No Baclml'on, nlease! Wulfram Gerstner

I - EPFL, L Switzerland
Learning of ‘deep’ representations Lausanne, Switzertan
Learning actions:

Memories - riding a bicycle
Remembering facts
are avallable —> previous president of the US
because of Remembering episodes
- first day at college/university
Learning Remembering ‘objects’

Close your eyes: Imagine a tree!

Literature:
Timothy P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)
Bernd llling et al., NeurlPS (2021), Local Plasticity rules can learn deep representations, 35" NeurlPS (2021)



Previous slide.

The first two section formulate the question In the context of what we have seen in earlier
weeks. The guestion is how to learn deep representations with biologically plausible
learning rules. An important novel aspect is the capacity of the brain to predict.



Humans can learn to predict a ‘tree image’

https://www.publicdomainpictures.net/pictures/250000/velka/tree-1524116693MIN.jpg

https://www.publicdomainpictures.net/pictures/90000/velka/crab-apple-blossom-tree.jpg



Previous slide.
On the left: we are able to imagine a tree ‘from scratch’ just triggered by the word tree.

The resulting image Is not unique.

On the right: it Is easy to iImagine the covered parts of the tree.



- Brain Is able to predict
missing parts
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Non-Occluded V1

Contextual feedback to superficial layers of V1
L. Muckli et al., Current Biol. 25: 2690-2695 (2015)

Morgan, Petro, Muckli, J. Neurosci. (2019)
Savanera, ... Muckli, J. Vision (2021)

V1 receives feedback input
when not directly stimulated




Previous slide.
fMRI (functional magnetic resonance imaging) shows brain regions that are active during

a given task.

An image Is represented In several brain areas, but the area V1 Is the one where we
understand the representation very well: First, it responds strongly to high contrast
stripes or checkerboards. Second, it shows spatial organization:

The experimentalist Lars Muckli and colleagues first showed a checkerboard pattern with
a grey rectangle — since neurons in area V1 respond to the checkerboard pattern it is
possible to find out which neurons respond to the region of the checkerboard. And the he
iInversed the pattern to find out which neurons respond to the lower right corner.

He then used a series of images (like the one with a car) where always the lower right
corner was covered. | found that neurons Iin area V1 that belong to the covered region
are active — and an obvious explanation is that these neurons receive either later input
from the same area or feedback input from higher areas.
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Feedback generates a second receptive field
A. Keller, Roth, Scanziani. Nature 582: 545-549 (2020)

Feedback exists!
used for predictions

Z& Zx Prediction error
J t f j nnnnnnn
M + nnnnnnn | representation
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Predictive Processing: a canonical cortical computation.

GB Keller, TD Mrsic-Flogel, Neuron:424-435 (2018)

Predictions can
be observed!

i 70%

oM RBF oV1RF

The functional organization of cortical feedback
Marques ... Petreanu, Nat. Neurosci. 21:757-764 (2018)

Spatial context important!
- Feedback from wider area




Previous slide.

In animals, It Is possible to see observe similar phenomena on a neuron-by-neuron basis.
Feedback connections from higher areas (top) or from lateral neurons in the same area
(bottom) send input, and such input has predictive properties (middle).



Deep representation in brain models
. brain model
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1 Cortical Area - 1 layer of a Deep Convolutional Neural Network

Train on classification of Mio of images with BackProp (supervised learning)
BUT: - Real networks do not use BackProp

Using goal-driven deep learning to understand sensory cortex
D Yamins, JH DiCarlo Nat. Neurosci.19: 356-365 (2016)



Previous slide.
This Is a repetition from week 1: information (such as the image of a coffee mug) enters

through the retina. Its first cortical processing state Is V1, then V2, V4, and three areas
within inferotemporal cortex (IT).

Today, on of the best models of the neuronal activity in these areas is a deep neural
network trained with BackProp on a supervised learning task (ImageNet)
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masked auto-encoders:

learn to fill In missing parts
contrastive learning:

Image patch = image patch
prediction possible for ‘'same’ image,

but impossible for ‘different’ image
Contrastive Predictive Coding (CPC), Van den Oordt et al. 2018




Previous slide.
Alternatively, In the absence of image labels, there are self-supervised learning

paradigms that achieve the same performance.
For example, a partially covered image Is presented and the task is to predict a full image
at the output: this Is the example of self-supervised learning of an auto-encoder.

Other variants of self-supervised learning exist and we will talk about these later today.



Deep Networks for Vision Sutskever and Hinton,
(e.g. AlexNet ... ) 2012

——— trained with BackProp

Deep Networks for Chess and Go Silveretal. (2017),
(alpha-go, alpha-zero) beep Mind
——— trained with BackProp

Foundation Models
(LLMs, ChatGPT, Bert)

— trained with BackProp
Autoencoders/contrastive learning/self-supervised learning

——— trained with BackProp



Previous slide.
All the famous models in Al/Deep Learning are trained with Backprop.
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Previous slide.
Slide was already shown in week 1 and not shown again.



Vector feedback:

- multiple outputs,

- one ‘signed error per output’

- error vector transmitted back
- precise neuron-specific errors

BackProp Algo has 4 phases:

1) Forward pass and freeze )
2) Calculate local output errors

3) Backprop pass) using 2)

4) Update connections, using 1) +3)

Backpropagation
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Lillicrap et al.
2020

Nat. Rev. Neurosci.



Previous slide.
Slide was already shown in week 1 and not shown again.



- BackProp needs four separate phases:
forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.qg., feedback weights = feedforward weights;

backward multipliers depend on state
of feedforward network).

- Not implementable in biology!

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)
T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neuroscl. 21: 335-346 (2020)



Previous slide.
Slide was already shown in week 1 and not shown again.



- BackProp needs four separate phases:
forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.qg., feedback weights = feedforward weights;

backward multipliers depend on state Backprop-like learning
with feedback network
of feedforward network).
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F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)
T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neuroscl. 21: 335-346 (2020)



Previous slide.
Slide was already shown in week 1 and not shown again.



summary of introduction
1. Brain has learnt to predict missing parts

2. Analogy in machine learning is ‘self-supervised learning’
3. Backprop has several problems as model for neuroscience

- 4 phases for update - online, continuous time
- precise feedback architecture -> robust, plausible feedback
- forward=backward weights - learning rules for all weights

BackProp Is not implementable in biology
-> No BackProp, please!!!

Can we use a biologically plausible learning rule instead?
What are good candidates of learning rules?

Reading:
F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)
T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)




Previous slide.

Similar to week 1. But this week we focus on selfsupervised learning without BackProp.



NO Backprop, piease! Wulfram Gerstner
I - EPFL, L tzer
I.ea"“ng ﬂf ‘[Ieen' ranresenta“nns , Lausanne, Switzerland

1) Introduction (review)

2) Plasticity and local learning rules (review)

3) Contrastive Selfsupervised Learning

4) Representation Learning with CLAPP:
“Contrastive, Local And Predictive Plasticity”

5) Feedback Alignment



Previous slide.

Similar to week 1 and last week.



Learning in the brain: changes hetween connections
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Previous slide.

Similar to week 1 and last week.



N

brain algorithms

/

What are the learning rules of the brain?

‘brain-style computing':
online, distributed, ...




Previous slide.

Similar to week 1 and last week.



Hehbian Learning (LTP)

Hebbian co-activation:

oi‘"

A

“If two neurons are active together, the connection
between those two neurons gets stronger.”

Hebb postulate (1949)
Many classic experiments: 1970-2005 Biiss and Lomo, J. Physiol., 1973; ..



Previous slide.

Similar to week 1 and last week.



2-factor rules use information locally available at the synapse

Nufee;dback

o Big question: |

leaming Can we learn anything

© 0.0 at all without feedback?
o P ¢
LEA Standard Answer:

o C Development of Receptive fields,

but not much more!
2-factor rules:

unsupervised,
no feedback

Image: Lillicrap et al. 2020



Previous slide.

In the first part of the class when we discussed 2-factor rules we saw already examples
of what can be achieved with this context

- PCAorliICA

- Receptive Field Development

- Winner-Take-All or k-means-clustering

- Soft-winner-take all/competitive learning.

Note that all of these methods have been shown in a SINGLE layer of neurons.

Many people have tried over decades to build multi-layer versions of these methods, but
falled! We will see that we need just a bit more!



Voitage-tiependence of Hehbian Learning (LTP and LTD)

Hebbian co-activation:

(1) -
~A

Hebbian coactivation i g
without postsyn.-spikes W\

Classic voltage dependent experiments: 1990-2005
Clopath model of voltage-dependent plasticity: 2010
—> synaptic changes depend on voltage and spikes

A.Artola, S.Brocher and W. Singer (1990). Nature 347, pp. 69—-72. (1990)

A.Ngezahayo, M.Schachner and A.Artola (2000). J. Neuroscience 20, pp. 2451-2458. (2000)

P.J. Sjostrom, G.G. Turrigiano and S.B. Nelson (2001) Neuron 32, pp. 1149-1164.

C.Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Nature Neuroscience 13, pp. 344-352 (2010)



Previous slide.

Discussed last week.



Three-factor rules are Hebb + neuromodulator
Dopamine/Serotonin/Ach - reward/surprise/alert

d |

H""--. .=
——.

Important for action learning: to ski/to ride bicycle
- Dopamine (even If delayed by 1s) helps learning

Experiments: 2014-2025 Yagishita et al. Science, 2014; ...
Dopamine: 1997-2025 W. Schultz, P. Dayan and R.R. Montague, 1997; ...



Previous slide.

Discussed last week and In the context of 3-factor rules.



d-factor rules use information locally available at the synapse
combined with one glohal feedback signal

Scalar f(leed back

Perturbation
learning
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3-factor rules:

reward-based,

feedback

Image: Lillicrap et al. 2020

Big question:
What can be learned with these rules?

Answer:

-> action learning (ski, bicyle, tennis)

-> rapid decision making (chess, go,
buy/not buy)

BUT: 3-factor rules only work If

you have a ‘good representation’



Previous slide.

We have seen that nearly all algorithms of reinforcement learning can be implemented as

3-factor rules. Examples are SARSA, Q-learning, REINFORCE with baseline, Actor-Critic
models.

However, all these 3-factor rules require a single layer of weights to be learned, I.e., the
layer from state representation to action output.

Deep reinforcement learning is not compatible with 3-factor rules.

Therefore, we need a ‘good state representation’.
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Previous slide.
What would be a good state representation?

Suppose we have many unlabeled images, some of these with airplanes others with
birds. At the end of the visual processing stream (say in IT), we want a representation

such that two images of airplanes are represented similarly, but different from two images
of birds.

This idea requires a deep network since the pixel images of an airplane from below and a
bird from below may be more similar, that the image of a black airplane from below and a
white airplane from above.

All single-layer methods such as PCA, ICA, or clustering would therefore not work!

The similarity in pixel space Is not always a good predictor for similarity in the space of
‘meaning’ that is developed in deep areas such as IT.

However, If we have a good representation in a deep area, then it will be easy to learn a
reward-based task such as raise your arm if you see an airplane.



Learning rules???
Network architecture???

What kind of feedback???
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Image: Yamins et al. 2016

Big question:

Can we have local learning rules
(with several global signals)

that yield good representations
In multi-layer networks?
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Previous slide.
So, how can we learn a good representation in multi-layer networks?

We exploit (next slide) a phenomenon of spike-based and voltage-based learning that we
already discussed last week.



2024: Learning rule: Feedforward synapse on basal dendrite

depend on Iateral/feedbalck Input (on apical dendrite)
nput on

apical dendrite

Vv
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synapse on basal dendrite = LTP

Aceituno, ..., Grewe, bioRxiv (2024) Recent experiments in L5: Grewe group (2024)
https://doi.org/10.1101/2024.04.10.588837; Experiments in L2/3: Willlams and Holtmaat (2019)

Consistent with voltage-dependent plasticity (Sjostrom et al 2001)
and Clopath model (Clopath et al. 2010)

Such a rule useful to learn ‘good’ representation!



Experiments in Mouse Frontal Cortex, L5 cells, slice, from the Grewe lab.

Two electrodes are used for extracellular stimulation at the basal dendrite (red-green)
and apical dendrite (blue). Voltage is recorded with the brown electrode (A).

Initially, EPSPs are evoked by small-amplitude pulse stimuli (strength s1) with the red-
green electrode yielding an EPSP of a few mV. Then the stimulation amplitude Is
iIncreased (strength s2) so that the firing threshold is reached, and the postsynaptic
neuron fires an isolated spike. After 8 repetitions (at 0.1Hz) no change in the EPSP
amplitude Is found. Thereafter the stimulation of basal synapses (with strength s2) is
paired with stimulation of the apical dendrite, causing a short burst of spikes and a
prolonged voltage response. After 8 repetitions (at 0.1Hz) the EPSP amplitude In
response to stimulus sl is increased (C and D).

These findings are consistent with experiments of J. Sjostrom (2001) and the voltage-
dependent plasticity model of C. Clopath (2010): synaptic changes require either multiple
postsynaptic spikes are a prolonged depolarization of the postsynaptic neuron, or a
combination of both.



NO Backprop, piease! Wulfram Gerstner
I - EPFL, L tzer
I.ea"“ng ﬂf ‘[Ieen' ranresenta“nns , Lausanne, Switzerland

1) Introduction (review)

2) Plasticity and local learning rules (review)

3) Contrastive Selfsupervised Learning

4) Representation Learning with CLAPP:
"‘Contrastive, Local And Predictive Plasticity”

5) Feedback Alignment



Previous slide.
This section gives the general background of contrastive self-supervised learning.



Predict across saccade far away!

Prediction impossible if not the same object!

I

Views of same object!

T
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/

‘'sameness’ info
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Predict lower half!

Possible If same object! Possible if same object!

Predict lower half!




Previous slide.

Self-supervised learning is based on predictions.
It should be possible to predict the lower half of an image from the upper half.

But it should not be possible to predict the presence of an elephant from the image of a
mug.

In the first case, it Is the SAME object. In the second case it iIs a DIFFERENT object.

Exploiting sameness versus difference is called contrastive learning.



selfsupervised Learning: Gontrastive Learning

Examples:

- Predict left part of image from right part

- Predict original image from augmented image
- Align representation In representation layer
BUT:

- Avold collapse of representation

- Use negative samples that the network should not predict
- Move different ‘objects’ far from each other Birds

| {Jy;‘_.:t 3 )
‘vehicles’ ‘furry animals’



Previous slide.

Note that in an autoencoder we would predict the pixels of the image. In self-supervised
learning we only predict the representation of the image In a deep layer.

Prediction would be trivial if all objects lead to the same set of activated neurons. This
situation I1s sometimes called a collapse of representation. That is not what we want.

We aim for a representation where different views of the same objects leads to very
similar activation patterns of neurons whereas views of two different objects lead to very
different activation patterns. The second aspects gives rise to the term ‘contrastive’.

Equivalently, instead of different views of the same object, we can say: If we look at one
and the same Image then the activity of representation neurons that respond to the LEFT
part of should be predictable from the CONTEXT, I.e., the RIGHT part of the image.



CLAPP LosS = I'Iinge 10SS llling, et al. NeurlPS 2021

t,l _ t+6t,l CLAPP
Lépapp = max(0,1 —y© - u; ) L
/N
ut*ott = similarity:
u,f+5t U St+8tl yypredl qt)l
y !

feedforward vs lateral prediction

yt = sameness S|gnaI/contrast|ve signal
- 1 if same sample

—1if next sample X

y



Previous slide.
The small index | is the layer index. The last layer Is |=L.

Let us look at the loss Iin the last layer. It Is a hinge-loss (picture on the next slide): either
zero or linear in u.

The variable u I1s a measure of the similarity between the activity state vector z in layer |
and the lateral prediction from OTHER neurons ¢ = z in the same layer.

If variable y tells whether the prediction comes from the SAME object (y=1) or a different
object (y=-1).

The boldface z refers to all neuron in a layer. For an interpretation it is easier to look at
iIndividual neurons such as neuron I in layer I. Its activity depends ONLY on the
feedforward pathway

t+8t1 _ A
Zj = g2 wi; zj" ")



CLAPP LosS = I'Iinge 10SS llling, et al. NeurlPS 2021

t,l _ £ t+6t,l
Lépapp = max(0,1 —y" -ui" ")

LOSS L
Same object not same object

1 similarity u



Previous slide.

Hinge loss means in our case:
If the similarity u between the prediction based on the context ¢ and the actual

representation state z is large, and it is a valid context (I.e. same object) so that
predictions should be possible (y=1), then the loss is zero.
The notion of ‘large’ is defined by a margin of unity.

Similarly, If the similarity Is below zero and the context has changes (i.e. different object),
then the loss Is also zero.



GLAPP Loss = Hinge Loss

Hinge Loss with Backprop:

self-supervised learning
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Previous slide.

LEFT: The Hinge Loss is used only at the output layer |=L. If the loss is non-zero then
weights in the whole network are adjusted using BackProp.

RIGHT: The Hinge Loss Is applied separately in each layer. The resulting algorithm is
called CLAPP



clnPP lnss — “inge lﬂss llling, et al. NeurlPS 2021

L%ILAPP = max(0,1 — y* - u§+6t'l) (1)

t+6t,l
u; 1 Zt+5t,l Wp?‘ed,lct,l (2)

If Loss=0, then deriv"'=0; else deriv" =1

pred . t,l t t . t—ot pred __ _ =5t
awS “Coc (deriv ™) (y7) zj ¢ AWR =y, - o7 ¢

Awy; o (deriv)) (y ) (WPTed ct=80), - p'(a]) - ¥
AWij o« (NeurMod1)(NeurMod) WP*c'"), - post'? 'Pl“etf -
2 broadcast factors Hebbian

1. Sameness-label (y*=+1=same; y‘= -1 = saccade)
2. Prediction was good (zero-loss) or not deriv®!



Previous slide. The calculation was done on the blackboard.
Importantly: the resulting learning rule is biologically interpretable with the following terms

For a feedforward synapse (typically located on the basal dendrite):
- Presynaptic activity
- State g'(u) of the postsynaptic neuron
- The lateral predictive input into neuron i: lat} = ¥, wP %" z}=5¢
which would arrive in the apical dendrite
- A broadcast factor that indicates ‘'same object’ or not. The signal ‘not same object’

could be caused by a saccade.
- If it is the 'same object’ learning only happens if the prediction is not yet good enough.



NO Backprop, piease! Wulfram Gerstner
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1) Introduction (review)

2) Plasticity and local learning rules (review)
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4) Representation Learning with CLAPP:
“Contrastive, Local And Predictive Plasticity”

5) Feedback Alignment



Previous slide.
Now we explore an implementation of the CLAPP rule
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Previous slide.
Now we explore an implementation of the CLAPP rule using the scenario of contrastive
learning as explained before



lateral input influences
Changes of feedforward
synapse on basal dendrite

\ ‘
saccade or not! Aceltuno et al. (2024)




Previous slide.

The aim Is to predict in a given area (say IT) the activity of the red neuron from the
activity of other neurons (e.g., the blue neuron) in the same area

We zoom In onto the red neuron. The text describes the learning rule that we just
derived.



Local Learning Rule

similar learning rule
for lateral weights w

lat
Lk
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s‘ ) _ = 0 .
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saccade or not!



Previous slide.
Same slide again, but now with the formula for the weight change that we derived.



Train (STL 10 data base):

_ Representation Test:
100 000 unlabeled images 96x96

data from 10 classes.

6 convolution layers (3x3) 800 test images per class

4 maxpool layers (2x2) (used to color the clusters here)
CLAPP layer 6

Area 6
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Bernd llling et al. NeurlPS 2021



Previous slide.
Performance of the CLAPP learning rule in a 6-layer network using the STL10 database.

STL was constructed for self-supervised learning. The training set consists of images
without label. After layerwise training of a convolutional network with the CLAPP rule,
Neurons in area 1 (model of V1) respond to horizontal or vertical stripes (3 example
neurons shown).

However, neurons In area 6 (last step of IT) respond to more abstract concepts like leg of
an animal or bottom of a car close to a tire.

Area 6 contains thousands of neurons each responding with an high or low activity to a
new image. We now take the test set and project the activation state of all neurons In
Area 6 down to two dimensions. Points are colored according to the class label. We
observe that images of planes (blue points) have a representation close to each other but
somewhat separated from those of birds (brownish points).



Test on ST1-10 image hase
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70 lliing no labels
S
.60 Test:
© Labeled data from 10 classes,
S 50 used to train linear classifier
M
840
30

| . - Bernd llling et al. NeurlPS 2021
V1 V2 Area T Delrocq et al, bioRxiv, 2024



Previous slide.

The usefulness of the representation is measured by the quality of linear readout
(classification).

We find that in Area 1 the representation Is not useful, but usefulness increases up to
Area 0.

Hence with the representation of Area 6 it would now be possible to use a three-factor
rule and reward-based learning to acquire a skill such as raising the arm each time you
see an airplane.



Summary:

- Al Is extremely powerful today, but trained with BackProp
- Human brain iIs extremely powerful, but without BackProp
- 'Learning rules’ of the brain still largely unknown

- Learning rules are important research topic

- Representation learning 1s possible with local rules

- Predictions are important for learning

- Good representations starting point for many things!

Literature:

- Timothy P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)

- Bernd llling et al., Local Plasticity rules can learn deep representations, 35" NeurlPS (2021)

- Ariane Delrocq et al, Critical periods support representation learning in a model of cortical processing, bioRXiv,
2024.12. 20.629674 (2024)

- Pau Aceituno et al., Target learning rather than backpropagatin explains learning in the mammalian neocotex, bioRxiv,
2024.04.10.588837 (2024)

- C. Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Connectivity reflects coding: a model of voltage-based
spike-timing-dependent-plasticity with homeostasis.. Nature Neuroscience 13, pp. 344-352 (2010)

- A. Van den Oordt, Y. Li, O. Vinyals, Representation Learning with Contrastive Predictive Coding, ArXiv (2018)
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1) Introduction (review)

2) Plasticity and local learning rules (review)

3) Contrastive Selfsupervised Learning

4) Representation Learning with CLAPP:
“Contrastive, Local And Predictive Plasticity”

5) Feedback Alignment
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NO Backprop, piease! Wulfram Gerstner
I - EPFL, L tzer
I.ea"“ng ﬂf ‘[Ieen' ranresenta“nns , Lausanne, Switzerland

Alternatives to CLAPP?
- Feedback Alignment/Deep Feedback Alignment

- Predictive Coding

Literature:
Timothy P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neuroscl. 21: 335-346 (2020)

Bernd llling et al., NeurlPS (2021), Local Plasticity rules can learn deep representations, 35" NeurlPS (2021)
T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feedback weights

support error backpropagation for deep learning. Nature communications, 7(1):13276, 2016.

J. C. Whittington and R. Bogacz. An approximation of the error backpropagation algorithm in a predictive coding
network with local hebbian synaptic plasticity. Neural computation, 29(5): 1229-1262, 2017

A. Ngkland. Direct feedback alignment provides learning in deep neural networks. Advances in neural

iInformation processing systems, 29, 2016.
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Vector feedback:

- multiple outputs,

- one ‘signed error per output’

- error vector transmitted back
- precise neuron-specific errors

BackProp Algo has 4 phases:

1) Forward pass and freeze )
2) Calculate local output errors

3) Backprop pass) using 2)

4) Update connections, using 1) +3)

Backpropagation

® o ©
. O O

I

I

I

_ _ I
O O I

BackProp rules:

vector
feedback

Backprop-like learning
with feedback network

e O

@

£y

A

O

2 R

O
© C. 0O .O

e O ,0 O
O o O

Adapted from
Lillicrap et al.
2020

Nat. Rev. Neurosci.
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How does BackProp work= Minimize errors!
- BackProp needs four separate phases:
forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture
1) feedback weights = feedforward weights: ‘weight transport;

2) backward multipliers depend on state Backprop-like learning
of feedforward network ( with feedback network
‘.A/\

o % — o %
; . ; l 2
- Not iImplementable in biology! , & 9 'e 6 o
: AR Y O

vy O O @5

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)
T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neuroscl. 21: 335-346 (2020)
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hinge-loss, layerwise; hinge-loss with FA,
CLAPP Feedback Alignment

qred, L }Vpred.L
/N /\
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i) WF(A) ‘random’

- 000
" | WF(j) = 'random’
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Previous slide.
Direct feedback alignment is simple:

We measure the local mismatch in each output neuron, and then we replace the exact
BackProp signal by a fixed random matrix.

The term feedback alignment arises from the observation that if you apply this idea for

the weights leading up to the output layer, then the forward weights learn to become
similar (‘aligned’) to the fixed random feedback weights.

Note that in backprop the forward and the backward weights should be identical.

However, for multiple layers (here 6 layers) feedback alignment does not work.



Table 1: Different bio-plausible rules using contrastive hinge loss

Plausible Local Top-down STL-10

Method architecture update  feedback  accuracy
CLAPP YES yES no 73.29
DFA yES no yes 52.30
Predictive Coding no yes yes 36.75
CLAPP-1b yes yes yes 73.85

DFA: Direct Feedback alignment, a variant of FA.

A. Ngkland. Direct feedback alignment provides learning in deep neural
networks. Advances in neural information processing systems, 29, 2016.
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Two version of CLAPP (the second one learns feedback weights instead of lateral
weights) perform much better on the STP10 task, then Direct Feedback Alignment.



sSummary: Selfsupervised Learning

Contrastive Learning:

- Predict left part of image from right part

- Predict original image from augmented image

- Align representation In representation layer

BUT:

- Avoid collapse of representation by ‘negative samples’
- Use negative samples that the network should not predict
- Move different ‘objects’ far from each other Birds

Non-contrastive Learning: e e

e e L
_—r N v ;i,‘ g a
n n - :ﬁ.{ ) F ffe}‘{ 5\'32* .
SERBRAT G A e
- VOId COllapsSe normallzZation AR ST
LRI Y
RN 4 FAROR TRt
5 ] ,)?' - ol .'.‘;':'.”v:‘
o IR
- neurons snou e usSe o g
e it
..... L,}t:‘%-,«‘ 4
e T

- Neurons do different things

, jJ»"_lt 5 .
‘vehicles’ ‘furry animals’
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Additional background literature:

A.Artola, S.Brocher and W. Singer (1990) Different voltage dependent thresholds for inducing long-term depression and
long-term potentiation in slices of rat visual cortex. Nature 347, pp. 69-72.

A.Ngezahayo, M.Schachner and A.Artola (2000) Synaptic activation modulates the induction of
bidirectional synaptic changes in adult mouse hippocamus. J. Neuroscience 20, pp. 2451-2458.

P.J. Sjostrom, G.G. Turrigiano and S.B. Nelson (2001) Rate, timing, and cooperativity jointly determine cortical synaptic
plasticity. Neuron 32, pp. 1149-1164.

C.Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Connectivity reflects coding: a model of voltage-based spike-
timing-dependent-plasticity with homeostasis. Nature Neuroscience 13, pp. 344-352 (2010)

L. Muckli et al. (2015) Contextual feedback to superficial layers of V1. Current Biol. 25: 2690-2695
G.B. Keller and T.D. Mrsic-Flogel (2018 Predictive Processing: a canonical cortical computation. Neuron:424-435
A. Keller, Roth, Scanziani. Feedback generates a second receptive field. Nature 582: 545-549 (2020)

J. Homann ... M.J. Berry, (2022) Novel stimuli evoke excess activity in the mouse primary visual cortex. Proc. Natl. Acad. Sci
(USA) 119:e2108882119

M.S. Halvagal and F. Zenke, (2023) The combination of Hebbian and predictive plasticity learns invariant object representation ...

Nat. Neurosci. 26:1906-1915
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