Wulfram Gerstner

I'ea"“ng 1 Ne“ral Nﬂtwnrks EPFL, Lausanne, Switzerland
from brain-style computing to neuromorphic computing

Objectives for today:
- review three-factor rules/brain-style computing
- local learning rules for hardware
- neuromorphic chips

- alternative computing hardware
- reducing energy consumption



Recent Development (IBM and INTEL):
Chip companies invest In neuromorphic

Potential reduction of energy consumption with SNN and three-factor rules.

Background reading:

University of Zurich/ETHZ Institute of Neuroinformatics.
Rubino %, Cartiglia *, Payvand, Indiveri, Neuromorphic analog circuits for robust on-chip always-on learning in spiking neural

networks (2023)
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168620

University of Heidelberg: Schmitt et al. Neuromorphic Hardware in the loop (2017),
https.//ieeexplore.ieee.org/abstract/document/7966125

IBM research lab
Bert Offrein et al., 2020, Prospects for photonic implementations of heuromorphic devices and systems, IEEE Xplore,
https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)

https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief. pdf

EPFL
A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougne and Romain Fleury, Backpropagation-free training of deep physical neural networks,

Science (2025) 383:1297-1303
https://www.science.org/doi/10.1126/science.adi8474


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168620
https://ieeexplore.ieee.org/abstract/document/7966125
https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Our computers work well, where Is the problem?
Machine learning gets better, where Is the problem?

Energy consumption!
- Deep Learning/LLM burns huge amounts of energy
- Big companies buy (or build) power plants

- Inference (usage after training) = 90 percent of energy
- training GPT3 costs 500 000kg Co2 equivalent emission

BUT:
Brain uses 24 — 30 Watt (5 modern light bulbs)

Carbon Emissions and Large Neural Network Training
D. Patterson, et al. (2021) https://arxiv.org/abs/2104.10350



https://arxiv.org/search/cs?searchtype=author&query=Patterson,+D

(previous slide)

Carbon Emissions and Large Neural Network Training (2021)

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miguel Munguia, Daniel Rothchild, David So, Maud
Texier, Jeff Dean

https://arxiv.org/abs/2104.10350

L4

TPU v2 521 50, Transformer (Big), Evolved Transformer (Medium), Neural Architecture
Search [So019]

TPU v3 283 10% T5, Meena, Gshard, Switch Transformer

IP100 GPU 571 11% Transformer (Big), Evolved Transformer (Medium), Neural Architecture
Search [S019]

V100 GPU 325 2%  Transformer (Big), GPT-3 [Sut21]

Table 3. Average system power per processor and standard deviation for DNNs in this paper. We
measured the Google DNNs (see Tables 1 and 4). OpenAl measured GPT-3 in a Microsoft Azure

datacenter [Sut21].


https://arxiv.org/search/cs?searchtype=author&query=Patterson,+D
https://arxiv.org/search/cs?searchtype=author&query=Gonzalez,+J
https://arxiv.org/search/cs?searchtype=author&query=Le,+Q
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https://arxiv.org/search/cs?searchtype=author&query=So,+D
https://arxiv.org/search/cs?searchtype=author&query=Texier,+M
https://arxiv.org/search/cs?searchtype=author&query=Texier,+M
https://arxiv.org/search/cs?searchtype=author&query=Dean,+J

Review: Neurons and Synapses form a big network

10 000 neurons
3 km of wire

1mm

non-von-Neumann tmm
computing &hardware
‘brain-style computing’

10 billions neurons
10 000 connexions/neurons

( memory Iin the connections

No separation of
rocessing and memory

Distributed Architecture



Previous slide. Review from previous lectures.

In the first lecture it was mentioned that the brain iIs radically different from the
classical von-Neumann architecture that lead to our standard compute devises.

Particularly important differences are that the brain-style computing architecture Is
completely distributed, without centralized clock, no centralized controller and no

separation of computing and memory.

We take in the following the learning rules of RL as a starting point of what this
means and mention at the end novel hardware.



Review: Learning Rules of Reinforcement Learning
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brain algorithms
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Previous slide. Review from previous lectures.

RL has two roots: optimization and Markov Decision Problems and Brain
sciences.

We take in the following the learning rules of RL to see how they lead to
alternative computing paradigms.



Review: Three-factor Learning Rules of Reinforcement Learning

Update of all eligibility traces
Zik < ZiAs

— Z + dvflkln[ﬂ(a\s, wl)]

brain algorithms| ~ “

v Change of all weights
Awie=n O¢ Zik

The learning rule of the (advantage) actor-critic or

REINFORCE with eligibility traces are both compatible
with three-factor rules

AWy =N 1 Zi

Updates proportional to the reward » or TD error 9,




Previous slides.
Review of algorithm with actor-critic architecture with eligibility traces.

The Advantage actor critic has parameter updates proportional to the TD error.
Reinforce/policy gradient has updates proportional to the momentary reward.

Apart from this difference, the overall structure of the two algorithms Is very
similar.



Assume the transition to state T with a reward of ™! after taking action a® at state z*. The learning rule
for the Advantage Actor-Critic with Eligibility traces is

0 — T by, (2P — *i}n;,(mt)
2V — A2 + V., 00 (.’L‘t)

‘learning rule’
of Advan_tgge 27« X2% + Vomg(a'|2") (1)
Actor-Critic W W+ o

with eligibility trace \\ 6« 0+ a%:%

- Learning rules of other ONLINE RL policy gradient models
are special cases of (1).

- We take (1) as a starting point to discuss the relation
with the brain and with hardware

Can such a learning rule be implemented in the brain?
Can such a learning rule be implemented in hardware?



Previous slide. Review from previous lecture.
In the following we take the Advantage Actor Critic as our Reference Model.

As we have seen earlier, other Algorithms in the Family of Policy Gradients can
be identified as special cases.

Last week we have seen how such a learning rule (update algorithm) be

Implemented in the brain.

In this lecture we ask: how could an implementation of the actor-critic look like In
the brain? And in hardware?



Review: GLAPP 10SS lling, et al. NeurlPS 2021

CLAPP
t,l _ £ t+6t pred
Lépapp = max(0,1 =y -y, ) N
uttott = similarity:
u§+5t,l — 8t yypredl ot 2
s
feedforward vs lateral prediction we|
y* = sameness signal/contrastive signal . [00'®
. 1 if same sample )
"= _1if negative sample WIW

-> Biologically plausible local learning rule

Can such a learning rule be implemented Iin hardware?



Previous slide.
The small index | is the layer index. The last layer Is |=L.

Let us look at the loss Iin the last layer. It Is a hinge-loss (picture on the next slide): either
zero or linear in u.

The variable u Is a measure of the similarity between the activity state vector z in layer |
and the lateral prediction from OTHER neurons ¢ = z in the same layer.

If variable y tells whether the prediction comes from the SAME object (y=1) or a different
object (y=-1).

The boldface z refers to all neuron in a layer. For an interpretation it is easier to look at
iIndividual neurons such as neuron I in layer I. Its activity depends ONLY on the
feedforward pathway

t+8t1 _ A
Zj = g2 wi; zj" ")



Local Learning Rules, Spiking Neurons,
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Previous slide:

The lecture last week covered the relation between learning rules used by the brain and those implemented
IN modern reinforcement learning algorithms.

This lecture will make the link to recent developments in modern neuromorphic computing architectures that
are completely different than the class model of von-Neumann computing architectures.

One aspect Is that these hardware approaches explore potential advantages of Spiking Neural Networks.
Another aspect is that they rely on local learning rules, in particular three-factor rules.

A third aspect is that they could potentially reduce energy consumption.

This lecture today provides an outlook onto current developments for specialized, bio-inspired chips that will
eventually use much less energy than conventional chips. The category of chips is often called neuromorphic

chips since they take inspiration from biological principles in neuroscience.
In particular, they use communication with spiking neurons and local learning rules.



Review: Spiking Neurons — Leaky Integrate-and-Fire Model

(continuous time formulation)
Spike emission

a

R

[;(t) = short pulses = }.;w;; 6(t — tjpre)

-

.
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d
Ty = —u;(t) + 1;(t) linear

if u;(t) =9 note spike+resettou(t) = 0 threshold




Previous slide:

The Leaky integrate-and-fire model written in continuous time involves a LINEAR differential equation that
can be interpreted as an electrical RC circuit charged by a current /(z). Such a circuit is straightforward to
Implement in ANALOG hardware!

The current /(z) consists here of short electrical pulses that present spike arrivals. The §(t — t}’re)

denotes the Dirac delta function for each presynaptic spike arrival at times t}m and w;; are the weights. We

can interpret w;;  as the charge delivered by the current pulse at time t]?’re. Again, this Is easy to

Implement in analog hardware.

The linear equation is combined with a NONLINEAR FIRE-and-RESET process. If the variable u
(‘'membrane potential of the neuron’) reaches the threshold theta, then u Is reset to zero. Easy to implement.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant
T = RC . Therefore after each short current pulse, the voltage (membrane potential) decays
exponentially back to zero with time constant t = RC .

The time constant of modern hardware is 10°000 times shorter than that of biology! Three years of human
learning time translates into 2 hours of training neuromorphic hardware.



Review: Goincidence detection rule of STDP

3 Success signal:
Aw;; oc F(pre, post, SUCCESS) .
Eligibility trace: N/ success

Az;i >0 if 'STDP< condition’ %

Welight
AWij — Zij S | |
| N\ STDP condition

Success signal

Hebb rule/eligibility trace /
10 ms

Xie and Seung 2003, Izhikevich, 2007; Florian, | '
2007; Legenstein et al., 2008, ﬁ
Fremaux et al. 2010, 2013




Previous slide:
A specific biologically plausible three-factor rule with eligibility traces would be the following:
- Spike-Timing-Dependent Plasticity (STDP) picks up coincidences between pre and postsynaptic spikes on

a time scale of 10 milliseconds. STDP is hence a spike-based version of Hebbian learning.

- If furthermore the success signal arrives within one second, then the weight is updated.



w Review: Three-factor rules with eligibility trace

Three-factor rule defines a framework Success signal

x; = activity-trace left by of presynaptic neuron

M(S(3,%))
. = activity-trace left by of postsynaptic nheuron
?; Y y of postsynap ,%. host

Step 1: co-activation sets eligibility trace jpre |
Az;i =n f(@;) g(x;)
Step 2: eligibility trace decays over time
zij « Az Z;;
Step 3: eligibility trace translated into weight change
Aw;j =n M(S((ﬁ, f))zij



Previous slide:

There are many different Hebbian rules or STDP rules. Similarly, there is not a single three-factor rule.
Rather three-factor rules are a framework formulated as follows:

- The trace left by presynaptic activity contributes some nonlinear factor g(x;)

- The trace left by postsynaptic activity contributes some nonlinear factor f (¢;)

- The eligibility trace e;; Is changed proportional to the two factors f times g

- The eligibility trace decays by a factor 4, correspﬂaazing to a time scale of about one second

- Weights are updates proportional to eligibility trace e;; times M with a modulator M that Is a nonlinear
function of the success S. The modulator is the ‘third factor’ in the update rule.

- The modulator M adjusts not only the learning speed but also the direction of change. In other words, the
sign of the update (increase/decrease) depends on the sign of M.



Three- factor Learning Rules and Spiking Neurons

N
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Summary:

- Neurons communicate by
short pulses

- EPSPs decay over 10ms

- Pulses last 1ms

- Pulses are rare events

- A pulse timing pre-before-
post (within 20ms) sets an
eligibility trace

- The eligibility trace decay
over 1s

- Dopamine, a global
neuromodulator, sends a
TD signal



Previous slide:

After this introduction to spiking neurons, and review of three-factor rules, we make a small detour to an
application that you have seen already at several occasions.

And then we are prepared to look at the first hardware implementation.



Wulfram Gerstner

Learning in Neural Networks : SPEL Lousanne. Sitzerant
from brain-style computing to neuromorphic computing

1. Review: brain-style computing
2. Spikey Chip/BrainScales (Univ. Heidelberg)



(previous slide)

Neuromorphic hardware Is a hot topic.
Many (but not all) neuromorphic chips use spiking neurons.

Glascher et al. 2010



University of Heidelbery: Brainscales/Spikey
Integrate-and-fire neurons on chip. STDP on chip.

Analog hardware (physical realization).
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Pfeil et al., Front. Neurosci. 2013
https://doi.org/10.3389/fnins.2013.00011



https://doi.org/10.3389/fnins.2013.00011

FIGURE 1 | Microphotograph of the Spikey chip (fabricated in a 180-nm
CMOS process with die size 5 mm x 5 mm). Each of its 384 neurons can be
arbitrarily connected to any other neuron. In the following, we give a short
overview of the technical implementation of neural networks on the Spikey
chip. (A) Within the synapse array 256 synapse line drivers convert incoming
digital spikes (blue) into a linear voltage ramp (red) with a falling slew rate t,.
For simplicity, the slew rate of the rising edge is not illustrated here, because
It 1s chosen very small for all emulations in this study. Each of these synapse
line drivers are individually driven by either another on-chip neuron (int), e.g.,
the one depicted in (C), or an external spike source (ext). (B) Within the

Pfeil et al., Front. Neurosci. 2013

synapse, depending on its individually configurable weight w;, the linear
voltage ramp (red) 1s then translated into a current pulse (green) with
exponential decay. These post-synaptic pulses are sent to the neuron via the
excitatory (exc) and inhibitory (inh) input line, shared by all synapses in that
array column. (C) Upon reaching the neuron circuit, the total current on both
Input lines i1s converted into conductances, respectively. If the membrane
potential V., crosses the firing threshold V,, a digital pulse (blue) is
generated, which can be recorded and fed back into the synapse array. After
any spike, V., 1s set to V .. for a refractory time period of 7. Neuron and
synapse line driver parameters can be configured as summarized in Table 1.

published: 18 February 2013
doi: 10.3389/tnins.2013.00011



University of Heidelherg: Brainscales/spikey

Waverscale integration:

-512 neurons/chip

-384 chips/waver

-analog neurons (RC circuit)
-digital communication
-energy: 0.1 nd per syn. event
-learning with hardware In the
loop

'
e e N -
e

Schmitt et al.

2017 International Joint Conference on Neural Networks
(IJCNN), DOI: 10.1109/1IJCNN.2017.7966125



https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding
https://doi.org/10.1109/IJCNN.2017.7966125

(previous slide)

Fig. 2. (a) 3D-schematic of a BrainScaleS water module (dimensions: 50 cm
x 30cm x 15cm) hosting the water (A) and 48 FPGAs (B). The positioning
mask (C) 1s used to align elastomeric connectors that link the water to the
large main PCB (D). Support PCBs provide power supply (E & F) for the
on-wafer circuits as well as access (G) to analog dynamic variables such
as neuron membrane voltages. The connectors for inter-wafer (USB slots)
and off-wafer/host connectivity (Gigabit-Ethernet slots) are distributed over

all tfour edges (H) of the main PCB. Mechanical stability 1s provided by an
aluminum frame (I). (b) Photograph ot a fully assembled water module.



Wulfram Gerstner

Learning in Neural Networks : SPEL Lousanne. Sitzerant
from brain-style computing to neuromorphic computing

1. Detour: Spiking Neural Networks (SNN)
2. Spikey Chip (Univ. Heldelberg)
3. Loihi Chip (INTEL)



Three-factor Learning Rules
Sniking neurons tevent-hased signal transmission]

brain algorithms
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INTEL:

Loihi (announced 2017, appeared 2018)

Loihi2 (announced fall 2021): 1 chip = 1Mio neurons

Loihi 2 At A Glance

Release Year: 2021

Software: Lava
Applications: Research

Neurons: 1 million
Synapses: 120 million max
Weight bits: <= 32-bit
On-Chip Learning: true
Power: ~1T W




Previous slide:

The Loihi chip of Intel that appeared as a research support chip in 2017/2018 Is interesting because it gives
a direct implementation of three-factor rules where the third factor is a GLOBAL signal

The modern chip Loihi2 moved away from this concept. There is still a third factor but it is now LOCAL per
neuron. This also enables to implement BackProp algorithms



INTEL, Lolhi research chip

Computing Architectures

Conventional Computing Parallel Computing Neuromorphic Computing
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* Programming by = Offline Training Using = Learn On-the-Fly Through
Encoding Algorithms Labeled Datasets Neuron Firing Rules

= Synchronous Clocking = Synchronous Clocking = Asynchronous Event-Based Spikes

* Sequential Threads of Control * Parallel Dense Compute * Parallel Sparse Compute

lif X then

else

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf



Previous slide:
This slide from INTEL emphasize the differences in the computing architecture of LOIHI (first chip).

LEFT: classical von Neumann computing with separation of CPU and memory. Compute operations are
mapped to logical operations performed in discrete time.

MIDDLE: Parallel computing and GPU architectures. The separation of computing and memory remains, and
operations are still performed in discrete time. The only difference Is that certain operations (such as
convolutions) or updates of layer-wise dynamics in ANNs can be performed in parallel.

RIGHT: Neuromorphic computing architectures. Neurons compute with spikes which leads to nonlinear
compute operations and signal transmission at rare moments Iin time defined by the moments of threshold-
crossing. In between neurons are updated in ‘subthreshold’ mode with simple linear operations (leaky
iIntegration). Ideally, computing is asynchronous and in continuous time (even though this specific INTEL
hardware implementation is still ‘digital’).

More recently the first generation of Loihi has been replaced by Loihi2 with more general functionalities.



Two related arguments:
- energy consumption:

Loihi <1 W (GPU > 300W)

- asynchronous computing/event-based messaging

Chip1l [

Chip 2

Chip 3

Chip 4

1 chip = mesh of 128 neuromorphic cores

Spiking neural network (SNN)

1 core = 1024 simple spiking neurons:
leaky Integrate-and-fire

On-chip integrated learning rule

https://en.wikichip.org/wiki/intel/loihi



https://en.wikichip.org/wiki/intel/loihi

Previous slide:
Why would one want to change the computing architecture?

Essentially because asynchronous, event-based computing could lead to enormous reductions in energy
consumptions, since the expensive nonlinear processing steps and transmission steps are sparse in time:

they are rare compared to the elementary time step in a discrete-time implementation.

1 chip contains 128 cores, each one able to simulate about 1000 simple leaky integrate-and-fire neurons.



Loihi: (first chip, 2018) & 5*’: e ==y e | RPN | ol
_ﬂ, rgig—ri ,zé_...ii,%f_,i ,., §; ...... ,.Eé_.,,gé e —ﬂv-
- 128 neuron cores per chip WL W[ E ] (g ]
- Up to 128'000 neurons per chip L] A
- 2 billion transistors _jLeamind
- Fully digital chip ; ,,3 o S— i
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CL1]

- Standard integrate-fire
neuron model
- Three-factor learning rule

trace(pre) trace(post) succegs | @ A

‘each spike leaves a synaptic trace’
- STDP coincidence (time scale 10ms in biology)



Previous slide:

Importantly, the framework of the learning rule that is possible on the Loihi chip is exactly that of three-factor
rules explained above.

Each presynaptic spike leaves a trace (synaptic trace/NOT eligibility trace). The combination with the trace
left by a postsynaptic spike gives the coincidence signal. Further combination with a success signal defines
the weight update.



Learning rules

- Loihi (2017): Three-factor learning rules

presynaptic factor, postsynaptic factor, global success
- single-layer RL algorithms

- Loihi2 (2022): Detalled three-factor learning rules

presynaptic factor, postsynaptic factor, neuron-specific feedback
- approximate BackProp in Multi-Layer RL



Previous slide:

In the new version, they generalized the learning rule so that it can now also implement an approximate
version of BackProp.
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Previous slide:

Official INTEL slide.



L 0ihi2 (2022):

- 128 neuron cores per chip
- Up to 1 Mio neurons per chip

2 billion transistors

programmable neuron model
programmable learning rule
f(pre),g(post),3"(neuron_i)

spike broadcast at
destination chip
convolutional networks
outer-product weight matrix
Linked to C/Phython
programming interface

On-chip broadcast of
spikes from remote chips

A” | 4
Neuron Core
Y
Synapses
Convolution Factorized
Store kernel instead O(n?) to O(n)
of connection matrix compression
T T T 1 Stochastic
HEEREEER Up to 80X
vil |1 | | compression

T

| Neurons

Neuron State
Typical 4x compression vs. Loihi

______ 4 Axon Routing

Up to 256X compression vs. Loihi

Output spikes



Previous slide:

Apart from spike broadcast (as opposed to targeted delivery lines), the chip also implements features such

as weight matrices compatible with convolutional neural networks and outer-product weight matrices
(factorial, see conv-net lecture).

Importantly, the learning rule framework now enables the user to switch from a GLOBAL third factor to a use-
defined programmable NEURON-specific third factor.



The 80-percent question again:

| | In this hardware part, at least 60 percent of the
material was new to me.

| | for this hardware part, | have the feeling that |
understood at least 80 percent of the material
(at the rough level at which it was presented)



Wulfram Gerstner

Artificial Neural Networks and BL: L e
from hrain-style computing to neuromorphic computing

Detour: Spiking Neural Networks (SNN)
Example: Navigation in a Maze (Model Study)
Loihi Chip (INTEL)

Memristor technology (IBM)

> Wk



Analog synaptic sighal processing
for neural network inference and training

Bert Jan Offrein
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Reading

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic

devices and systems, IEEE Xplore,
https://ieeexplore.ieee.org/abstract/document/9371915

The slides are adapted from a presentation of Bert Offrein who
leads a group of neuromorphic computing at IBM research In
Zurich-Ruschlikon.


https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915

Accelerating Neuromorphic Workloads — Innovation required at all levels
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Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix
elements as a result of a learning rule (‘algorithm’, right).



Three pillars for Si technology

New combinations of Materials Packaging in 3 dimensions

In the 1980s. the typical semiconductor used only a fraction of the primary elements
Today, six times as many elements are used - more than half of the periodic table.

FROM DIPs TO SiPs:
AN EVOLUTION OF SEMICONDUCTOR PACKAGING
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THAT'S NO CHIP...
THAT'S AN INTEGRATED SYSTEM!

The demands of next-generation electronics are making
packaging more important—and more complex—than
ever before. SEMI members are innovating advances in
packaging technology to make the package integral to
the design and function of products they power.

Source: Intel, SanDisk, Intermolecular

www.semi.org

The traditional scaling law (‘Moore’s law’) is dead! IBM slide



Previous slide:

In the IBM research the focus is more on new materials that enable faster and energy-efficient matrix
multiplication as well as weight-update rules.

The three drivers of the changes are:
Left: New materials combine many more elements than older ones.
Middle: Moore’s law, the traditional scaling law of hardware performance increase, has come to its end.

Right: Packaging has to go from 2-dim to 3-dim arrangements.



Experiment: " Human Brain vs. Computer”

Task 1: Mathematics Task 2: Image recognition

2= "7

Traditional silicon scaling ended Explore new functionalities, More than Moore
New types of problems gain interest Explore new computing paradigms

- approximate computing
- large parallel data streams



Previous slide:

This shows a simple theoretical experiment, where we want to compare the performance of the human brain
with a computer based on two different tasks.

In task 1, both candidates have to calculate the square root of 2 as fast as possible.
In task 2 both candidates have to interpret a scene.
The point is that that task requirements In task 2 are very different!

For example, a single noisy pixel (or noisy compute process) is less relevant. Handling of large data streams
IS more important.



Review Brain inspired computing:

. Input neurons
. Hidden neurons

@ output nodes Information processing flow >

S e e\
AN 9.9 QA AX
X ) SR 5%

i‘ AN AN
NN/

| 1 /
Simplify Input - ' Output

' layer Hidden layers layer

= Omni-directional signal flow o

Brain-like Neural network:

Deep Artificial Neural Network:

¢ Synaptic weights

“Cat” “Cat”

Feed-forward sequential processing

* Asynchronous pulse signals ® Information encoded in signal amplitude

= |nformation encoded in signal @ Neuron activation: Accumulate +
timing/Spiking Neural Networks Threshold

=>» Difficult to implement efficiently on Training: Backpropagation Algorithm
standard computer hardware IBM slide



Previous slide:

Standard comparison of a few differences Brain vs ANN. Not shown In class.



Review: Training with Backpropagation algorithm

Neural net as chain of vector operations:

00}0‘3’
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ey Yl Vi~
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NN/

Input

— : Signal vector

W, | : Synaptic weight matrix

: Per-element neural activation
function (sigmoid)
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Backpropagation algorithm:

For many training cases x with target response t:

1. Forward Propagate:

Onl
X1
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(o)W

X2

X3

2. Determine output error:

o - 3—(E)

3. Backward Propagate: Determine neuron input
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n error E:
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02

4. Adjust the active weights, proportional to their
influence on the error: AW = —n x®0
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0, X3
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IBM slide



Previous slide: not shown In class

Backpropagation involves
- multiple Matrix multiplications (weight matrix per layer)
- Update of the matrix elements (learning rule)



Analog signal processing for scalability

= Limiting factors of von = Overcome by
Neumann architecture = |n-memory computing
= Memory access » = Parallel operations

= Seqguential operations

o . . = Analog signal processing
= Digital signal processing

Voltage V,

Processing Memory _—
Unit 2
Compute effort ~O(#Neurons?) Compute effort ~O(N)

Electrical (and optical solutions) are viable candidates

IBM slide



Previous slide:

For these kind of matrix operations we should exploit new computing concepts.
The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons

per layer increases.



Training of Artificial Neural Networks: many matrix multiplications

Training by Backpropagation Method:

®  Processing dominated by many large matrix operations

@ Forward Propagation: W1,z__ Scale o¢ N2

o Backward Propagation: W1T,2.. — 20 \.|\|(wr(m5/|ayer %:AMA\V

®  Weight Update: AW1 5. é:%%@:&m
= Inefficient on standard Von Neumann systems: g Memory %}i“:‘{; Z:‘f{.f&";‘ig

— (Mostly) Serial processing
— Low computation to 10 ratio 2 Memory

bottleneck E: u /

For fast and efficient neural network data processing:

—

= Fully parallel processing

= Tight integration of processing and memory — Crossbar arrays \ @9
* Electrical X @

@ o

-

= Analog signal processing -« Optical

G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016—Febru, no. 408, p. 4.4.1-4.4.4, 2016.
T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1-13, 2016.

BE

IBM slide



Previous slide:
Top:
In the week on BackPropagation we already discussed the scaling:

The algorithm scale proportional to the number of weights.
Assume that we have many layers and N neurons per layer. Then the scaling is O(N?4).

This is true for each of the three steps: forward pass, backward pass, weight update.

Bottom:
With analog implementation of the matrix multiplication we should be able to achieve a better scaling:

Forward pass: O(1)
Backward pass: O(1)
Weight update: O(N?) ???7



Efficient training of Deep Artificial Neural Networks:
Matrix multiplication = Ohms law: V=RI =2I=V/R

Electrical crossbar array:

Voltage V,

Metal wires

77

e
0%

Voltage V,
WA A S A

N7

4 \
N 7
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YR X

Sl AR

v
AV

WA AN S SR
Voltage Vy
Synaptic Tunable z /
weight resistance -
Input signal x; = V;  voltage of neuron | o3
Weight w;; = 1/R;; resistor at crossing xi> °+
Vi @
— J ' I
Output [; = 2,;—==2.;w;jx;  currentinto neuron | *-

Lj

Images: IBM



Previous slide:

Each blue bar is a perfect conductor. The red crossing points are tunable resistors that play the role of
synaptic weights.

From Ohm's law follows that the current from neuron jto neuron iis I;; = V; /R;;.

Kirchhoff's law (conservation of current) gives the final summation equation.



Tunable weights via Memristive Devices

‘memory of resistance’ = ‘memristor’

®* Resistance depends

Understanding the mechanism on molecular

IBM MO,+HfO,

Continuous & |

symmetric

change of R s

configuration

large neg. pulse ® Resistance increase or

decreases with

voltage pulses above
threshold values

®* Resistance keeps

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

memory

large pulse> pos. threshold
Images: IBM



Previous slide:
Memristive material studied by IBM.
The basic function arises from the following principle.

The material in light blue is an electrical insulator (dielectric material). However, with a first strong voltage
pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red
column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be
made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower
left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and
resistance for a long time. It has a ‘Memory of Resistance’ 2> Memristor.



Efficient training of Deep Artificial Neural Networks: spiking network

Vs + Ag>0

stochastic spikes || qw: “ho
cgWx) LT

Weight =
update
order 1! Xi>

- Local Hebbian Learning rule
- Spike coding (SNN)

4 AN

\""_ \\"ﬁ[- o
SATHT N T N\
SN

o T S8
NalNa/

ol ———————————————————

, / Wx
- Fully parallel processing 7

- Pulse coding _ Crossbar arrays ——~—
e Electrical xi>

- Stochastic Poisson Process

Gokman and Vlasov, Acceleration of Deep Neural
Networks with Resistive Cross-Point Devices
Frontiers, 2016




Previous slide:

We now image the following coding principle (not yet implemented in hardware, but proposed some years
ago).

Each presynaptic neurons sends voltage pulses (‘spikes’ of finite width) at random moments in time (Poisson
process).

Each postsynaptic neuron sends voltage pulses (‘spikes’ of finite width) at random moments in time (an
Independent Poisson process).

The amplitude of the single pulse Is such that it does not reach the switching amplitude of the memristive
material. But If two pulses coincide, then it reaches the threshold and increases the weight (decreases the
resistance).

Thus we have a proposition to implement a local (two-factor) Hebbian learning rule in hardware. And,
unexpectedly, we need spike coding for this implementation scheme!



FIGURE 1 | (A) Schematics of original weight update rule of Equation (1) performed at each cross-point. (B) Schematics of stochastic update rule of Equation (2) that
uses simple AND operation at each cross-point. Pulsing scheme that enables the implementation of stochastic updates rule by HPU devices for (C) up and (D) down
conductance changes.

Wij <— Wjj + I}.Ijﬁj (1)

where w;; represents the weight value for the i™ row and the
i column (for simplicity layer index is omitted) and x; is the
activity at the input neuron, §; is the error computed by the
output neuron and 7 is the global learning rate.

In order to implement a local and parallel update on an array |
of two-terminal devices that can perform both weight storage Gokman and Vlasov, Acceleration of Deep Neural

and processing (RPU) we first propose to significantly simplify Netwqus_with Resistive Cross-Point Devices
the multiplication operation itself by using stochastic computing Frontiers in Neuroscience, 2016
techniques (Gaines, 1967; Poppelbaum et al., 1967; Alaghi and

Hayes, 2013; Merkel and Kudithipudi, 2014). It has been shown

that by using two stochastic streams the multiplication operation

can be reduced to a simple AND operation (Gaines, 1967;

Poppelbaum et al,, 1967; Alaghi and Hayes, 2013). Figure 1B

illustrates the stochastic update rule where numbers that are

encoded from neurons (x; and §;) are translated to stochastic

bit streams using stochastic translators (STR). Then they are

sent to the crossbar array where each RPU device changes its

conductance (g;;) slightly when bits from x; and §; coincide. In

this scheme we can write the update rule as follows.

EL
Wij <— Wi + ﬂ.wmm Zﬂ:l A Bf {2}

n=1



Previous slide:

This Is a copy of the relevant section of the original publication
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Previous slide:

Here The material in yellow Is an electrical insulator (dielectric material). However, with a first strong
voltage pulse one can create an initial breakdown (blue channel) in the material.

The guestion now Is the following: Can we SMOOTHLY TUNE

sith several additional medium-sized positive voltage pulse (red), or negative voltage pulse (blue), one
can return to the initial configuration (lower left).
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Previous slide:

Experimental test with the material at the bottom shows that smooth tuning is possible (blue dots). Horizontal
axis shows the number of pulses applied. After about 200 pulses the sign is switched so that the resistance

goes down again.
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5/20/2025
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Previous slide:

Moreover, after tuning the resistance remains constant



IBM Research
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Previous slide: not shown In class

The road map shows several aspects:

- Traditional scaling has increased not only the compute power, but also reduced the Watt per Flop.
- Traditional scaling expected to come to an end (or may continue, red dots)

- Staying digital, but allowing for approximate computing might give an extra jump in performance

- Going analog would yield a further jump.




The 80-percent question again:

[ | In this hardware part on memristors, at least 60
percent of the material was new to me.

| | for this hardware part, up to here, | have the
feeling that |
understood at least 80 percent of the material



Previous slide:



Analog crossbar arrays: Update for BackProp

Electrical crossbar array:
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Previous slide: not shown In class.
To have an impact, local Hebbian rules are not enough.

But one can also extend these ideas to local implementations of BackPROP.
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- Extension to (approximative) Backprop possible O(N)!



Literature of ferroelectrics in AI hardware

. . . Ferroelectric
« 2011:discovery of a ferroelectric phase in HfO.,,.

/\
 2017:FeFET integrated in a 28nm HKMG / i
technology (Mulaosmanovic et al., VLSI 2017) FT]J
« 2018: IBM: crystallization of HfZrO, in the FE MBI FE Semicond.

phase below 400°C (O’Connor et al., APL
Mater. 6, 121103 (2018))

e 2020: this work: first demonstration of a BEOL,
CMOS FeFET




Summary

®* Silicon technology remains the basis for computing devices
® Leverage existing processes, infrastructure and know-how
®* Continuous extending of materials and function

®* New computing paradigms — Neuromorphic computing -
provides a path to handle unstructured data

® Analog signal processing in crossbar arrays
®* Parallel processing of key algorithms in neural networks
® Electrical and optical implementations

- Extension to three-factor rule possible!



Previous slide:



Wulfram Gerstner

Learning in Neural Networks : SPEL Lousanne. Sitzerant
from brain-style computing to neuromorphic computing

1. Review: brain-style computing
2. Spikey Chip (Univ. Heldelberg)
3. Loihi Chip (INTEL)]
4. Memristor chips (IBM)
5. Even more non-standard computing (EPFL)
—> use physics for rapid and cheap nonlinear ‘computing’

A. Momemi, B. Rahmani, M. Mallejac, Philipp del Houghe and Romain Fleury, Backpropagation-free
training of deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474



Previous slide:

Romain Fleury is Professor in STI, Laboratory of Wave Engineering

A. Momemi, B. Rahmani, M. Mallejac, Philipp del Houghe and Romain Fleury, Backpropagation-free
training of deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474



Local learning ruies for physical hardware

Deep physical neural networks

A ' Nonlinear physical data transformer
« Trainable linear multiplication
Positive
jata o
T
Output N e &)
Negative =4 | /’
data %_:: [GDDdHESS}—h —— 3 Seq
R {meal Ic}ss] z;

Physical data transformers

Like iIn CLAPP: -contrastive learning (positive and neg. samples)
-layer-wise |Ic Inctior
-linear weight matrix Is optimized by learnint

Hardware: nonlinearities implemented by physics



Previous slide and next slide:

Fig. 1. Deep PNNSs. (A) A simple and physics-compatible deep neural network that
uses a sequence of nonlinear physical data transformers augmented by trainable
matrix multiplications, trained by the supervised PhyLL technique (refer to
supplementary text, section 2.1.1, for additional explanations). At each layer, the
nonlinear physical data transformer conducts nonlinear mapping between input
and output spaces to separate positive and negative data by maximizing the cosine
similarity of the positive data to a random vector & and minimizing the cosine
similarity of the negative data to the same vector. We considered three physical
systems that vary in terms of the underlying wave phenomenon and the type

of nonlinearity. (B) In acoustics, input data are encoded into the intensity of sound

waves at different frequencies injected on the left side of the cavity. Sound waves
propagate through a chaotic cavity that comprises multiple rigid cylindrical diffusers
and nonlinear membranes. The transformed waveforms are received by multiple
microphones. (C) In the chaotic microwave cavity, input data are encoded into the
programmable metasurface configuration inside the metallic disordered cavity.

The outputs are obtained from the waves' spectra (transfer function). (D) In the
optical setup, input data are encoded onto the SLM, and after passing through

a multimodal optical cavity (MMOC), the resulting optical intensity is measured on
the charge-coupled device (CCD) camera [numerical experiment based on
experimentally acquired data from Rahmani et al. (56)].

- Input Is high-dimensional, but shown here plotted here organized in 1d.
- discretize the horizontal axis, and then you can read-off the input values
- The nonlinear transform is fixed (physical transformation), and only the weights are

learned

A. Momemi, B. Rahmani, M. Mallejac, Philipp del Houghe and Romain Fleury, Backpropagation-free
training of deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474



Physical hardware for nonlinear data transforms

B Acoustics _
D Optics

Input

MMOC:
Multi-modal
optical cavity
CCD-camera
Charge-
Coupled Device
MMOC SLM

N Spatial light
scatterers OUtPUt

modulator
A.Momemi, B. Rahmani, M. Mallejac, Ph del Houghe and Romain Fleury, Backpropagation-free training of
deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474

Laser SLM

Lenses

Nonlinear
membranes




Previous slide:

Wikipedia: A spatial light modulator (SLM) is a device that can control the intensity, phase, or polarization of light in a

spatially varying manner. A simple example is an overhead projector transparency. Usually when the term SLM is used, it
means that the transparency can be controlled by a computer.

https://en.wikipedia.org/wiki/Spatial_light modulator

In the paper of Momeni, the SLM encoded information in the phase (in contrast to the Wikipedia example of
an overhead projector, where only the intensity iIs modulated).

1
The physical optical system performed a complex spatial transformation. Although this transformation was linear in

the complex domain, the process became nonlinear as a result of the data being encoded onto the phase (SLM) and
the subsequent measurement of the intensity squared on the camera.»

A.Momemi, B. Rahmani, M. Mallejac, Ph del Houghe and Romain Fleury, Backpropagation-free training of
deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474


https://en.wikipedia.org/wiki/Intensity_(physics)
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Polarization_(waves)
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Overhead_projector
https://en.wikipedia.org/wiki/Transparency_(projection)
https://en.wikipedia.org/wiki/Computer

Physical hardware
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Previous slide:
On the right: actual lab realization of the acoustic nonlinear physical system

A.Momemi, B. Rahmani, M. Mallejac, Ph del Houghe and Romain Fleury, Backpropagation-free training of
deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474



Local learning rules for physical hardware
> ontes MMOC:
Multi-modal optical cavity
CCD-camera
Charge-Coupled Device
SLM:
Spatial light modulator

Optical system:

«At inference—time (usage of trained network) energy—efficiency
advantage of “8000 X compared with that of digital-electronic
processors for large-scale future transformer models»

A.Momemi, B. Rahmani, M. Mallejac, Ph del Hougnhe and Romain Fleury, Backpropagation-free training of
deep physical neural networks, Science (2025) 383:1297-1303

https://www.science.org/doi/10.1126/science.adi8474



(previous slide)

Alternatives to standard chips are a hot topic. The reason Is again energy
consumption.



The 80-percent question again:

[ | In this hardware part on physical neural nets, at
least 60 percent of the material was new to me.

| | for this hardware part, up to here, | have the
feeling that |
understood at least 80 percent of the material
(at the level at which it was presented)



Previous slide:



Wulfram Gerstner

Learning in Neural Networks : SPEL Lousanne. Sitzerant
from brain-style computing to neuromorphic computing

1. Review: brain-style computing

2. Spikey Chip (Univ. Heidelberg)

3. Loihi Chip (INTEL)]

4. Memristor chips (IBM)

5. Even more non-standard computing (EPFL)
6. The problem of Energy consumption
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Energy consumption of the brain

® Sedentary humans eat and use 2500 kCal per day
®* Translate to Joule > 10 000 kJ

®* Brain facts: 20 percent of energy consumption of human at
rest goes into the brain

®* Most of it goes into synaptic signaling (spike transmission)
® Brain uses 24 - 30 Watt (5 modern light bulbs)

The power consumption of the brain is relatively low!
- 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain



https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

Previous slide.
Claim the power consumption of the brain (30W) Is relatively low.

Low compared to what?
- Compare with GPU
= Compare with household power consumption.



Energy consumption of one GPU

* 300 W (RX 6800/6900 XT)
* 350 W (RTX 3080/3090)

- 10h of training an ANN on 1 GPU = 3.5 kWh
1 day of training an ANN on 1 GPU = 8000Wh =8 kWh

4 months GPU usage > 1000 kWh

12 months GPU usage -2 3000 kWh

https.//www.tomshardware.com/features/graphics-card-power-consumption-tested



https://www.tomshardware.com/features/graphics-card-power-consumption-tested

Previous slide:

A day has 24 hours. So we multiply the power (350W) with the number of hours.

4 months have 120 days. Again a simple multiplication

The guestion then is: are 3000kWh per year a lot?

We need to compare with ‘normal’ energy consumption.



Electrical household energy consumption

Typical Swiss electricity use in household (fridge, TV, light)
- about 1000 kWh per year and person.

® 2 persons sharing apartment = 2200kWh per year
® 4 persons sharing house = 4000kWh per year

Heating/warm water with heat pump
® 4 persons sharing house: 6000kWh per year
- 1500 kWh per year and person

https://pubdb.bfe.admin.ch/de/publication/download/10559



https://pubdb.bfe.admin.ch/de/publication/download/10559

Previous slide:



Comparison

* Brain 30W - 260 kWh per year and person
®* Living in Switzerland - 2500 kWh per year and person
* GPU - 3000 kWh per year and GPU
Problem!!!!

Solution? — use your machine carefully!
- think about better computer architecture!



Previous slide:

The problem is that if you your model optimization uses on average a single GPU over the year, you use
more energy on your GPU than you use by living in a normal rental apartment.



The neural network size explosion
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The compute explosion

led

PetaFLOP/s - Days

le-14

Source:
Openai.com

Petaflop/s-days

le+4
AlphaGoZero

le+2 Neural Machine

Translation

TI7 Dota 1vl
le+0
VGG
ResNets
le-2 AlexNet
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining
DQN
le-6
TD-Gammon v2.1
iILSTM for Speech
lo-8 LeNet-5
NETtalk RNN for Speech
ALVINN
le-10
le-12 2-year doubling (Moore's Law)
le-14 Perceptron ¢ First Era  Modern Era >
1960 1970 1980 1990 2000 2010 2020

1960 2020

Year
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The power and carbon emission explosion

Neural Architecture Search, 979M Training Steps -
BERT Base, 110M Parameters, Training -
Transformer Big, 213M Parameters, Training -
Transformer Base, 65M Parameters, Training -
Avg. Human Life, 1 Year -

Car, 1 Lifetime, 193000Km -

Avg. Car, 300Km -

Train, 1 Passenger, 300Km -

Air Travel, 1 Passenger, Roundtrip NY - SF -

Beef, 1 Serving -

101 110 103 100 108
Estimated CO2 Emission (Kg)

® Source: E. Strubell et al,,

oil/lgasoline: 1liter = 10kWh = 2.5 kg CQ22™V:1206.02243

1000 km by plane emits as much CO2 as 1000 km by car.
New York = Geneva = 6200km



Flight Geneva €<->New York

1 beef meal per day

Heating 50m2: 21°%s
(fossil fuels) 19°
heat pump

Fabrication TV screen
1 paper cup per day

enéve — New-York

en avion () 3 ' : ‘
ok e . o
en voiture o O . e

20 km parjouren i mms N\
nétro, tram ou train awa

Objectif 2050

- Paran || @ ne pas dépasser pour

Gaspillage limiter le réchauffement
Par personne

3
e . o..i, . |
alimentaire d ‘ Pour toutes les activités | climatique !
N FEO 5
1repas au boeuf ;

2 tonnes

par jour

1repas végétarien
par jour

Chauffer 50 m?
21°C au fioul

Chauffer 50 m? — | 0
19°C au fioul e ¢

< aldecticns LOGEMENT

19°C a I'électricité
Empreinte carbone moyenne en suisse :
12tonnes de CO, par an [ habitant

Stocker 1000 mails

Routeur wifi allumé j

TRANSPORT « 31%
CONSOMMATION + 28%

\LIMENTATION -+ 16%

B LOGEMENT + 16%

avive,



Where can YOU contribute?

= DONe moyenne en Suisse:
d.,e par an [ habitant

¢ '}‘0/0

SO ADEAS | ONTY Sumse | Ecotsiorm (RIS) . WW




Le Temps, April 30, 2024, Bien au Contraire:
Decarboniser l'aviation

Aviation «verte» et
 publicité trompeuse

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

CONTRE

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

. PIERRE KOHLER
DOCTEUR EN ECONOMIE, FONCTIONNAIRE INTERNATIONAL SPECIALISTE EN COMMERCE ET DURABILITE

&'l existe une industrie condamnée a devoir
décroitre rapidement pour respecter I'Ac-

cord de Paris, hormis 'industrie fossile et sa
finance, c'est sans aucun doute l'aviation. Les
experts sont unanimes, il n'y a aucune pro-
babilité pour que d'éventuelles technologies
pour «verdir» I'aviation puissent étre dévelop-
pées et déployées a I'échelle requise dans les
délais impartis. Alors, quel sort réserver a cette
industrie climaticide, accessoirement symbole
du «mode de vie impérial» décortiqué par les
auteurs Brand et Wissen?

En 2022, les Prs Nick et Thalmann de 'EPFL
avaient estimé que, pour atteindre l'objectif net
zéro d'ici & 2050, tout en exploitant les avan-
cées technologiques existantes et réalisables,
I'aviation mondiale devrait réduire sa voilure
de 85% et revenir & un niveau d’activité équiva-

oo calhm MNa alean

I'aéroport de Zurich prévoit de construire une
piste supplémentaire.

Malgré ces développements, les médias suisses
continuent de jouer le jeu de Bertrand Piccard,
chantre inégalé de l'aviation «verte» et ancien
marchand d’espoir, sans apporter la contradic-
tion journalistique requise. Ce

manquement est difficilement
excusable, car 'homme aux
1000 techno-solutions pour la «B
«transition verte» n'en est pas CON'
4 son coup d’essai. Vingt ans
aprés avoir créé Solar Impulse
en 2004, il ne fait que récidiver Déc
en «innovant» 4 nouveau avec la
Climate Impulse.

Présenté comme un projet 4 la
pointe de I'innovation techno- Développe
laminana lave Ao ean lancement. rien plus ve

Interdire Uaviation?
Soyons sérieux!

POUR

oooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooo

BERTRAND PICCARD
PRESIDENT DE LA FONDATION SOLAR IMPULSE

11 est plus que nécessaire de lutter contre les
émissions de CO2 produites par 'aviation, et 'as-
surance de certains & considérer l'aviation verte
comme impossible me parait étre une simple
répétition du passé.
Le préposé aux brevets de Londres avait
déclaré dans les années 1860

N AU
AIRE»

boner
ition

que tout ce qui pouvait étre
inventé l'avait déja été. Des spé-
cialistes avaient calculé qu'un
aéronef plus lourd que l'air ne
pourrait jamais voler, et ensuite
qu'il warriverait jamais & tra-
verser un océan. On pensait la
généralisation des téléphones
portables utopique parce qu'il

PRGNSR

faire de méme pour des avions. Climate Impulse
egsaiera de stabiliser ce carburant vert a -253
degrés pendant neufjours et cela aura des réper-
cussions cruciales pour l'industrie.

La décarbonation prendra du temps, et il faut
commencer par inclure la charge CO2 dans le
prix des billets, diminuer bien sir cette frénésie
de voler simplement parce que c’est bon marché,
améliorer urgemment les procédures et les opé-
rations. Mais vouloir interdire 'aviation, en plus
du chaos généralisé que cela engendrerait, est
complétement utopique, en Europe et & fortiori
dans le reste du monde, qui ne demande qu'a se
développer davantage. Soyons sérieux! Plutét que
dans l'illusion, engageons-nous dans ce que les

solutions d’aujourd’hui, énergies renouvelables et
hudwasdne an tite nenvent nous nermettre d'ac-



Energy consumption problem (for computing)
will further increase over time!

Solution? — use your machine carefully!
- think more, simulate less!
- Invent better computer architecture!

Global warming is a reality!

- Some regions no longer inhabitable/agriculture
- Big migration waves/relocation

Solution? — tax on CO2
- reliable and predictable increase from 10cent
to 100 dollars over 25 years.
- few countries start, others will follow



Thanks!

The END

... for today. There will be 1 more session.




Paper Presentation During the Exam (12 min, bring your computer).

Selection of papers:

Rules: Each student has to present a different paper during the exam. Here is the algo in order
to achieve a fair and transparent assignment of papers to students:

Step 1: From the pool of papers, you freely choose and reserve 2 available papers for you for the
duration of 5 days. While you have reserved the papers, no other student can reserve the same
paper. Paper status marked by tag: ‘reserved by NAME on DATE’

Step 2: After at most 5 days the paper status must change by picking one of the two XOR
options:

(1) EITHER You give back both papers to the pool and GO TO Step 1.

(11) OR you decide to present one of your two reserved papers in the exam. This paper
changes status from ‘reserved’ to ‘chosen for presentation by NAME’. It is not
accessible to other students. At the same time you give back the other paper to the
pool of available papers (l.e., you remove the tag ‘reserved by’) so that other

students can choose It and you GO TO Step 3.

Step 3. Prepare for the exam and END.

Papers fall into three different categories (Experimental,Theory,Hardware), and you can pick
whatever you prefer. The categories are only meant as a first guide for your selection.



your EPFL e-mail will soon be migrated to Exchange
Online on 20.05.2025.
This migration requires to modernize our e-mail
clients
What to do before the migration
*Make sure you are using a compatible email client:
* Microsoft Outlook
* Apple Mail
 Thunderbird
 Gmail
*Check that your email client is correctly configured
by following the documentation: EPFL Messagerie
and Listes
What to do on the day of migration and after
*Restart or reconfigure your email client if necessary
(EPFL Messagerie and Listes, How To videos)
In the event of a problem after reconfiguring your e-
mail client
*Consult the Knowledge Base
*Contact Service Desk IT Support
*Temporarily use https://outlook.office.com
*Please check the Junk mail’ folder for important
messages



https://www.epfl.ch/campus/services/en/it-services/email-and-lists/
https://www.epfl.ch/campus/services/en/it-services/email-and-lists/
https://www.epfl.ch/campus/services/en/it-services/email-and-lists/
https://epflch.sharepoint.com/sites/ProjetdeploiementM365/SitePages/Exchange-Online---tout-ce-que-vous-devez-savoir-!.aspx
https://go.epfl.ch/KB0017853?utm_medium=email&utm_source=Migration+EXO&utm_content=Knowledge+Base
https://www.epfl.ch/campus/services/ressources-informatiques/support-informatique/
https://outlook.office.com/
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