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1. Behavioral Learning — and Memory

Learning actions:
- riding a bicycle
Remembering facts
-> previous president of the US
- hame of your mother
Remembering episodes
- first day at EPFL
Building useful representations
-> beyond PCA/ICA/Clustering
- RL with 3-factor rule needs
‘good representation!
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Previous slide.

When we observe learning on the level of behavior (we get better at tennis), then
this implies that something has changed in our brain:

The contact points between neurons (called synapses) have changed. Synaptic
changes manifest themselves as a change in connections strength.

Synaptic plasticity describes the phenomena and rules of synaptic changes.

The connection strength can be measured by the
- amplitude of the postsynaptic potential (PSP)
- by physical size of the synapse (in particular the spine, see next slide)

Important:

Neurons communicate with each other by short electrical pulses, often called
'spikes’.



Review: Synaptic plasticity — structural changes

terminal Synapse
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Yagishita et al.
Science, 2014

larger synapse/larger spine head

-> stronger synapse

-> changes induced by appropriate
stimulation protocol



Previous slide.

The synaptic connection consists of two parts. The end of an axonal branch
coming from the sending neuron; and the counterpart, a protrusion on the
dendrite of the receiving neuron, called spine.

We refer to the sending neuron as presynaptic and to the receiving one as
postsynaptic.

A change in the connection strength is observable with imaging methods as an
Increase In the size of the spine. The bigger spine remains big for a long time
(here observed for nearly one hour).



1. synaptic plasticity — molecular changes

(a) (b) (c) spine expansion
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Synaptic changes are implemented by molecular pathways.



Previous slide.

The molecular processes involved in building a synapses are highly complex.
Every few years a review paper in a biological journal attempts to summarize the
present understanding of molecular interactions.

The molecular processes are not part of this class.

Lower figure:

The form of the synapse is maintained by structural molecules ('scaffolding
molecules’) and making a synapses bigger also means restabilizing the new
structure, indicated by the grid of diagonal stripes.



1. synaptic plasticity — molecular changes
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Previous slide.
The molecular processes involved in building a synapses are highly complex.

On the presynaptic side of an excitatory synapse, vesicles filled with the
neurotransmitter glutamate are waiting. When a spike arrives at a presynaptic
terminal, the increased voltage causes the vesicle to merge with the membrane and
neurotransmitter is spilled into the synaptic cleft.

On the postsynaptic side of the synapse, there are two main types of channels
awaiting the glutamate: AMPA and NMDA (these names have something to do with
the type of chemical that reacts with the channel in addition to glutamate). If an
AMPA channel opens, sodium enters. If a NMDA channel opens, sodium and calcium
enter into the cell.

The names of a few important molecules that are involved In synaptic changes are:
- CaMKll,

- PI3K

PKMzeta and Shank molecules play a role during maintenance (long-term stability
over many hours) of the synapse



synaptic transmission: NMDA receptors as coincidence detectors
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Previous slide.

AMPA channel open Iif glutamate docks onto the channel receptor.
NMDA channel open If

(1) glutamate docks onto the channel receptor.

(1) High voltage removes the magnesium block.

The high voltage could be caused by previous activity of the postsynaptic neuron.

Coincidence detection of pre and post occurs in NMDA channels because,
Glutamate Is only released into the synaptic cleft after presynaptic spike arrival.
The magnesium block Is only removed of high voltage of the postsynaptic neuron.

Figure 10.10: NMDA-synapse. A. Vesicles in the presynaptic terminal contain glutamate as a neurotransmitter (filled triangles). At resting potential, the NMDA receptor mediated channel
(hatched) is blocked by magnesium (filled circle). B. If an action potential (AP) arrives at the presynaptic terminal the vesicle merges with the cell membrane, glutamate diffuses into the
synaptic cleft, and binds to NMDA and non-NMDA receptors on the postsynaptic membrane. At resting potential, the NMDA receptor mediated channel remains blocked by magnesium
whereas the non-NMDA channel opens (bottom). C. If the membrane of the postsynaptic neuron is depolarized, the magnesium block is removed and calcium ions can enter into the cell.
D. The depolarization of the postsynaptic membrane can be supported by the increased voltage of an earlier backpropagating action potential (BPAP)



2-factor versus 3-factor rules

() | | :~—  Hebbian: pre=spike
A ‘post’ = spikes

il Hebbian:pre=spike

- ‘post’ = voltage
(iii) d
3. 3-factor: pre+post+
A neuromodulator (success/reward)

3-factor = Hebblian combined with
(potentiall delayed) Neuromodulator:
- Reward based learning/reinforcement learning

Image: Gerstner et al. (2018, review paper in Frontiers)




Previous slide.

Another important distinction is that between two-factor and three-factor rules,
where the latter include the action of a neuromodulator.

Hebb rules are essentially two-factor rules.



A first model: Glopath model (1) - static voltage dependence
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Previous slide.

There are Iinfluential experiments in two papers of Artola et al (1990) and
Ngezehayo et al (2000) who caused presynaptic spike arrival (green) while the
postsynaptic neuron was kept at a constant potential.

Suppose the resting potential of the orange cell is about -60 mV. Then a small
constant increase In voltage combined with presynaptic spike arrival leads to
depression (LTD) while a higher voltage leads to potentiation (LTP) of the

synapse.

For constant voltage, the voltage dependence is described in the Clopath model
by two RelLU function of the voltage u with different thresholds.



A first model: Glopath model (2] — dynamics of depression
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Previous slide.

For constant voltage, the voltage dependence Is described in the Clopath model
by two RelLU function of the voltage u with different thresholds.

If the voltage Is NOT constant, the relevant quantity is a low-pass filter of the
voltage u (called i_) which enters in the RelLU function o~ (u_).

In the Clopath model, each presynaptic spike depresses the synapse proportional
too (u-).

The differential equation for LTD (top line) can alternatively be written as

Aw;” = —A; 07 (u_) If spike arrival at synapse

ij‘ =0 else



A first model: Glopath model (3] — dynamics of potentiaion
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Previous slide.

Depression of synapses can be overwritten by potentiation of synapses.

For potentiation to occur, three conditions need to be met:
(1) A presynaptic spike has arrived a few milliseconds before. This condition is

implemented by the trace X; . The trace steps up by one unit, if a spike
arrives and decays exponentially thereafter with a time scale of about 10ms.
(1) The momentary voltage Is above the firing threshold. This condition Is

implemented by the term o™ (u).
(1) The low-pass filtered voltage Is about the resting potential. This condition is

Implemented by the term o™ ().



A first model: Glopath model summary Clopath et.al. Nat.NS 2010,
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Previous slide. Summary of the Clopath model.

Together the conditions for LTP remove the magnesium block of the NMDA

channel (average voltage In the recent past Is above slightly above rest), open the
channel (because of presynaptic spike arrival that causes glutamate release), and
require activity of the postsynaptic neuron (voltage above firing threshold).

Without firing of the postsynaptic neuron only LTD Is possible.



1. Synaptic plasticity

Should enable Learning
- adapt to the statistics of tasks
and environments
(receptive fields, allocate space,
build representations etc)
- memorize facts and episodes
- learn motor tasks
Should avoid: control loop’
- blow-up of activity
- unnecessary use of energy

Aim: models that capture the essence



Previous slide.
Hence synaptic plasticity is a multiscale process.

Moreover It should be useful for different tasks and, despite dynamic changes,
does not lead to a catastrophic explosion.



1. Synaptic plasticity: summary

- Synaptic plasticity (= changes of synaptic contact points)
are the basis of learning.

- Learning Is necessary for a variety of different tasks.

- Learning leads to measurable changes in performance (you
get better at a task) and to measurable changes in the brain.

- Calcium entry through the NMDA receptor Is thought
to be iImportant for many forms of long-term potentiation

- The Clopath model Is a first model



Previous slide.
In this lecture we study mathematical models of synaptic plasticity, but before
looking at the models, we need to understand the main experimental phenomena.
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Previous slide.
We need to talk a bit about signal transmission in the brain and introduce spiking
neurons.



The brain: signal transmission by spikes

Signal:
Xy action potential (short pulse)
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Previous slide.
Signals are transmitted along the wires (axons). These wires branch out to make

contacts with many other neurons.

Each neuron In cortex receives several thousands of wires from other neurons
that end in ‘'synapses’ (contact points) on the dendritic tree.



pulse
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—> Mathematical description



Previous slide.
In the previous part we have seen that response are added and compared with a
threshold.

This Is the essential ideal that we keep for the abstract mathematical model in the
following.

We drop the notion of pulses or spikes and just talk of neurons as active or
Inactive.
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Previous slide.

The fact that responses are added and then compared with a threshold is an
aspect that is shared between real neurons, integrate-and-fire neurons, and
artificial neurons in ANNS.

This is the essential ideal that we keep for the abstract mathematical model in the
following.

Note that spikes are formal events — their duration can be reduced to zero. What
matters Is the fact whether a pulse Is transmitted, yes or no.



spiking Neural Network — Leaky Integrate-and-Fire Model

(continuous time formulation)
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Previous slide:

The Leaky integrate-and-fire model written in continuous time involves a LINEAR differential equation that
can be interpreted as an electrical RC circuit charged by a current (z). This current /(t) consists of short
electrical pulses that present spike arrivals. The §(t —t"°)

denotes the Dirac delta function for each presynaptic spike arrival at times t}m and w;; are the weights. We
can interpret w;;  as the charge delivered by the current pulse at time ;" °.

he linear equation is combined with a NONLINEAR FIRE-and-RESET process. If the variable u
(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant

T = RC . Therefore after each short current pulse, the voltage (membrane potential) decays
exponentially back to zero with time constant t = RC .



spiking Neural Network — Leaky Integrate-and-Fire Model

(discrete time formulation)
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Previous slide:

The Leaky Integrate-and-fire model written in discrete time (say time step At = 1ms)
has two linear update steps:
- each presynaptic spike causes a jump of the voltage (membrane potential) by the synaptic weight w;;.

- In each time step the membrane potential decays with a factor 4,,<1. (Asice: If we compare with the
orevious equation in continuous time, we find that the factoris 1, = 1 (TM) where At Is the time step.)

These linear update steps are combined with a NONLINEAR FIRE-and-RESET process. If the variable u
(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.



Leaky Integrate-and-Fire Model
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Previous slide.
If an experimentalist injects a current that steps from zero to some large value

and then after one second back to zero, the neuron has time to fire several
spikes.
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Previous slide.
Plasticity phenomena have different temporal scales.
Moreover, they have different functions.



2. Classification of synaptic changes: Short-term plasticity
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Previous slide.
Plasticity phenomena have different temporal scales.
Short-term plasticity Is induced over 0.5 seconds. Importantly, the induced

changes decay back to the baseline within roughly one second.
In other words, they do not cause long-term memory.

Short-Term Plasticity (STP) can induce either a depression (as In this image) or a
facilitation of synapses (not shown), or even a combination thereof.



2. Classification of synaptic changes: Long-term plasticity
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Previous slide.
Plasticity phenomena have different temporal scales.

Long-term plasticity can also be rapidly induced, for example within 1 to 3
seconds. Importantly, the induced changes persist for several hours.
Therefore, they are a good candidate to be the basis of long-term memory.

Long-term plasticity comes in two flavors: Long-Term potential (LTP) and Long-
Term Depression (LTD).



2. Glassification of synaptic plasticity: STP vs LTP
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Previous slide.
Plasticity phenomena have not only different temporal scales, but also different
iInduction protocols.

While Short-Term Plasticity (STP) does not depend on the state of the
postsynaptic neuron, but Long-Term Plasticity does.



2. Classification of synaptic changes

Induction of changes |
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Previous slide.

Coming back to the time scale:

There are also slower processes (sometimes called homeostatic processes) that
are induced on a time scale of hours. These often depend only on some long-

term firing history of the postsynaptic neuron.



2-factor versus 3-factor rules

() | | :~—  Hebbian: pre=spike
A ‘post’ = spikes

il Hebbian:pre=spike

- ‘post’ = voltage
(iii) d
3. 3-factor: pre+post+
A neuromodulator (success/reward)

3-factor = Hebblian combined with
(potentiall delayed) Neuromodulator:
- Reward based learning/reinforcement learning

Image: Gerstner et al. (2018, review paper in Frontiers)




Previous slide.

Another important distinction is that between two-factor and three-factor rules,
where the latter include the action of a neuromodulator.

Hebb rules are essentially two-factor rules.



2. Review: Hebb rule
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Previous slide.
Review of Hebb's formulation.

Hebb rules are essentially two-factor rules.



Synaptic plasticity: Long-Term Potentiation (LTP)
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Previous slide.

In a schematic experiment (shown already In the first week)

1) You first test the size of the synapse by sending a pulse from the presynaptic
neurons across the synapses. The amplitude of the excitatory postsynaptic
potential (EPSP) Is a convenient measure of the synaptic strength. It has been
shown that it is correlated with the size of the spine.

2) Then you do the Hebbian protocol: you make both neurons fire together

3) Finally you test again the size of the synapse. If the amplitude Is bigger you
conclude that the synaptic weight has increased.

In the next slides we consider different experimental induction protocols in more
detalil.



Glassical paradigm of LTP induction: 1. Strong extracellular stimulation
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Previous slide.

Here the stimulation is done with an extracellular electrode which unspecifically stimulates a bundle of
fibers (horizontal wiggly lines).

A recording electrode measures the response. In a schematic experiment (shown already in the first
week)

A) You first test the size of the synapse by sending a pulse from the presynaptic neurons across the
synapses. The amplitude of the excitatory postsynaptic potential (EPSP) Is a convenient measure of
the synaptic strength.

B) Then you repeatedly stimulate with the extracellular electrode strong enough that the postsynaptic
neuron emits spikes. Essentially this represents a Hebbian protocol. It is sometimes called a tetanus
stimulation (for example stimuli are repeated at 100Hz)

C) Finally you test again the size of the synapse. If the amplitude is bigger you conclude that the
svhantic weiaht has increased.

Fig. 19.2: Schematic drawing of a paradigm of LTP induction. A. A weak test pulse (left) evokes the postsynaptic response sketched on the
right-hand side of the figure. B. A strong stimulation sequence (left) tnggers postsynaptic firing (right, the peak of the action potential is out of
bounds). C. A test pulse applied some time later evokes a larger postsynaptic response (right; solid line) than the initial response. The

dashed line i1s a copy of the initial response in A. D. The relative amplitude as measured with the test pulses illustrated in A and C Is
increased after the strong stimulation at £ = 1 h. (Schematic figure.)



Glassical paradigm of LTP induction: 2. Pairing tetanus and depolarization
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Previous slide.

A weak extracellular stimulation at 0.1 Hz serves as a test stimulus.

An intracellular (patch) electrode was used to measure the size of the EPSC
(excitatory postsynaptic current).

TEST: To avoid any opening of NMDA receptors, the neuron was kept close to the
resting potential at -75mV.

INDUCTION (called pairing): Three bursts of extracellular pulses (each burst 100

pulses at 100Hz) where applied while the postsynaptic cell was held at -40mV
(which Is above the firing threshold of the cell).

TEST: The test pulses of the same size as before now evoked a stronger EPSC
which lasted for 30min, hence LTP was induced.



~ Glassical paradigm of LTP induction: 3. Voltage-dependence
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Previous slide.

LTP Is induced with 100 pulses at 2Hz if the postsynaptic cell is depolarized
to -10mV (which 1s above the firing threshold)

LTD is induced with 100 pulses at 2Hz if the postsynaptic cell is depolarized
to -30mV.

Note that voltage measurements are never reliable because of various
artifacts. However, the sequence 'no change/LTD/LTP’ for increasing
voltage Is probably reliable.



Glassical paradigm of LTP induction: 4. STDP
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Previous slide.



Glassical paradigm of LTP induction: 4. Interaction of voltage and timing
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Previous slide.
Normally, induction of LTP with a standard STDP protocol (+10ms) does not work

at 0.1 Hz, i.e., If the Iinterval between pre-post repetitions is 10s. But if combined
with depolarization, LTP Is possible!

However, LTD can be induced with an STDP protocol (-10ms), even if repetitions
occur at very low frequency. Depolarization does not change this.



Repetition : NMDA receptors needs glutamate and postsynaptic voltage

A glutamate  NMDA channel B AP
-Na A/ -Na
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Previous slide.

The picture and function of the NMDA channel (discussed earlier) is compatible
with the interaction of voltage and spike timing observed In experiments.



- Three-factor ruies in striatum: eligibility trace and delayed DA

AWy [%] Yagishita et al. 2014, SCIENCE
Kasal lab
50—
........ —— e o Striatum Involved
0 | | | |- : : :
2 3 4 IN action selection
o DA (later today)
| | 1 ] Ne—
. - %ﬁ
1s
-Dopamine (DA) can come with a delay of 1s
it -Lorﬁ) -Term(stat))ilit over at least 50 m?/n
R e il J y '

D457 nm, 30 Hz x 10



3. Three-factor rules in striatum: eligibility trace and delayed Da

Yagishita et al. 2014

In striatum medial spiny cells, stimulation of presynaptic glutamatergic fibers
(green) followed by three postsynaptic action potentials (STDP

with pre-post-post-post at +10ms) repeated 10 times at 10Hz yields LTP If
dopamine (DA) fibers are stimulated during the presentation (d < 0) or shortly
afterward (d = Os or d = 1s) but not if dopamine Is given with a delay d = 4s;
redrawn after Fig. 1 of (Yagishita et al., 2014), with

— | delay d defined as time since end of STDP protocol.

nm .. B A Lower left: the image from the beginning of this lecture comes from this
| | experiment of Yagishita. This image demonstrates the Long-Term Stabllity
over at least 50 min

1s

Before 2 min 20 min 50 min

D457 nm, 30 Hz x 10




Three-factor rules in cortex: eligibility trace and delayed NE

He et al., 2015, NEURON
Kirkwood lab.

NE = norepinephrine
S5HT=serotonin




In cortical pyramidal cells, stimulation of two independent
presynaptic pathways (green and red) from layer 4 to layer 2/3 by
a single pulse is paired with a burst of four postsynaptic spikes
(orange).

If the pre-before-post stimulation was combined with a pulse of
norepinephrine (NE) receptor agonist isoproterenol
with a delay of O or 5s, the protocol gave LTP (blue trace).

If the post-before-pre stimulation
was combined with a pulse of serotonin (5-HT) of a delay of O or
2.5s, the protocol gave LTD (red trace).

(He et al., 2015).



Three-factor rules in hippocampus: Behavioral time scale plasticity

Complex spike can come with a delay of 1-5 seconds

One-shot learning: no repetition necessary

2“;;’_{%1 Hlppocampus

" ”d"[S]

Bittner et al., 2017 (Magee lab)

Complex spike

- Indicates surprise(?)
- or novelty (?)

- triggered by ?

Image: Gerstner et al. (2018, review paper in Frontiers)




Previous slide.

In 2017, Bittner et al from the lab of Jeff Magee discovered a novel form of plasticity which was
observed both in vivo and In vivo:

(1) In vivo: neuronal activity of many neurons in hippocampus was recorded while a mouse was
running forward on a moving closed cyclic tape (which had a length of several meters). The
authors observed that a new place cell appeared, for example in round 7, and then stayed on for
the remaining rounds. It is single-shot learning since the place cells had immediately full strength,
and neatrly its final shape. The appearance of the place cell coincided with a complex spike in the
neuron

(1) In vitro (figure). A pyramidal cell in area CA1 (orange) receives input from many cells in CAS.
Stimulation of fibers in the pathway from CA3 to CA1l (green) caused depolarization of the
postsynaptic cell, but no spiking. Then the authors stimulated the postsynaptic cell such that it
emitted a complex spike (visible as a burst of spikes). The combination of presynaptic stimulation
and postsynaptic complex spike leads to a strengthening of the synapses even if the two events
are separated by 2 seconds.

The authors interpreted this as a novel two-factor rule, with long synaptic traces. | prefer to see this
as a three-factor rule where the pre-spike together with postsynaptic depolarization sets the trace,
and the complex spike Is a manifestation of the action of the third factor. Jeff Magee mentioned
that in vivo they had the impression that a place cell emerged when the mouse was puzzled.



2024: Learning rule: Feedforward synapse on basal dendrite

depend on Iateral/feedbalck Input (on apical dendrite)
nput on

apical dendrite

Vv
=

mV) ¢
o

,.Ff
! {
4
Amplitude (
N B O

synapse on basal dendrite = LTP

Aceituno, ..., Grewe, bioRxiv (2024) Recent experiments in L5: Grewe group (2024)
https://doi.org/10.1101/2024.04.10.588837; Experiments in L2/3: Willlams and Holtmaat (2019)

Consistent with voltage-dependent plasticity (Sjostrom et al 2001)
and Clopath model (Clopath et al. 2010)

Such a rule useful to learn ‘good’ representation!



Experiments in Mouse Frontal Cortex, L5 cells, slice, from the Grewe lab (INI, Zurich).
Two electrodes are used for extracellular stimulation at the basal dendrite (red-green)
and apical dendrite (blue). Voltage is recorded with the brown electrode (A).

Initially, EPSPs are evoked by small-amplitude pulse stimuli (strength s1) with the red-
green electrode yielding an EPSP of a few mV. Then the stimulation amplitude Is
iIncreased (strength s2) so that the firing threshold is reached, and the postsynaptic
neuron fires an isolated spike. After 8 repetitions (at 0.1Hz) no change in the EPSP
amplitude Is found. Thereafter the stimulation of basal synapses (with strength s2) is
paired with stimulation of the apical dendrite, causing a short burst of spikes and a
prolonged voltage response. After 8 repetitions (at 0.1Hz) the EPSP amplitude In
response to stimulus sl is increased (C and D).

These findings are consistent with experiments of J. Sjostrom (2001) and the voltage-
dependent plasticity model of C. Clopath (2010): synaptic changes require either multiple
postsynaptic spikes are a prolonged depolarization of the postsynaptic neuron, or a
combination of both.



2. Classification of synaptic changes

Induction of changes |
- fast (If stimulated appropriately) pre

- slow (homeostasis, over hours) - ?St
J

Persistence of changes
- long (LTP/LTD)
- short (short-term plasticity, STP)

Functionality
- useful for learning a new behavior/forming new memories
- useful for development (wiring for receptive field development)
- useful for activity control in network: homeostasis
- useful for representation learning




2. Summary: Classification of synaptic changes

Several categories can be used to classify synaptic changes:
1) Do changes last for a long time (hours: Long-Term Potentiation) or do they
decay rapidly back to baseline (around a second: Short-Term Potentiation)?

2) Do changes depend mainly on presynaptic and postsynaptic activity (Hebbian
learning/2-factor rule), or also on the presence of a neuromodulator (three-

factor rule)?

3) Learning paradigm: Is the learning scenario just exploiting input statistics
(unsupervised learning/no teacher, no reward); or does It also involve notions
of ‘reward’ or ‘success (reinforcement learning/neuromodulator)

4) Is synaptic plasticity induced by an artificial protocol, or by real-world learning
experience? What Is the protocol (STDP, bust-STDP, pairing pre-voltage, ...)



Quiz 1. Synaptic Plasticity and Learning Rules |

Long-term potentiation Synaptic changes
| ] has an acronym LTP [ ] Hebbian learning depends on
[ ] takes more than 10 minutes to induce presynaptic activity and on
| ] lasts more than 30 minutes state of postsynaptic neuron
| | depends on presynaptic activity, [ ] Reinforcement learning

and on spikes of the postsynaptic neuron depends on neuromodulators
| | depends on presynaptic activity, such as dopamine indicating

and on the voltage of the postsynaptic neuron reward

Short-term potentiation

| ] has an acronym STP

[ ] takes more than 10 minutes to induce

| | lasts more than 30 minutes

| ] depends on presynaptic activity, but not
. on state of postsynaptic neuron
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3. Model of short-term plasticity

See Week X on MOODLE or See week 3 on:
http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html

Synapses, dendrites and the cable equation
Part 1 - Synapses (15 min)
Part 2 - Synaptic short term plasticity (9 min)

https://www.youtube.com/watch?v=iEz__SUsJMJ8

Neuronal

Reading for STP: S ymanics
- Ch 3.1.3.

Cambridge Univ. Press



http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html
http://www.youtube.com/watch?v=osC58gzrjA0
http://www.youtube.com/watch?v=iEz_SUsJMJ8
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4. Repetition: Hebbian Learning (rate models)

o Pre | S I .

When an axon of cell | repeatedly or persistently
takes part in firing cell I, then |'s efficiency as one

of the cells firing 1 Is Increased
- local rule HebD, 1943
- sSimultaneously active (correlations)
Rate model:

active = high rate = many spikes per second




4. Repetition: Rate-based Hebblan Learning

S pre

Gwy B
o ]

post
. ocal rule:

d
_ pre  post
dtW” F(WU,MOD Vi LY, )

Taylor expansion:

re re oSt oSt re oSt
—wi=agta; Vi tay v +agmvy v+

Modulator MOD=const

dt

a = a(wj)

J




. Repetition: Bienenstock-Cooper-Munro rule

pre Bienenstock, Cooper
Q] ‘ ‘ ‘ ‘ ‘ ‘ . Munro, 1982
Wij
BN I . |
]
pOst
d_WlJ — bvaSt( lpost 19) pre
presynaptlcally gated t
P az”"" (v; post — 0)V; D AMfif /
| assume
BCM: 3rd order (‘triplet’) VP > 0
d
dt Wl] — prOSt( post _ 19) pre
_ b( lpost)z lpre — b9 ipostvjpre p(;st
triplet pair
P Homeostatis ¥ = f™)




Previous slide.

We saw In an earlier lecture that a nonlinear model of synaptic plasticity such as
the BCM model can perform ICA. In the context of neuroscience it has been used
to model the development of receptive fields. So far, all our plasticity models were
rate-based models: the state of a neuron Is described by a continuous variables
V_post pre

;o , and v

Later in this lecture we will see a spiking model of plasticity that is closely related
to the BCM model. The terminology ‘pair’ and ‘triplet’ will become clear in the
context of the spiking model.



. Repetition: Development of Cortex

BCM leads to specialized

Initial: :
random Neurons (developmental learning);
connections Bienenstock et al. 1982
unselective
Neurons Development and learning rules:
Willshaw&Malsburg, 1976
Linsker, 1986
K.D. Miller et al., 1989
\ output

@

\
‘ - { neurons
OO
1

output neurons specialize:

Correlated input . .
Receptive fields



4. Repetition: Models for Hebbian Long-Term-Plasticity

- Many ‘Hebbian’ rules

- LTP and LTD

- Can describe RF development and ICA
- BCM iIs a well-known example

- Competition: some synapses grow at the expense
of others



4. Summary: Models for Hebbian Learning

- Hebbian learning refers to a family of learning rules, rather than one
specific rule.

- Rules can be classified by mapping them to a Taylor explansion.
- Terms with a negative coefficient induce Long-Term Depression (LTD).

- A clever combination of LTP and LTD can explain the development of
receptive fields (RF).

- A clever combination of LTP and LTD leads to synaptic competition:
some synapses grow at the expense of others. A well-known example
of a Hebbian rule Is the Bienenstock-Cooper-Munro (BCM) rule
(Exercise 1).
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5. Review: STDP experiments

pre | S I .

i\w ] \

—0

K polst

‘causal aspect’: ‘pre before post
When an axon of cell | repeatedly or persistently

takes part in firing cell 1, then j's efficiency as
one of the cells firing | Is Increased Hebb, 1949

Experiments: Levy and Stewart, 1983, ...

Markram et al. 1997, Bl and Poo, 1998, Sjostrom et al. 2001...
Reviews:. Sjostrom et al. 2008...
Markram et al. 2011, ...



Previous slide.

We have seen the citation of the text by Hebb several times. It Is interesting to
focus on the formulation ‘takes part in firing’ the postsynaptic neuron. This
formulation suggests a causal aspect.

But causality requires that the presynaptic spike occurs before the postsynaptic
one. Hence the exact timing of pre- and postsynaptic spikes should matter.



5. STDP as Hebbian Learning

+§50m:s 20Hz 30 min
r o | |
J!Oe \ EEREEEN 1
Wij o
pOSﬁ%i\\\‘ L]
ong-term plasticity/changes per sist
Changes ; .

- Induced over 3 sec
- persist over hours and days

Models of STDP

Gerstner et al. 1996, Kempter et al., 1999, Song et al. 2000,
Senn et al. (2001), van Rossum et al. 2000, Rubin et al. 2001 before
Shouval et al. (2002), Clopath et al. (2010)




Previous slide.

In this example of an STDP experiment, both neurons are active, but the
presynaptic neuron fires 10ms before the postsynaptic one. The pairs pre-post
are repeated several times.

The guestion arises how the sequence of timing can be detected. The answer are
synaptic traces that we see on the next slide.



5. Spike-timing dependent plasticity: ‘traces for STDP

pre J o zj - time scale: 10
' Wi ' - ms
D . I S
I tPOSt
poSt j
d y . .
Ty -z ==z + 8t —t]") jump at presyn. spike
- iz 8 — P jump at postsyn. spike
LT fﬂ pair
| WU =(@(w;j)z 8(t — 7)) = b(wi))z; 6(t —t"°)
3 pre efore-post post-before-pre
0 TR Simple STDP model
o Data: }:‘%‘ﬂ (Gerstner et al. 1996,
- Bi&Pog, 1998 — - i
O 9% a0 ¢ Song-Miller-Abbott 2000, etc)



Previous slide.
A presynaptic spike at time t;"* leaves a trace z  at the synapse which decays

over a few milliseconds. This trace could correspond to the fraction of glutamate
bound to the postsynaptic channel.

A later postsynaptic spike also leaves a trace z; . This trace could be the running
average of the postsynaptic voltage or something else.

LTP happens If a postsynaptic spike occurs while the presynaptic trace Is still non-

zero; LTD happens if a presynaptic spike occurse while the postsynaptic trace Is
non-zero.

The relative timing of the pair of spikes yields the STDP window shown at the
bottom left.

The effects of all pairs are simply added (even though variants exist).



5. Summary: Spike-timing dependent plasticity (STDP)

STDP is a form of Hebbian learning induced by spikes.
For a phenomenological model, we can take the view that
each spike arriving at the presynaptic terminal leaves a
trace at the synapse (e.g., amount of glutamate Iin the
synaptic cleft, or bound to the postsynaptic receptor).

If a spike of the postsynaptic neuron coincides with the
trace left by the presynaptic spike, a change happens
(proportional to the momentary value of the trace).

The total weight change after many pairs of spikes Is

AWij — z W(tlf — t]f’)
oI



Exercise

I

The goal of this exercise is to show that it is possible to account for the asymmetry in the STDI? window
using a simple microscopic model of synaptic plasticity.

X7
pre
™
\o— i
W, yoos
post e \x,ﬁ
\ —

Figure 2: Memory traces of pre- and post-synaptic spike trains.

Suppose that the change in synaptic weight is controlled by the local concentration of two molecules
2P and yP°"'. The substance zP™ acts as a memory trace of presynaptic spikes in the sense that each
presynaptic spike triggers an increase in the concentration of zP™:

i g LN L L L
T_I_{—I;-HL = —z; +a(t—t;). (3)
dt

Similarly, yP°5" is the trace left by the postsynaptic spike train,
d

T aypﬂﬁt _ _ypﬂﬂt + fj(t o t?mt] . {4)

Calculate the form of the learning window Aw = f(At) — where At = 17" — (P assuming that the
synaptic weights are updated according to the rule

{'f : WS 3 I =
2 Wii = arxy Ot —1; ) — a_yPostS(t — t5) . (5)

The constants a, and a_ are both positive.

Hint: Calculate the weight change for a pair of pre/post spikes. Consider the two cases
At > 0 and At < 0.
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6. from STDP to rate models
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Preparation: STDP driven by Poisson spikes

\ \ 8
I Il O yPost

S—>C

Aw;; = z W(tlf — t]f') (1)
if

Assume presynaptic spikes are generated by Poisson process

pre

with rate v,

Vpre ‘

Assume postsynaptic spikes are generated by Poisson process
with rate »7s* . Important spikes post are independent of pre.

What Is the expected change of weightsinatime T ?
(T >SS TLTP’TLTD )



6. from STDP to rate models

RIERTE
‘ ‘ ‘ Q vlpost
\
vPre o

00

T
1
[ awy) - i) ] weoses o

T 00

1
= Tf f W (s)(S;(ONS;(t + 5))ds

0

~ _pre _post p+»®
— Vj V; f_OO W(s)ds (4)



Previous slides.
Eqg. (1) In the pair-based plasticity rule, the total weight change is the sum over all pair of

spikes, inserted into the ‘STDP window’ W (] —t/")

The same equation can be written as an integral, where S(t) denotes the spike train, that
IS the sequence of pulses. This gives EqQ. (2).

We now assume that all pulses are generated by Poisson processes. Moreover, since the
postsynaptic neuron receives spike trains from thousands of different input neurons, we
assume that the spikes of the output spike trains are not correlated with those of the input
spike trains (beyond correlations arising from the rates, I.e., If one neuron switches to
firing at a higher rate, the output neuron will also fire at a slightly higher rate; yet we
assume here that there are no spike-spike correlations)

Then, Eq. (4), the expected weight change (averaged over the statistics of the Poisson
process), Is just the expectations of the individual Poisson processes. This results in a
plasticity rule for firing rates. If the firing rates are constant, then the integral over the
STDP window yields the pair based of the Taylor expansion of the rate-based Hebbrule.



6. Summary: from STDP to rate models

In an STDP model, changes of synapses depend on the exact
timing of pre- and postsynaptic spikes.

However, If we assume that both presynaptic and
postsynaptic spike trains are generated by a homogeneous
Poisson Process (with stationary firing rates vi and vi), we can
translate the effect induced by STDP after many spikes into
an eqguivalent rate model by evaluating the expected change.

The standard STDP window gives then a rate model
C ViV,
where c Is the integral over the STDP window W(s).



Expectations and Correlations of Poisson spike train:
see my other class, or

Watch video ‘Membrane Potential fluctuations’ on:
http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOQOCall.html
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/. Why do we need a Triplet STDP model?

pre pre
tj ‘ tj ‘ B

t
‘thSt ‘thS

60 repetitions of spike-pairs ‘pre-post:
Amount of LTP depends on repetition frequency:

- 1) STDP window Is only part of story

- 2) Pair-based STDP model is not sufficient



Previous slide.

The STDP window (shown on the right-hand side) gives a biased view of the
underlying plasticity process since it focuses only on the relative timing within one
pair of spikes.

However, induction of LTP requires several repetition of pre-post-pairs and the
repetition frequency matters!



/. frequency dependence of STDP

tpre tpre o
I - 60 repetitions
—~ post poSt |
10ms|t; 't - pre-before-post (10ms)
tpre
J
N )
t >
10m5‘ tlpos ‘ ‘ ‘ E A
_ o %150 (
Increase of repetition frequency p 2
=
Sjostrom et al. 2001 N 100,
See also: & post-before4re (10ms)
Markram et al. 1997, No plasticity ¢ || :

50 " . ,
Senn et al. 2001,
At low frequency | © 0 L




Previous slide.
The standard STDP window Is evaluated at a repetition frequency p of 20 Hz.

At a repetition frequency of 50Hz, the pre-post-pre-post ... sequence is
symmetric (except for the very first spike). Therefore, it Is expected that the LTD
protocol and the LTP protocol give the same result. What is not expected Is that
the net effect If positive!

If the repetition frequency is reduced to 0.1 Hz, there is no LTP even though the
same number of pre-post pairs (with distance 10ms) was used as at the other
repetition frequencies. This shows that LTP is NOT induced by pairs of spikes!

The triplet STDP model discussed on the next slides Is able to account for these
observations.



/. Triplet STDP model

Triplet fast exponential trace:

_|_

L TP 2
/
d t /
o ANES +AT Z]-Jrzfl"w5(t —t777) I\

T \\ o

pre| post pDOSt \
Triplet slow exponential trace:

_Slow
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Previous slide.

LTP needs not a pair of spikes, but a triplet of spikes post-pre-post (or pre-post-
DOSt).

The first post-spike leaves slow trace. The pre-spike leaves a faster trace (e.qg.
glutamate bound to the postsynaptic terminal). The next postsynaptic spike
causes the weight change proportional to

(1) The momentary value of the slow postsynaptic trace.

(1) The momebtary value of the presynaptic trace



/. Triplet STDP model

Pfister and Gerstner, 2006

—Bz78(t — t7"°)

Pre: spike

fast exponential trace: z;

~ Post: spike-trace

+ ,_+,5l post
+A" z; z; S (t —t; )

'\ Pre: spike-trace

Post: spike-now

— | spike-trace




Previous slide.

The triplet LTP term I1s combined with a pair-based LTD term (similar to the
standard STDP model).



/. Triplet STDP model

Ui
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Pfister and Gerstner, 2006

20 40
~ [H]

No plasticity
At low frequency

-

Similar triplet mechanism In
Senn et al. 2001,

Rubin et al. 2005,

Clopath et al. 2010



Previous slide.

The result 1s the triplet STDP model. This model is closely related to earlier
models, In particular an elegant model of Walter Senn et al. (2001) and a calcium-
based model of Jonathan Rubin et al (2005).



/. Triplet STDP model = BCM model

—Bz;6(t—t° .
Z Ot = 1) | Pre: spike
~ |
a Post: spike-trace
dt J -|-A+ + slow6 t_tpost _ .
zjziy TO(E—t;) . Pre: spike-trace
— | Post: spike-now AND
Post: slow spike-trace
Assume Poisson firing Pfister and Gerstner, 2006
d
W, — + p+.,Pre, postN2  — pre_ post
Vi ctA V; (v; ) c” B ViV

Bienenstock, Cooper, Munro, 1982



Previous slide.
If we assume that all spikes are generated by Poisson processes, we can now

use the same arguments as for the pair-based STDP model.
The resulting weight change Is then exactly the one of the BCM model.

An iImportant side result Is that the parameters of the (ad hoc) BCM model can
hence be extracted from STDP experiments!



/. Summary: Triplet STDP - BCM model

Triplet STDP model
- parameters can be extracted from experimental data

- for Poisson spikes closely related to rate-based BCM
- but captures additional spike-timing effects (pre-before-post)
- simple pair-based STDP model is not sufficient,

because STDP depends also on repetition frequency
(and not only on relative timing of pairs of spikes).
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Experimental induction protocols (1}

STDP

60 repetitions at 20Hz

5-10 synapses
+50ms 20 HZ

/ NN
+kl:0ms
NN /

Intracellular
electrode
(Pulse injection)
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Experimental induction protocols (2)

Low-frequency paired

Extracellular With depolarization

electrode
(stimulus) 100 pulses at 2Hz .
Hebbian interpretation. 50 synapses o S T~
Depolarization similar to | | T ] Intracellular
activity of postsyn. neuron, rTCOFdlgg
- electrode,
together .Wlth presyn. / Current injection/
spike arrival voltage clamp
— Voltage dependence :
- . Ngezehajo et al. 2000, EPSP amp“tUde
1 g Artola et al.
| B } 100%
| g LTP
— 0-1-70 -50 ‘;:[imw =10 +10 O 30 min




Reminder: Glopath model (1) - static voltage dependence

| | \I—

120
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Ngezahayo et al. J. of Neurosci., 2000
Artola, Brocher, Singer. Nature 1990

Clopath et.al., Nature Neuroscience, 2010;



Previous slides.

The triplet model is an excellent model of STDP induction, but — by design - it
cannot account for voltage dependence of plasticity.

The Clopath model can be seen as a voltage-based formulation of the triplet
model.

As a reminder, spikes — as used in STDP experiments — are short voltage pulses.
Hence each spike leaves a trace in the Clopath model.

Moreover, by construction, the Clopath model has explicit voltage dependence as
found in the experiments of Ngezehayou et al. (2000) or Artola et al (1990).



Reminder: Glopath model (2] - dynamics of depression

d
dt

]

= —A3 X; (t)o~(u-)

Pair

»JN 1 TD

where

Ty— =77

d

pre

Some trace,
calcium?
second messenger?

0

resting potential

Xi(t) = 2 5(t —t;) presynaptic spike train

77 U- = —U_ + U postsynaptic u low-pass (T,.)

g (u—) =[u_—07]"

piecewise linear function (RelLU)



Reminder: Glopath model summary Clopath et.al. Nat.NS 2010;

| Pre: spike
—AEXi-(t)O'_(_fL_) r 1 TD

—~— Post: voltage-av

dt g re : ke-
LATR p +(u)0 (1) ||\ Pre: spike-trace TP

'\;&\ Post: voltage-now

voltage-av

LTP (positive change) needs: - presynaptic spike a few ms before
- voltage above threshold now
- voltage above rest previously

LTD (negative change) needs: - voltage > rest a few ms before
- presynaptic spike now



Glopath model applied to STDP experiments Clopath et.al. Nat.NS 2010;
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Previous slide.

We suppose that spikes are artificially induced by the experimentalist using
Injection of short current pulses. Then the voltage trajectory Is essentially
described by isolated spikes.

In this case, the traces left by the voltage are identical to the traces left by the
spikes In the triplet model.



GClopath model applied to STDP experiments

Clopath et.al. Nat.NS 2010;

LTP
+10ms

Model

Clopath et.al., Nat. Neurosci. 2010
See also:

Pfister et al., J. Neurosci. 2006
Sjostrom et al., Neuron, 2001
Senn et al. 2001
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Data: Sjostrom
See also:
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No plasticity
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Previous slide.

Hence it Is expected, that the Clopath model explains the frequency dependence
of STDP. The interval T between two repetitions yields the repetition frequency
p=1/T



Glopath model applied to STDP experiments Clopath et.al. Nat.NS 2010;

T 60 repetitions

Plasticity Is voltage dependent
Postsynaptic spike=voltage peak

Timing difference



Previous slide.
Moreover, the Clopath model explains the spike-timing dependence as
summarized in an STDP window.



STDP interacts with voltage: Data and Glopath model
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Previous slide.

Finally, the Clopath model can also explain the interaction of spikes and voltage. One
experiment of Sjostrom et al (2001) used a pre-post (10ms) sequence at 0.1 Hz
repetition frequency that normally gives no LTP.

However, when the postsynaptic spikes are embedded in a weak subthreshold
current that puts the membrane potential of the postsynaptic neuron above rest (but
below the firing threshold), then the same pre-post (10ms) sequence at 0.1 Hz
repetition frequency gives LTP.

Bottom right: Blue dots with error bars are data; gray histogram bars are results of
the Clopath model.



Interaction of voitage-spike-LTP: consequences

- Sjostrom et al (2001): local voltage interaction
INside postsynaptic neuron

- Aceltuno et al. (2024): voltage interaction from
apical to basal dendrite.



2024: Learning rule: Feedforward synapse on basal dendrite

depend on Iateral/feedbalck Input (on apical dendrite)
nput on

apical dendrite

Vv
=

mV) ¢
o

,.Ff
! {
4
Amplitude (
N B O

synapse on basal dendrite = LTP

Aceituno, ..., Grewe, bioRxiv (2024) Recent experiments in L5: Grewe group (2024)
https://doi.org/10.1101/2024.04.10.588837; Experiments in L2/3: Willlams and Holtmaat (2019)

Consistent with voltage-dependent plasticity (Sjostrom et al 2001)
and Clopath model (Clopath et al. 2010)

Such a rule useful to learn ‘good’ representation!



Experiments in Mouse Frontal Cortex, L5 cells, slice, from the Grewe lab (INI, Zurich).
Two electrodes are used for extracellular stimulation at the basal dendrite (red-green)
and apical dendrite (blue). Voltage is recorded with the brown electrode (A).

Initially, EPSPs are evoked by small-amplitude pulse stimuli (strength s1) with the red-
green electrode yielding an EPSP of a few mV. Then the stimulation amplitude Is
iIncreased (strength s2) so that the firing threshold is reached, and the postsynaptic
neuron fires an isolated spike. After 8 repetitions (at 0.1Hz) no change in the EPSP
amplitude Is found. Thereafter the stimulation of basal synapses (with strength s2) is
paired with stimulation of the apical dendrite, causing a short burst of spikes and a
prolonged voltage response. After 8 repetitions (at 0.1Hz) the EPSP amplitude In
response to stimulus sl is increased (C and D).

These findings are consistent with experiments of J. Sjostrom (2001) and the voltage-
dependent plasticity model of C. Clopath (2010): synaptic changes require either multiple
postsynaptic spikes are a prolonged depolarization of the postsynaptic neuron, or a
combination of both.



The end
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