation.



Tunable weights via  Memristive Devices

• Resistance depends 
on molecular 
configuration

• Resistance increase or 
decreases with 
voltage pulses above 
threshold values

• Resistance keeps 
memory 

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous & 

symmetric 

change of R

Understanding the mechanism

‘memory of resistance’ = ‘memristor’

Images: IBM
large pulse> pos. threshold

large neg. pulse  



Previous slide:

Memristive material studied by IBM.

The basic function  arises from the following principle. 

The  material in light blue is an electrical  insulator (dielectric material). However, with a first strong voltage 

pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red 

column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a 

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be 

made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower 

left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and 

resistance for a long time. It has a ‘Memory of Resistance’ → Memristor.



Efficient training of Deep Artificial Neural Networks: spiking network

- Fully parallel processing

- Pulse coding

- Stochastic Poisson Process

Crossbar arrays
• Electrical 𝒙

𝑾𝒙

Weight 

update

order 1 !

Gokman and Vlasov, Acceleration of Deep Neural 

Networks with Resistive Cross-Point Devices

Frontiers, 2016

- Local Hebbian Learning rule

- Spike coding (SNN)

𝒙

stochastic spikes
∝ 𝒈(𝑾𝒙)



Previous slide:

We now image the following coding principle (not yet implemented in hardware, but proposed some years 

ago).

Each presynaptic neurons sends voltage pulses (‘spikes’ of finite width) at random moments in time (Poisson 

process).

Each postsynaptic neuron sends voltage pulses (‘spikes’ of finite width) at random moments in time (an 

independent Poisson process).

The amplitude of the single pulse is such that it does not reach the switching amplitude of the memristive

material. But if two pulses coincide, then it reaches the threshold and increases the weight (decreases the 

resistance).

Thus we have a proposition to implement a local (two-factor) Hebbian learning rule in hardware. And, 

unexpectedly, we need spike coding for this implementation scheme!



Gokman and Vlasov, Acceleration of Deep Neural 

Networks with Resistive Cross-Point Devices

Frontiers in Neuroscience, 2016



Previous slide:

This is a copy of the relevant section of the original publication



The device challenge

• RR
AM

73

Courtesy E. Vianello

- Create breakdown

(‘mild shortcut)

- Make size of breakdown tunable

w=1/R

Images: IBM



Previous slide:

Here The  material in yellow  is an electrical  insulator (dielectric material). However, with a first strong 

voltage pulse one can create an initial breakdown (blue channel) in the material. 

The question now is the following: Can we SMOOTHLY TUNE 

sith several additional medium-sized positive voltage pulse (red),  or  negative voltage pulse (blue), one 

can return to the initial configuration (lower left).



0 500 1000 1500 2000

3.0k

3.5k

# of pulses

R
 (

o
h

m
)

 Vreset= 1.6V, Vset= 1.7V

 Vreset= 2.2V, Vset= 2V

 Vreset= 2.2V, Vset= 1.9V

      #200 pulses up/down 

      Fixed pulse duration 500ns

D34_12um

Understanding the mechanism

Changes induced by 200 pulses up (and down) 

→ change the weights of ANN by appropriate pulses

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous & 

symmetric 

change of G

Experimental demonstration of symmetric and continuous change of G

Images: IBM



Previous slide:

Experimental test with the material at the bottom shows that smooth tuning is possible (blue dots). Horizontal 

axis shows the number of pulses applied. After about 200 pulses the sign is switched so that the resistance 

goes down again.



5/20/2025

0 200 400 600 800 1000

2k

3k

4k

5k

R
 (

W
)

t (s)

LRSmin

1. Negative sweep to put it in Low-Resistance State
2. Read at 0.2V constantly for 1000s
3. Negative + positive cycle to put it in

increasing High-Resistance State (HRS)
4. Read at 0.2V constantly for 1000s for

each HRS

Intermediate states show no drift up to 
1000 s
→We can change values of resistance
→New resistance is reliable over time
→We can change again
→‘Online Learning’

Valeria Bragaglia Email: vbr@zurich.ibm.com77

Retention of the Resistance Values over time (intermediate values)



Previous slide:

Moreover, after tuning the resistance remains constant



IBM Research

IBM Confidential © 2019 IBM Corporation

• Analog AI Cores

• For the synaptic processing 
function

• Apply memristive devices: 
Ohms law & Kirchhoff’s law

• Parallel forward inference & 
backward and weight update

compute performance

efficiency
Analog synaptic processing

New memristive

devices required

Inference Training
Resistance 1-100 MW 1-100 MW

# Levels 100 1000

Weight set / update To desired level Symmetric

AI Technology roadmap



Previous slide: not shown in class

The road map shows several aspects:

- Traditional scaling has increased not only the compute power, but also reduced the Watt per Flop.

- Traditional scaling expected to come to an end (or may continue, red dots)

- Staying digital, but allowing for approximate computing might give an extra jump in performance

- Going analog would yield a further jump.



The 80-percent question again:

[ ] In this hardware part on memristors, at least 60 

percent of the material was new to me.

[ ] for this hardware part, up to here, I have the 

feeling that I  

understood at least 80 percent of the material



Previous slide:



Analog crossbar arrays: Update for BackProp

Electrical crossbar array: 

Ԧ𝑥

Ԧ𝛿

Ԧ𝑥

𝑊 Ԧ𝑥

Forward 
propagati
on:

Ԧ𝛿

𝑊𝑇 Ԧ𝛿

Backward 
propagati
on:

Weight 
update:

▪Weight update: proportional to signals 
on row and column

–Symmetric increase and decrease of 
weight

– >1bit analog levels required

▪Physical challenge: Identify material 
systems that meet these requirements

Training cycle

R
es

is
ta

n
ce

target
non-ideal

Δ𝑤𝑖𝑗 = −𝜂 𝑥𝑖 𝛿𝑗



Previous slide: not shown in class.

To have an impact, local Hebbian rules are not enough.

But one can also extend these ideas to local implementations of BackPROP.



Neuromorphic – local learning rules in hardware

→ Extension from two-factor to three-factor rules possible O(1)!

→ Extension to (approximative) Backprop possible O(N)!



Literature of ferroelectrics in AI hardware

• FTJ • FeFET

Group Name / DOC ID / 

Month XX, 2019 / © 2019 

86

Ferroelectric
• 2011: discovery of a ferroelectric phase in HfO2.

• 2017: FeFET integrated in a 28nm HKMG 
technology (Mulaosmanovic et al., VLSI 2017)

• 2018: IBM: crystallization of HfZrO4 in the FE 
phase below 400°C (O’Connor et al., APL 
Mater. 6, 121103 (2018))

• 2020: this work: first demonstration of a BEOL, 
CMOS FeFET



Summary

• Silicon technology remains the basis for computing devices

• Leverage existing processes, infrastructure and know-how

• Continuous extending of materials and function

• New computing paradigms – Neuromorphic computing  -
provides a path to handle unstructured data

• Analog signal processing in crossbar arrays

• Parallel processing of key algorithms in neural networks

• Electrical and optical implementations

→ Extension to three-factor rule possible!



Previous slide:



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks : 

from brain-style computing to neuromorphic computing

1.   Review: brain-style computing

2. Spikey Chip (Univ. Heidelberg) 

3. Loihi Chip (INTEL)]

4. Memristor chips (IBM)

5. Even more non-standard computing (EPFL)

→ use physics for rapid and cheap nonlinear ‘computing’

A. Momemi, B. Rahmani, M. Mallejac, Philipp del Hougne and Romain Fleury, Backpropagation-free 
training of deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474



Previous slide:

Romain Fleury is Professor in STI, Laboratory of Wave Engineering 

A. Momemi, B. Rahmani, M. Mallejac, Philipp del Hougne and Romain Fleury, Backpropagation-free 
training of deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474



Local learning rules for physical hardware

Like in CLAPP:  -contrastive learning (positive and neg. samples)

-layer-wise loss function

-linear weight matrix is optimized by learning

Hardware:          nonlinearities implemented by physics



Previous slide and next slide:

A. Momemi, B. Rahmani, M. Mallejac, Philipp del Hougne and Romain Fleury, Backpropagation-free 
training of deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474

- Input is high-dimensional, but shown here plotted here organized in 1d. 

→ discretize the horizontal axis, and then you can read-off the input values

- The nonlinear transform is fixed (physical transformation), and only the weights are

learned



A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougne and Romain Fleury, Backpropagation-free training of 
deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474

MMOC:

Multi-modal 

optical cavity

CCD-camera

Charge-

Coupled Device

SLM:

Spatial light 

modulator

Physical hardware for nonlinear data transforms



Previous slide:

Wikipedia: A spatial light modulator (SLM) is a device that can control the intensity, phase, or polarization of light in a 

spatially varying manner. A simple example is an overhead projector transparency. Usually when the term SLM is used, it 

means that the transparency can be controlled by a computer.

https://en.wikipedia.org/wiki/Spatial_light_modulator

In the paper of Momeni, the SLM encoded information in the phase (in contrast to the Wikipedia example of 

an overhead projector, where only the intensity is modulated).

“The physical optical system performed a complex spatial transformation. Although this transformation was linear in 

the complex domain, the process became nonlinear as a result of the data being encoded onto the phase (SLM) and 
the subsequent measurement of the intensity squared on the camera.»

A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougne and Romain Fleury, Backpropagation-free training of 
deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474

https://en.wikipedia.org/wiki/Intensity_(physics)
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Overhead_projector
https://en.wikipedia.org/wiki/Transparency_(projection)
https://en.wikipedia.org/wiki/Computer


Physical hardware



Previous slide:

On the right: actual lab realization of the acoustic nonlinear physical system

A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougne and Romain Fleury, Backpropagation-free training of 
deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474



Optical system:
«At inference–time (usage of trained network) energy–efficiency 
advantage of ~8000× compared with that of digital-electronic 
processors for large-scale future transformer models»

A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougne and Romain Fleury, Backpropagation-free training of 
deep physical neural networks, Science (2025) 383:1297–1303

https://www.science.org/doi/10.1126/science.adi8474

MMOC:

Multi-modal optical cavity

CCD-camera

Charge-Coupled Device

SLM:

Spatial light modulator

Local learning rules for physical hardware



(previous slide)

Alternatives to standard chips are a hot topic. The reason is again energy 

consumption.



The 80-percent question again:

[ ] In this hardware part on physical neural nets, at 

least 60 percent of the material was new to me.

[ ] for this hardware part, up to here, I have the 

feeling that I  

understood at least 80 percent of the material

(at the level at which it was presented)



Previous slide:



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks : 

from brain-style computing to neuromorphic computing

1.   Review: brain-style computing

2. Spikey Chip (Univ. Heidelberg) 

3. Loihi Chip (INTEL)]

4. Memristor chips (IBM)

5. Even more non-standard computing (EPFL)

6. The problem of Energy consumption 



brain algorithms

non-von-Neumann

computing &hardware

Learning Rules 



Energy consumption of the brain

• Sedentary humans eat and use 2500 kCal per day

• Translate to Joule → 10 000 kJ

• Brain facts: 20 percent of energy consumption of human at 
rest goes into the brain

• Most of it goes into synaptic signaling (spike transmission)

• Brain uses 24 – 30 Watt   (5 modern light bulbs)

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

The power consumption of the brain is relatively low!

→ 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain


Previous slide. 

Claim the power consumption of the brain (30W) is relatively low.

Low compared to what?

- Compare with GPU

= Compare with household power consumption.



Energy consumption of one GPU

• 300 W (RX 6800/6900 XT)

• 350 W (RTX 3080/3090)

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

→ 10h of training an ANN on 1 GPU = 3.5 kWh

12 months GPU usage → 3000 kWh

1 day of training an ANN on 1 GPU = 8000Wh   = 8 kWh

4 months GPU usage → 1000 kWh

https://www.tomshardware.com/features/graphics-card-power-consumption-tested


Previous slide:

A day has 24 hours.  So we multiply the power (350W) with the number of hours.

4 months have 120 days.  Again a simple multiplication

The question then is: are 3000kWh per year a lot?

We need to compare with ‘normal’ energy consumption.



Electrical household energy consumption

Typical Swiss electricity use in household (fridge, TV, light)

→ about 1000 kWh per year and person.

• 2 persons sharing apartment = 2200kWh per year

• 4 persons sharing house = 4000kWh per year

Heating/warm water with heat pump 

4 persons sharing house:   6000kWh per year 

→ 1500 kWh per year and person

https://pubdb.bfe.admin.ch/de/publication/download/10559

https://pubdb.bfe.admin.ch/de/publication/download/10559


Previous slide:



Comparison

• Brain 30W                → 260 kWh per year and person

• Living in Switzerland → 2500 kWh per year and person

• GPU                         → 3000 kWh per year and GPU

Problem!!!!

Solution? – use your machine carefully!

- think about better computer architecture!



Previous slide:

The problem is that if you your model optimization uses on average a single GPU over the year, you use 

more energy on your GPU than you use by living in a normal rental apartment.



The neural network size explosion

• Source: 
NVIDIA



Previous slide:



The compute explosion
Source: 
Openai.com
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Previous slide:



The power and carbon emission explosion

• Source: E. Strubell et al.,  
arXiv:1906.02243oil/gasoline: 1liter = 10kWh = 2.5 kg CO2

1000 km by plane emits as much CO2 as 1000 km by car.
New York → Geneva = 6200km



Flight Geneva →New York

1 beef meal per day

Heating  50m2: 21 vs

(fossil fuels)    19  

heat pump 

Fabrication TV screen

1 paper cup per day

o

o



Where can YOU contribute?



Le Temps, April 30, 2024, Bien au Contraire:

Decarboniser l’aviation



Energy consumption problem (for computing) 
will further increase over time!

Solution? – use your machine carefully!

- think more, simulate less! 

- invent better computer architecture!

Global warming is a reality! 
→ Some regions no longer inhabitable/agriculture
→ Big migration waves/relocation

Solution? – tax on CO2
- reliable and predictable increase from 10cent

to 100 dollars over 25 years.
- few countries start, others will follow



Thanks!

The END
… for today. There will be 1 more session. 





your EPFL e-mail will soon be migrated to Exchange 
Online on 20.05.2025.
This migration requires to modernize our e-mail 
clients
What to do before the migration
•Make sure you are using a compatible email client: 

• Microsoft Outlook
• Apple Mail
• Thunderbird
• Gmail

•Check that your email client is correctly configured 
by following the documentation: EPFL Messagerie
and Listes
What to do on the day of migration and after
•Restart or reconfigure your email client if necessary 
(EPFL Messagerie and Listes, How To videos)
In the event of a problem after reconfiguring your e-
mail client
•Consult the Knowledge Base
•Contact Service Desk IT Support
•Temporarily use https://outlook.office.com
•Please check the ‘Junk mail’ folder for important 
messages

https://www.epfl.ch/campus/services/en/it-services/email-and-lists/
https://www.epfl.ch/campus/services/en/it-services/email-and-lists/
https://www.epfl.ch/campus/services/en/it-services/email-and-lists/
https://epflch.sharepoint.com/sites/ProjetdeploiementM365/SitePages/Exchange-Online---tout-ce-que-vous-devez-savoir-!.aspx
https://go.epfl.ch/KB0017853?utm_medium=email&utm_source=Migration+EXO&utm_content=Knowledge+Base
https://www.epfl.ch/campus/services/ressources-informatiques/support-informatique/
https://outlook.office.com/
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