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No Backprop, please! 

Learning of ‘deep’ representations
Learning actions:

→ riding a bicycle

Remembering facts

→ previous president of the US

Remembering episodes

→ first day at college/university

Remembering ‘objects’

Close your eyes: imagine a tree!

Memories 

are available

because of

Learning

Literature: 

Timothy P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)

Bernd Illing et al.,  NeurIPS (2021), Local Plasticity rules can learn deep representations, 35th NeurIPS (2021)



Previous slide.

The first two section formulate the question in the context of what we have seen in earlier 

weeks.  The question is how to learn deep representations with biologically plausible 

learning rules. An important novel aspect is the capacity of the brain to predict.



https://www.publicdomainpictures.net/pictures/250000/velka/tree-1524116693MIN.jpg

Humans can learn to predict a ‘tree image’

https://www.publicdomainpictures.net/pictures/90000/velka/crab-apple-blossom-tree.jpg



Previous slide.

On the left: we are able to imagine a tree ‘from scratch’ just triggered by the word tree. 

The resulting image is not unique.

On the right: it is easy to imagine the covered parts of the tree.



fMRI experiments: spatial prediction 

Contextual feedback to superficial layers of V1 

L. Muckli et al., Current Biol. 25: 2690–2695 (2015)

V1 receives feedback input

when not directly stimulated

Morgan, Petro, Muckli, J. Neurosci. (2019)

Savanera, … Muckli, J. Vision (2021)

→Brain is able to predict

missing parts



Previous slide.

fMRI (functional magnetic resonance imaging) shows brain regions that are active during 

a given task.

An image is represented in several brain areas, but the area V1 is the one where we 

understand the representation very well: First, it responds strongly to high contrast 

stripes or checkerboards. Second, it shows spatial organization:

The experimentalist Lars Muckli and colleagues first showed a checkerboard pattern with 

a grey rectangle – since neurons in area V1 respond to the checkerboard pattern it is 

possible to find out which neurons respond to the region of the checkerboard. And the he 

inversed the pattern to find out which neurons respond to the lower right corner.

He then used a series of images (like the one with a car) where always the lower right 

corner was covered. I found that neurons in area V1 that belong to the covered region 

are active  – and an obvious explanation is that these neurons receive either later input 

from the same area or feedback input from higher areas.



Predictions via Lateral and Feedback Connections

Feedback generates a second receptive field

A. Keller, Roth, Scanziani. Nature 582: 545–549 (2020)

Predictive Processing: a canonical cortical computation.

GB Keller, TD Mrsic-Flogel, Neuron:424-435 (2018)

Feedback exists!

used for predictions 

Predictions  can 

be observed!

Spatial context important! 
→Feedback from wider area

The functional organization of cortical feedback

Marques … Petreanu, Nat. Neurosci. 21:757-764  (2018)



Previous slide.

In animals, it is possible to see observe similar phenomena on a neuron-by-neuron basis. 

Feedback connections from higher areas (top) or from lateral  neurons in the same area 

(bottom) send input, and such input has predictive properties (middle).



Deep representation in brain models

Using goal-driven deep learning to understand sensory cortex 

D Yamins, JH DiCarlo Nat. Neurosci.19: 356-365 (2016)

Train on classification of Mio of images with BackProp (supervised learning)

BUT: - Real networks do not use BackProp

deep network

brain model

cup, mug, bird,

tree, car, airplane  …

“deep”

representation

1 Cortical Area → 1 layer of a Deep Convolutional Neural Network



Previous slide. 

This is a repetition from week 1: information (such as the image of a coffee mug) enters 

through the retina. Its first cortical processing state is V1, then V2, V4, and three areas 

within inferotemporal cortex (IT).

Today, on of the best models of the neuronal  activity in these areas is a deep neural 

network trained with BackProp on a supervised learning task (ImageNet)



Artificial Neural Networks: self-supervised learning

- masked auto-encoders:

learn to fill in missing parts

- contrastive learning:

image patch → image patch

prediction possible for ‘same’ image,

but impossible for ‘different’ image

“deep”

representation

Contrastive Predictive Coding (CPC), Van den Oordt et al. 2018



Previous slide.

Alternatively, in the absence of image labels, there are self-supervised learning 

paradigms that achieve the same performance.

For example, a partially covered image is presented and the task is to predict a full image 

at the output: this is the example of self-supervised learning of an auto-encoder.

Other variants of self-supervised learning exist and we will talk about these later today. 



Learning in Artificial Neural Networks

Deep Networks for Vision

(e.g. AlexNet …  ) 

Deep Networks for Chess and Go

(alpha-go, alpha-zero)

Foundation Models 

(LLMs, ChatGPT, Bert)

Sutskever and Hinton, 

2012

Silver et al. (2017) , 

Deep Mind

trained with BackProp

trained with BackProp

trained with BackProp

Autoencoders/contrastive learning/self-supervised learning 

trained with BackProp



Previous slide.

All the famous models in AI/Deep Learning are trained with Backprop. 



A Spectrum of Learning Algorithms: connections change based on …  

2-factor rules: 

unsupervised, 

no feedback

3-factor rules: 

reward-based, 

feedback

BackProp rules: 

vector feedback

(many local ‘errors’)

Adapted from

Lillicrap et al.

2020 

Nat. Rev. Neurosci.



Previous slide.

Slide was already shown in week 1 and not shown again. 



BackProp rules: 

vector 

feedback

Backprop needs precise error feedback

Vector feedback:

- multiple outputs,

- one ‘signed error per output’

- error vector transmitted back

- precise neuron-specific errors

BackProp Algo has 4 phases:
1) Forward pass and freeze

2) Calculate local output errors

3) Backprop pass, using 2)

4) Update connections, using 1) +3) 

Adapted from

Lillicrap et al.

2020 

Nat. Rev. Neurosci.



Previous slide.

Slide was already shown in week 1 and not shown again. 

. 



How does  BackProp work? Minimize errors!

- BackProp needs four separate phases:

forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.g.,   feedback weights = feedforward weights;

backward multipliers depend on state 

of feedforward network).

→Not implementable in biology!

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)



Previous slide.

Slide was already shown in week 1 and not shown again. 



How does  BackProp work? Minimize errors!

- BackProp needs four separate phases:

forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.g.,   feedback weights = feedforward weights;

backward multipliers depend on state 

of feedforward network).

→Not implementable in biology!

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)



Previous slide.

Slide was already shown in week 1 and not shown again. 



Summary of Introduction

Reading: 

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)

BackProp is not implementable in biology

→ No BackProp, please!!!

- 4 phases for update   

- precise feedback architecture

- forward=backward weights

Can we use a biologically plausible learning rule instead? 

→ online, continuous  time

→ robust, plausible feedback
→ learning rules for all weights

1. Brain has learnt to predict missing parts

2. Analogy in machine learning is ‘self-supervised learning’

3. Backprop has several problems as model for neuroscience

What are good candidates of learning rules? 



Previous slide.

Similar to week 1. But this week we focus on selfsupervised learning without BackProp. 



Wulfram Gerstner
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No Backprop, please! 

Learning of ‘deep’ representations

1) Introduction (review)

2) Plasticity and local learning rules (review)

3) Contrastive Selfsupervised Learning

4) Representation Learning with CLAPP:

“Contrastive, Local And Predictive Plasticity”

5)   Feedback Alignment



Previous slide.

Similar to week 1 and last week. 



Synapse

Neurons

learning = change of connection

Learning in the brain: changes between connections

memory in the 

connections



Previous slide.

Similar to week 1 and last week. 



brain algorithms

‘brain-style computing’:

online, distributed, …

Learning Rules: what makes connections change?  

What are the learning rules of the brain?



Previous slide.

Similar to week 1 and last week. 



Hebbian Learning (LTP)

Hebbian co-activation:

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s

“if two neurons are active together, the connection 

between those two neurons gets stronger.”

Hebb  postulate (1949)

Many classic experiments: 1970-2005 Bliss and Lomo, J. Physiol., 1973; …



Previous slide.

Similar to week 1 and last week. 



2-factor rules: 

unsupervised, 

no feedback

2-factor rules use information locally available at the synapse

Big question:

Can we learn anything 

at all without feedback?

Standard Answer:

Development of Receptive fields,

…    but not much more!

image: Lillicrap et al. 2020



Previous slide.

In the first part of the class when we discussed 2-factor rules we saw already examples 

of what can be achieved with this context

- PCA or ICA

- Receptive Field Development

- Winner-Take-All or k-means-clustering

- Soft-winner-take all/competitive learning.

Note that all of these methods have been shown in a SINGLE layer of neurons.

Many people have tried over decades to build  multi-layer versions of these methods, but

failed!  We will see that we need just a bit more!



Voltage-dependence of Hebbian Learning (LTP and LTD)

Hebbian co-activation:

Hebbian coactivation

without postsyn.-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s

Classic voltage dependent experiments: 1990-2005

Clopath model of voltage-dependent plasticity:  2010

→ synaptic changes depend on voltage and spikes

A.Artola, S.Bröcher and W. Singer (1990). Nature 347, pp. 69–72. (1990) 

A.Ngezahayo, M.Schachner and A.Artola (2000). J. Neuroscience 20, pp. 2451–2458. (2000)

P.J. Sjöström, G.G. Turrigiano and S.B. Nelson (2001) Neuron 32, pp. 1149–1164. 

C.Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Nature Neuroscience 13, pp. 344–352 (2010)



Previous slide.

Discussed last week.



Three-factor rules are Hebb +  neuromodulator

Dopamine/Serotonin/Ach  → reward/surprise/alert

important for action learning: to ski/to ride bicycle

→ Dopamine (even if delayed by 1s) helps learning

Hebbian rules are not strong enough: need 3-factor rules!

Yagishita et al. Science, 2014; …

W. Schultz, P. Dayan and R.R. Montague, 1997; … 

Experiments: 2014-2025

Dopamine: 1997-2025



Previous slide.

Discussed last week and in the context of 3-factor rules. 



3-factor rules: 

reward-based, 

feedback

3-factor rules use information locally available at the synapse

combined with one global feedback signal

Big question:

What can be learned with these rules? 

Answer:

→ action learning (ski, bicyle, tennis) 

→ rapid decision making (chess, go,  

buy/not buy)

BUT: 3-factor rules only work if 

you have a ‘good representation’
image: Lillicrap et al. 2020



Previous slide.

We have seen that nearly all algorithms of reinforcement learning can be implemented as 

3-factor rules. Examples are SARSA, Q-learning, REINFORCE with baseline, Actor-Critic 

models.

However, all these 3-factor rules require a single layer of weights to be learned, i.e., the 

layer from state representation to action output.

Deep reinforcement learning is not  compatible with 3-factor rules.

Therefore, we need a ‘good state representation’.



→ Objects of same class are

neighbors

bad representation

Airplanes

Birds

Good representation

→ Raise arm if 

airplane

→ needs deep network

→ could be learned 

with 3-factor rule



Previous slide.

What would be a good state representation? 

Suppose we have many unlabeled images, some of these with airplanes others with 

birds. At the end of the visual processing stream (say in IT), we want a representation 

such that two images of airplanes are represented similarly, but different from two images 

of birds.

This idea requires a deep network since the pixel images of an airplane from below and a 

bird from below may be more similar, that the image of a black airplane from below and a 

white airplane from above.

All single-layer methods such as PCA, ICA, or clustering would therefore not work!

The similarity in pixel space is not always a good predictor for similarity in the space of 

‘meaning’ that is developed in deep areas such as IT.

However, if we have a good representation in a deep area, then it will be easy to learn a 

reward-based task such as raise your arm if you see an airplane.



Learn a ‘good representation’! 

Big question:

Can we have local learning rules 

(with several global signals)

that yield good representations 

in multi-layer networks? 

Learning rules???

Network architecture???

What kind of feedback???

representation

of objects

image: Yamins et al. 2016



Previous slide.

So, how can we learn a good representation in multi-layer networks? 

We exploit (next slide) a phenomenon of spike-based and voltage-based learning that we 

already discussed last week.



Aceituno, …, Grewe, bioRxiv (2024)

https://doi.org/10.1101/2024.04.10.588837;

2024:  Learning rule: Feedforward synapse on basal dendrite

depend on lateral/feedback input (on apical dendrite)

Recent experiments in L5: Grewe group (2024)

Experiments in L2/3: Williams and Holtmaat (2019)

Such a rule useful to learn ‘good’ representation!

synapse on basal dendrite

Input on

apical dendrite

synapse on basal dendrite 

does not change

synapse on basal dendrite → LTP

Consistent with voltage-dependent plasticity (Sjostrom et al 2001)

and Clopath model  (Clopath et al. 2010)



Experiments in Mouse Frontal Cortex, L5 cells, slice, from the Grewe lab.

Two  electrodes are used for extracellular stimulation at the basal dendrite  (red-green) 

and apical dendrite (blue). Voltage is recorded with the brown electrode (A).

Initially, EPSPs are evoked by small-amplitude pulse stimuli (strength s1) with the red-

green electrode yielding an EPSP of a few mV. Then the stimulation amplitude is 

increased (strength s2) so that the firing threshold is reached, and the postsynaptic 

neuron fires an isolated spike. After 8 repetitions (at 0.1Hz) no change in the EPSP 

amplitude is found. Thereafter the stimulation of basal synapses (with strength s2) is 

paired with stimulation of the apical dendrite, causing a short burst of spikes and a  

prolonged voltage response. After 8 repetitions (at 0.1Hz) the EPSP amplitude in 

response to stimulus s1 is increased (C and D).

These findings are consistent with experiments of J. Sjostrom (2001) and the voltage-

dependent plasticity model of C. Clopath (2010): synaptic changes require either multiple 

postsynaptic spikes are a prolonged depolarization of the postsynaptic neuron, or a 

combination of both.
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Previous slide.

This section gives the general background of contrastive self-supervised learning.



Self-supervision and prediction

Views of same object!

‘sameness’ info

Predict lower half!

Possible if same object! 

Predict lower half!

Possible if same object! 

Predict across saccade far away!

Prediction impossible if not the same object! 



Previous slide.

Self-supervised learning is based on predictions.

It should be possible to predict the lower half of an image from the upper half.

But it should not be possible to predict the presence of an elephant from the image of a 

mug.

In the first case, it is the SAME object. In the second case it is a DIFFERENT object.

Exploiting  sameness versus difference is called contrastive learning.



Selfsupervised Learning: Contrastive Learning 

Airplanes

Birds

Examples:
- Predict left part of image from right part

- Predict original image from augmented image

→ Align representation in representation layer

BUT:

- Avoid collapse of representation

- Use negative samples that the network should not predict

→ Move different ‘objects’ far from each other



Previous slide.

Note that in an autoencoder we would predict the pixels of the image. In self-supervised 

learning we only predict the representation of the image in a deep layer.

Prediction would be trivial if all objects lead to the same set of activated neurons. This 

situation is sometimes called a collapse of representation. That is not what we want. 

We aim for a representation where different views of the same objects leads to very 

similar activation patterns of neurons whereas views of two different objects lead to very 

different activation patterns. The second aspects gives rise to the term ‘contrastive’.

Equivalently, instead of different views of the same object,  we can say: if we look at one 

and the same image then the activity of representation neurons that respond to the LEFT 

part of should be predictable from the CONTEXT, i.e., the RIGHT part of the image. 



𝐿𝐶𝐿𝐴𝑃𝑃
𝑡,𝑙 = max(0,1 − 𝑦𝑡 ⋅ 𝑢𝑡

𝑡+𝛿𝑡,𝑙)

𝑢𝑡
𝑡+𝛿𝑡,𝑙 = 𝒛𝑡+𝛿𝑡,𝑙𝑾𝑝𝑟𝑒𝑑,𝑙𝒄𝑡,𝑙

𝑦𝑡 =
1 𝑖𝑓 𝑠𝑎𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
−1 𝑖𝑓 𝑛𝑒𝑥𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

                               

CLAPP Loss = Hinge Loss

𝑦𝑡 = sameness signal/contrastive signal

𝑢𝑡
𝑡+𝛿𝑡,𝑙 = similarity:

  feedforward vs lateral prediction

Illing,  et al. NeurIPS 2021



Previous slide.

The small index l is the layer index. The last layer is l=L.

Let us look at the loss in the last layer. It is a hinge-loss (picture on the next slide): either 

zero or linear in u.

The variable u is a measure of the similarity between  the activity state vector z in layer l 

and the lateral prediction from OTHER neurons c = z in the same layer.

If variable y tells whether the prediction comes from the SAME object (y=1) or a different 

object (y=-1).

The boldface z refers to all neuron in a layer. For an interpretation it is easier to look at

individual neurons such as neuron i in layer l.  Its activity depends ONLY on the 

feedforward pathway 

𝑧𝑖
𝑡+𝛿𝑡,𝑙 = 𝑔(σ𝑗𝑤𝑖𝑗

𝑙 𝑧𝑗
𝑡,𝑙−1 )



Illing,  et al. NeurIPS 2021

1

Same object

𝑦𝑡 = +1

not same object 

𝑦𝑡 = −1

Loss 𝐿

similarity u

𝐿𝐶𝐿𝐴𝑃𝑃
𝑡,𝑙 = max(0,1 − 𝑦𝑡 ⋅ 𝑢𝑡

𝑡+𝛿𝑡,𝑙)

CLAPP Loss = Hinge Loss



Previous slide.

Hinge loss means in our case:

If the similarity u between the prediction based on the context c and the actual 

representation state z is large, and it is a valid context (i.e. same object) so that 

predictions should be possible (y=1), then the loss is zero.

The notion of ‘large’ is defined by a margin of unity.

Similarly, if the similarity is below zero and the context has changes (i.e. different object), 

then the loss is also zero.



CLAPP Loss = Hinge Loss 𝐿𝐶𝐿𝐴𝑃𝑃
𝑡,𝑙 = max(0,1 − 𝑦𝑡 ⋅ 𝑢𝑡

𝑡+𝛿𝑡,𝑙)

BackProp: 

vector 

feedback

Hinge Loss with Backprop:

self-supervised learning
Hinge Loss layerwise:

CLAPP



Previous slide.

LEFT: The Hinge Loss is  used  only at the output layer l=L. If the loss is non-zero then 

weights in the whole network are adjusted using BackProp.

RIGHT: The Hinge Loss is applied separately in each layer. The resulting algorithm is

called CLAPP



CLAPP Loss = Hinge Loss Illing,  et al. NeurIPS 2021

i j

Hebbian2 broadcast factors

∆𝑤𝑖𝑗 ∝

1. Sameness-label (𝑦𝑡=+1=same; 𝑦𝑡= -1 = saccade)

2. Prediction was good (zero-loss) or not 𝑑𝑒𝑟𝑖𝑣𝑡,𝑙

∆𝑤𝑗𝑘
𝑝𝑟𝑒𝑑∝ (deriv𝑡,𝑙)(𝑦𝑡) 𝑧𝑗

𝑡 𝑐𝑘
𝑡−𝛿𝑡

If Loss=0, then 𝑑𝑒𝑟𝑖𝑣𝑡,𝑙=0; else 𝑑𝑒𝑟𝑖𝑣𝑡,𝑙=1

i

∆𝑤𝑖𝑗 ∝  (𝑑𝑒𝑟𝑖𝑣𝑡,𝑙)(𝑦𝑡)(𝑊𝑝𝑟𝑒𝑑 𝑐𝑡−𝛿𝑡)𝑖 ∙ 𝜌′(𝑎𝑖
𝑡) ∙ 𝑥𝑗

𝑡

∝ (𝑁𝑒𝑢𝑟𝑀𝑜𝑑1)(𝑁𝑒𝑢𝑟𝑀𝑜𝑑)

𝐿𝐶𝐿𝐴𝑃𝑃
𝑡,𝑙 = max(0,1 − 𝑦𝑡 ⋅ 𝑢𝑡

𝑡+𝛿𝑡,𝑙)                               (1)

𝑢𝑡
𝑡+𝛿𝑡,𝑙 = 𝒛𝑡+𝛿𝑡,𝑙𝑾𝑝𝑟𝑒𝑑,𝑙𝒄𝑡,𝑙 (2)



Previous slide. The calculation was done on the blackboard.

Importantly: the resulting learning rule is biologically interpretable with the following terms

For a feedforward synapse (typically located on the basal dendrite):

- Presynaptic activity

- State g’(u) of the postsynaptic neuron

- The lateral predictive input into neuron i: 𝑙𝑎𝑡𝑖
𝑙 = σ𝑘𝑤𝑖

𝑝𝑟𝑒𝑑,𝑙
𝑧𝑘
𝑙−𝛿𝑡

which would arrive in the apical dendrite

- A broadcast factor that indicates ‘same object’ or not. The signal ‘not same object’ 

could be caused by a saccade.

- If it is the ‘same object’ learning only happens if the prediction is not yet good enough.        
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Previous slide.

Now we explore an implementation of the CLAPP rule



Self-supervision and prediction

Views of same object!

‘sameness’ info

Predict lower half!

Possible if same object! 

Predict lower half!

Possible if same object! 

Predict across saccade far away!

Prediction impossible if not the same object! 



Previous slide.

Now we explore an implementation of the CLAPP rule using the scenario of contrastive 

learning as explained before 



Area 6
Area 1

Network architecture: lateral feedback provides context

saccade 𝑜𝑟 𝑛𝑜𝑡!

lateral input  influences 

Changes of feedforward 

synapse on basal dendrite

Aceituno et al. (2024)



Previous slide.

The aim is to predict in a given area (say IT) the activity of the red neuron from the 

activity of other neurons (e.g., the blue neuron) in the same area 

We zoom in onto the red neuron.  The text describes the learning rule that we just 

derived.  



Area 6
Area 1

Local Learning Rule

saccade 𝑜𝑟 𝑛𝑜𝑡!

lateral input  influences 

changes of feedforward 

synapse on basal dendrite

∆𝑤𝑖𝑗 ∝ 𝑚𝑜𝑑 𝑡 𝑙𝑎𝑡𝑖 𝑡 𝑝𝑜𝑠𝑡𝑖 𝑡 𝑝𝑟𝑒𝑗(𝑡)

𝑙𝑎𝑡𝑖(𝑡) =෍

𝑘

𝑤𝑖𝑘
𝑙𝑎𝑡𝑝𝑜𝑠𝑡𝑘(𝑡 − Δ)

similar learning rule  

for lateral weights 𝑤𝑖𝑘
𝑙𝑎𝑡



Previous slide.

Same slide again, but now with the formula for the weight change that we derived.



Performance
Train (STL 10 data base):

100 000 unlabeled images 96x96

6 convolution layers (3x3)

4 maxpool layers (2x2)

Representation Test:

data from 10 classes.

800 test images per class

(used to color the clusters here)

neuron o

neuron n

neuron m

Bernd Illing et al. NeurIPS 2021

area 6

Area 6

Area 1

area 1



Previous slide.

Performance of the CLAPP learning rule in a 6-layer network using the STL10 database.

STL was constructed for self-supervised learning. The training set consists of images 

without label. After layerwise training of a convolutional network  with the CLAPP rule,

Neurons in area 1 (model of V1) respond to horizontal or vertical stripes (3 example 

neurons shown).

However, neurons in area 6 (last step of IT) respond to more abstract concepts like leg of 

an animal or bottom of a car close to a tire.

Area 6 contains thousands of neurons each responding  with an high or low activity to a 

new image. We now take the test set and project the activation state of all neurons in 

Area 6 down to two dimensions. Points are colored according to the class label. We 

observe that images of planes (blue points) have a representation close to each other but 

somewhat separated from those of birds (brownish points).



Test on STL-10 image base

Train: 

no labels

Test: 

Labeled data  from 10 classes, 

used to train linear  classifier 

Bernd Illing et al. NeurIPS 2021

Delrocq et al, bioRxiv, 2024

Usefulness of representation increases

Delrocq

Illing

→ Raise arm if 

airplane



Previous slide.

The usefulness of the representation is measured by the quality of linear readout 

(classification).

We find that in Area 1 the representation is not useful, but usefulness increases up to 

Area 6.

Hence with the representation of Area 6 it would now be possible to use a three-factor 

rule and reward-based learning to acquire a skill such as raising the arm each time you

see an airplane.



Summary:

- AI is extremely powerful today, but trained with BackProp

- Human brain is extremely powerful, but without BackProp

- ‘Learning rules’ of the brain still largely unknown

- Learning rules are important research topic

- Representation learning is possible with local rules

- Predictions are important for learning

→ Good representations starting point for many things!
Literature: 
- Timothy P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)

- Bernd Illing et al., Local Plasticity rules can learn deep representations, 35th NeurIPS (2021)

- Ariane Delrocq et al, Critical periods support representation learning in a model of cortical processing,   bioRxiv, 

2024.12. 20.629674 (2024)

- Pau Aceituno et al., Target learning rather than backpropagatin explains learning in the mammalian neocotex, bioRxiv, 

2024.04.10.588837 (2024)

- C. Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Connectivity reflects coding: a model of voltage-based 

spike-timing-dependent-plasticity with homeostasis.. Nature Neuroscience 13, pp. 344–352 (2010)

- A. Van den Oordt, Y. Li, O. Vinyals, Representation Learning with Contrastive Predictive Coding, ArXiv (2018)
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Summary.



Wulfram Gerstner

EPFL, Lausanne, Switzerland

No Backprop, please! 

Learning of ‘deep’ representations

1) Introduction (review)

2) Plasticity and local learning rules (review)

3) Contrastive Selfsupervised Learning

4) Representation Learning with CLAPP:

“Contrastive, Local And Predictive Plasticity”

5)   Feedback Alignment
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Wulfram Gerstner

EPFL, Lausanne, Switzerland

No Backprop, please! 

Learning of ‘deep’ representations

Literature: 

Timothy P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)

Bernd Illing et al.,  NeurIPS (2021), Local Plasticity rules can learn deep representations, 35th NeurIPS (2021)

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feedback weights

support error backpropagation for deep learning. Nature communications, 7(1):13276, 2016.

J. C. Whittington and R. Bogacz. An approximation of the error backpropagation algorithm in a predictive coding 

network with local hebbian synaptic plasticity. Neural computation, 29(5): 1229–1262, 2017

A. Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in neural 

information processing systems, 29, 2016.

Alternatives to CLAPP?

- Feedback Alignment/Deep Feedback Alignment

- Predictive Coding
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BackProp rules: 

vector 

feedback

Backprop needs precise error feedback

Vector feedback:

- multiple outputs,

- one ‘signed error per output’

- error vector transmitted back

- precise neuron-specific errors

BackProp Algo has 4 phases:
1) Forward pass and freeze

2) Calculate local output errors

3) Backprop pass, using 2)

4) Update connections, using 1) +3) 

Adapted from

Lillicrap et al.

2020 

Nat. Rev. Neurosci.
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How does  BackProp work? Minimize errors!
- BackProp needs four separate phases:

forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

1) feedback weights = feedforward weights: ‘weight transport;

2) backward multipliers depend on state 

of feedforward network (

→Not implementable in biology!

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346  (2020)
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Idea of feedback alignment: use random feedback weights

hinge-loss, layerwise:

CLAPP

hinge-loss with FA,

Feedback Alignment 

𝑊𝐹𝐴
1
= ′𝑟𝑎𝑛𝑑𝑜𝑚′

𝑊𝐹𝐴
2
= ′𝑟𝑎𝑛𝑑𝑜𝑚′



Previous slide.

Direct feedback alignment is simple:

We measure the local mismatch in each output neuron, and then we replace the exact 

BackProp signal by a fixed random matrix.

The term feedback alignment arises from the observation that if you apply this idea for

the weights leading up to the output layer, then the forward weights learn to become 

similar (‘aligned’) to the fixed random feedback weights.

Note that in backprop the forward and the backward weights should be identical.

However, for  multiple layers (here 6 layers) feedback alignment does not work.



DFA: Direct Feedback alignment, a variant of FA.

A. Nøkland. Direct feedback alignment provides learning in deep neural 

networks. Advances in neural information processing systems, 29, 2016.



Previous slide.

Two version of CLAPP (the second one learns feedback weights instead of lateral 

weights) perform much better on the STP10 task, then Direct Feedback Alignment. 



Summary: Selfsupervised Learning

Airplanes

Birds

Contrastive Learning:
- Predict left part of image from right part

- Predict original image from augmented image

→ Align representation in representation layer

BUT:

- Avoid collapse of representation by ‘negative samples’

- Use negative samples that the network should not predict

→ Move different ‘objects’ far from each other

Non-contrastive Learning:

- Avoid collapse by normalization

- All neurons should be used

- Neurons do different things
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A.Artola, S.Bröcher and W. Singer (1990) Different voltage dependent thresholds for inducing long-term depression and 

long-term potentiation in slices of rat visual cortex. Nature 347, pp. 69–72. 

A.Ngezahayo, M.Schachner and A.Artola (2000) Synaptic activation modulates the induction of   

      bidirectional synaptic changes in adult mouse hippocamus. J. Neuroscience 20, pp. 2451–2458. 

P.J. Sjöström, G.G. Turrigiano and S.B. Nelson (2001) Rate, timing, and cooperativity jointly determine cortical synaptic 

plasticity. Neuron 32, pp. 1149–1164. 

C.Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Connectivity reflects coding: a model of voltage-based spike-

timing-dependent-plasticity with homeostasis. Nature Neuroscience 13, pp. 344–352 (2010)

L. Muckli et al. (2015) Contextual feedback to superficial layers of V1. Current Biol. 25: 2690–2695 

G.B. Keller and T.D. Mrsic-Flogel (2018 Predictive Processing: a canonical cortical computation. Neuron:424-435

A. Keller, Roth, Scanziani. Feedback generates a second receptive field. Nature 582: 545–549 (2020)

J. Homann … M.J. Berry, (2022) Novel stimuli evoke excess activity in the mouse primary visual cortex. Proc. Natl. Acad. Sci 

(USA) 119:e2108882119 

M.S. Halvagal and F. Zenke, (2023) The combination of Hebbian and predictive plasticity learns invariant object representation … 

Nat. Neurosci. 26:1906-1915 

Additional background literature: 
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