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1. Behavioral Learning – and Memory

Learning actions:

→ riding a bicycle

Remembering facts

→ previous president of the US

→ name of your mother

Remembering episodes

→ first day at EPFL

Building useful representations

→ beyond PCA/ICA/Clustering

→ RL with 3-factor rule needs

‘good representation!’



Synapse

Neurons

Synaptic Plasticity = Change in Connection Strength

Review: Behavioral Learning – and synaptic plasticity

dendrite

‘spike’:

output signal (pulse)

sent to other neurons

Amplitude of

Postsynaptic 

Potential (PSP)



Previous slide. 

When we observe learning on the level of behavior (we get better at tennis), then 

this implies that something has changed in our brain:

The contact points between neurons (called synapses) have changed. Synaptic 

changes manifest themselves as a change in connections strength.

Synaptic plasticity describes the phenomena and rules of synaptic changes. 

The connection strength can be measured by the 

- amplitude of the postsynaptic potential (PSP)

- by physical size of the synapse (in particular the spine, see next slide)

Important:

Neurons communicate with each other by short electrical pulses, often called 

‘spikes’.



Review: Synaptic plasticity – structural changes

Yagishita et al.

Science, 2014

spine

synapse
presynaptic 

terminal

larger synapse/larger spine head

→ stronger synapse

→ changes induced by appropriate

stimulation protocol



Previous slide. 

The synaptic connection consists of two parts. The end of an axonal branch 

coming from the sending neuron; and the counterpart, a protrusion on the 

dendrite of the receiving neuron, called spine.

We refer to the sending neuron as presynaptic and to the receiving one as 

postsynaptic.

A change in the connection strength is observable with imaging methods as an 

increase in the size of the spine. The bigger spine remains big for a long time 

(here observed for nearly one hour).



Bosch et al. 2012,

Curr. Opinion Neurobiol.

1. synaptic plasticity – molecular changes

Redondo and Morris 2011,

Nature Rev. Neurosci.

Synaptic changes are implemented by molecular pathways. 



Previous slide. 

The molecular processes involved in building a synapses are highly complex. 

Every few years a review paper in a biological journal attempts to summarize the 

present understanding of molecular interactions.

The molecular processes are not part of this class.

Lower figure:

The form of the synapse is maintained by structural molecules (‘scaffolding 

molecules’) and making a synapses bigger also means restabilizing the new 

structure, indicated by the grid of diagonal stripes.



https://www.researchgate.net/publication/361914216/figure/fig3/AS:1176818883264513@165758689463

7/Molecular-pathways-implicated-in-synaptic-function-for-ASD-At-the-excitatory-synapse.png

1. synaptic plasticity – molecular changes



Previous slide. 

The molecular processes involved in building a synapses are highly complex. 

On the presynaptic side of an excitatory synapse, vesicles filled with the 

neurotransmitter glutamate are waiting. When a spike arrives at a presynaptic 

terminal, the increased voltage causes the vesicle to merge with the membrane and 

neurotransmitter is spilled into the synaptic cleft.

On the postsynaptic side of the synapse, there are two main types of channels 

awaiting the glutamate: AMPA and NMDA (these names have something to do with 

the type of chemical that reacts with the channel in addition to glutamate). If an 

AMPA channel opens, sodium enters. If a NMDA channel opens, sodium and calcium 

enter into the cell.

The names of a few important molecules that are involved in synaptic changes are:

- CaMKII, 

- PI3K

PKMzeta and Shank molecules play a role during maintenance (long-term stability 

over many hours) of the synapse



Synaptic transmission: NMDA receptors as coincidence detectors

-70mV

0mV

NMDA channel

AMPA channel

glutamate



Previous slide.

AMPA channel open if glutamate docks onto the channel receptor.

NMDA channel open if

(i) glutamate docks onto the channel receptor.

(ii) High voltage removes the magnesium block.

The high voltage could be caused by  previous activity of the postsynaptic neuron.

Coincidence detection of pre and post occurs in NMDA channels because,

Glutamate is only released into the synaptic cleft after presynaptic spike arrival.

The magnesium block is only removed of high voltage of the postsynaptic neuron.

Figure 10.10: NMDA-synapse. A. Vesicles in the presynaptic terminal contain glutamate as a neurotransmitter (filled triangles). At resting potential, the NMDA receptor mediated channel 

(hatched) is blocked by magnesium (filled circle). B. If an action potential (AP) arrives at the presynaptic terminal the vesicle merges with the cell membrane, glutamate diffuses into the 

synaptic cleft, and binds to NMDA and non-NMDA receptors on the postsynaptic membrane. At resting potential, the NMDA receptor mediated channel remains blocked by magnesium 

whereas the non-NMDA channel opens (bottom). C. If the membrane of the postsynaptic neuron is depolarized, the magnesium block is removed and calcium ions can enter into the cell. 

D. The depolarization of the postsynaptic membrane can be supported by the increased voltage of an earlier backpropagating action potential (BPAP)



2-factor versus 3-factor rules

Image: Gerstner et al. (2018, review paper in Frontiers)

3-factor = Hebbian combined with 

(potentiall delayed) Neuromodulator:

→ Reward based learning/reinforcement learning

Hebbian: pre=spike

‘post’ = spikes

3-factor: pre+post+   

neuromodulator (success/reward)

Hebbian:pre=spike

‘post’ = voltage



Previous slide. 

Another important distinction is that between two-factor and three-factor rules, 

where the latter include the action of a neuromodulator.

Hebb rules are essentially two-factor rules.



A first model: Clopath model (1) – static voltage dependence

Clopath et.al., Nature Neuroscience, 2010;
Artola, Bröcher, Singer. Nature 1990 

Ngezahayo et al. J. of Neurosci., 2000

Depression term

Potentiation term +𝐴+ [𝜎+(𝑢)]2𝑝𝑟𝑒

−𝐴− 𝜎−(𝑢)𝑝𝑟𝑒

−𝜎−(𝑢)

[𝜎+(𝑢)]2

θ+

θ-

ReLU

θ- θ+



Previous slide. 

There are influential experiments in two papers of Artola et al (1990) and 

Ngezehayo et al (2000) who caused presynaptic spike arrival (green) while the 

postsynaptic neuron was kept at a constant potential.

Suppose the resting potential of the orange cell is about -60 mV. Then a small 

constant increase in voltage combined with presynaptic spike arrival leads to

depression (LTD) while a higher voltage leads to potentiation (LTP) of the 

synapse.

For constant voltage, the voltage dependence is described in the Clopath model 

by two ReLU function of the voltage u with different thresholds.



Pair   

LTD

σ-

θ-
resting potential

𝑑

𝑑𝑡
𝑤𝑗
− = −𝐴2

−𝑋𝑗(𝑡)𝜎
−( ǉ𝑢−)

where

presynaptic spike train

postsynaptic u low-pass (τu-)

𝑋𝑗(𝑡) =෍

𝑖

𝛿(𝑡 − 𝑡𝑗
𝑖)

𝜏𝑢−
𝑑

𝑑𝑡
ǉ𝑢− = − ǉ𝑢− + 𝑢

𝜎−( ǉ𝑢−) = [ ǉ𝑢− − 𝜃−]+ piecewise linear function (ReLU)

Some trace,

calcium? 

second messenger?

pre

A first model: Clopath model (2) – dynamics of depression



Previous slide. 

For constant voltage, the voltage dependence is described in the Clopath model 

by two ReLU function of the voltage u with different thresholds.

If the voltage is NOT constant, the relevant quantity is a low-pass filter of the 

voltage u (called ǉ𝑢−)  which enters in  the ReLU function 𝜎−( ǉ𝑢−).
In the Clopath model, each presynaptic spike depresses the synapse proportional

to 𝜎−( ǉ𝑢−).

The differential equation for LTD  (top line) can alternatively be written as

Δ𝑤𝑗
− = −𝐴2

−𝜎−( ǉ𝑢−) if spike arrival at synapse

Δ𝑤𝑗
− = 0                   else



𝑑

𝑑𝑡
𝑤𝑗 =

−𝐴2
−𝑋𝑗(𝑡)𝜎

−( ǉ𝑢−)

θ+

resting potential firing threshold

Pre: spike

Post: voltage-av

+𝐴3
+𝑥𝑗

𝑝𝑟𝑒
𝜎+(𝑢)𝜎−( ǉ𝑢+)

σ+

Pre: spike-trace

Post: voltage-now

voltage-av

𝜎−

𝜃−

A first model: Clopath model (3) – dynamics of potentiaion

Clopath et.al. Nat.NS 2010;



Previous slide. 

Depression of synapses can be overwritten by potentiation of synapses. 

For potentiation to occur, three conditions need to be met:

(i) A presynaptic spike has arrived a few milliseconds before.  This condition is 

implemented by the trace 𝑥𝑗
𝑝𝑟𝑒

.    The trace steps up by one unit, if a spike 

arrives and decays exponentially thereafter with a time scale of about 10ms.

(ii) The momentary voltage is above the firing threshold. This condition is 

implemented by the term 𝜎+(𝑢).
(iii) The low-pass filtered voltage is about the resting potential. This condition is 

implemented by the term 𝜎−( ǉ𝑢+).



𝑑

𝑑𝑡
𝑤𝑗 =

−𝐴2
−𝑋𝑗(𝑡)𝜎

−( ǉ𝑢−)
Pre: spike

Post: voltage-av

+𝐴3
+𝑥𝑗

𝑝𝑟𝑒
𝜎+(𝑢)𝜎−( ǉ𝑢+)

Pre: spike-trace

Post: voltage-now

voltage-av

A first model: Clopath model summary

LTP (positive change) needs: - presynaptic spike a few ms before

- voltage above threshold now

- voltage above rest previously

LTD (negative change) needs:  - voltage > rest a few ms before 

- presynaptic spike now

LTD

LTP

Clopath et.al. Nat.NS 2010;



Previous slide.  Summary of the Clopath model.

Together the conditions for LTP remove the magnesium block of the NMDA 

channel (average voltage in the recent past is above slightly above rest), open the 

channel (because of presynaptic spike arrival that causes glutamate release), and 

require activity of the postsynaptic neuron (voltage above firing threshold).

Without firing of the postsynaptic neuron only LTD is possible.



Synapse

1. Synaptic plasticity

Should enable to:

- adapt to the statistics of tasks

and environments

(receptive fields, allocate space,

build representations etc)

- memorize facts and episodes

- learn motor tasks

Should avoid:

- blow-up of activity

- unnecessary use of energy

Aim: models that capture the essence

Learning

‘control loop’



Previous slide. 

Hence synaptic plasticity is a multiscale process. 

Moreover it should be useful for different tasks and, despite dynamic changes, 

does not lead to a catastrophic explosion. 



- Synaptic plasticity (= changes of synaptic contact points) 

are the basis of learning.

- Learning is necessary for a variety of different tasks.

- Learning leads to measurable changes in performance (you 

get better at a task) and to measurable changes in the brain.

- Calcium entry through the NMDA receptor is thought 

to be important for many forms of long-term potentiation

- The Clopath model is a first model

1. Synaptic plasticity: summary



Previous slide. 

In this lecture we study mathematical models of synaptic plasticity, but before 

looking at the models, we need to understand the main experimental phenomena.
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Previous slide.

We need to talk a bit about signal transmission in the brain and introduce spiking 

neurons.



The brain: signal transmission by spikes

Signal:

action potential (short pulse)

action

potential 

More than 1000 inputs 



Previous slide.

Signals are transmitted along the wires (axons). These wires branch out to make 

contacts with many other neurons.

Each neuron in cortex receives several thousands of wires from other neurons 

that end in ‘synapses’ (contact points) on the dendritic tree.



Modeling: spiking neurons

𝑢

𝜗

pulse

-responses are added 

-pulses created at threshold

-transmitted to other

response

synapse t

Mathematical description



Previous slide.

In the previous part we have seen that response are added and compared with a 

threshold.

This is the essential ideal that we keep for the abstract mathematical model in the 

following.

We drop the notion of pulses or spikes and just talk of neurons as active or 

inactive.



Review: modeling of spiking neurons

𝑢

𝜗

pulse

-responses are added 

-pulses created at threshold

-transmitted to other

-pulses are ‘unitary events’: shape of spike irrelevant

response

synapse t

Mathematical description:

Integrate-and-fire neuron



Previous slide.

The fact that responses are added and then compared with a threshold is an 

aspect that is shared between real neurons, integrate-and-fire neurons, and 

artificial neurons in ANNs. 

This is the essential ideal that we keep for the abstract mathematical model in the 

following.

Note that spikes are formal events – their duration can be reduced to zero. What 

matters is the fact whether a pulse is transmitted, yes or no.



i

𝜗

note spike+reset to

linear

threshold

Spike emission

reset𝜗I

j

Spiking Neural Network – Leaky Integrate-and-Fire Model
(continuous time formulation)

Ii t = 𝑠ℎ𝑜𝑟𝑡 𝑝𝑢𝑙𝑠𝑒𝑠 = σ𝑗𝑤𝑖𝑗 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

𝑢 𝑡 = 0

𝜏𝑚
𝑑
𝑑𝑡
𝑢𝑖 = −𝑢𝑖 𝑡 + 𝐼𝑖 𝑡

𝑢𝑖 𝑡 = 𝜗if

𝑢𝑖



Previous slide: 

The Leaky integrate-and-fire model written in continuous time involves a LINEAR differential equation that 

can be interpreted as an electrical RC circuit charged by a current I(t). This current I(t) consists of short 

electrical pulses that present spike arrivals. The 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

denotes the Dirac delta function for each presynaptic spike arrival at times 𝑡𝑗
𝑝𝑟𝑒

and 𝑤𝑖𝑗 are the weights. We 

can interpret  𝑤𝑖𝑗 as the charge delivered by the current pulse at time 𝑡𝑗
𝑝𝑟𝑒

.

The linear equation is combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant 

𝜏 = 𝑅𝐶 . Therefore after each short current pulse, the voltage  (membrane potential) decays 

exponentially back to zero with time constant  𝜏 = 𝑅𝐶 .



i

𝜗

fire+reset

linear, voltage jump

threshold →

Spike emission

reset𝜗I

j

Spiking Neural Network – Leaky Integrate-and-Fire Model

𝑢𝑖 ← 0

𝑢𝑖 = 𝑤𝑖𝑗 𝑖𝑓 𝑡 = 𝑡𝑗
𝑝𝑟𝑒

𝑖𝑓 𝑢𝑖 = 𝜗

(discrete time formulation)

𝑢𝑖 ← 𝝀𝒎𝑢𝑖

𝜆𝑚

discrete time steps

linear, decay with parameter 𝝀𝒎

𝑢𝑖



Previous slide:

The Leaky integrate-and-fire model written in  discrete time (say time step Δ𝑡 = 1ms) 

has two linear update steps: 

- each presynaptic spike causes a jump of the voltage (membrane potential) by the synaptic weight 𝑤𝑖𝑗.

- In each time step the membrane potential decays with a factor 𝜆𝑚<1. (Asice: If we compare with the 

previous equation in continuous time, we find that the factor is 𝜆𝑚 = 1 −
Δ𝑡

𝜏𝑚
where Δ𝑡 is the time step.)

These linear update steps are combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.



i

-spikes are events

-triggered at threshold

-spike/reset/refractoriness

-repetitive firing for sustained input

I(t)

I(t)=

Time-dependent input

Leaky Integrate-and-Fire Model

u 𝜗

repetitive

spikes

t
𝜗



Previous slide. 

If an experimentalist injects a current that steps from zero to some large value 

and then after one second back to zero, the neuron has time to fire several 

spikes.
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Previous slide. 

Plasticity phenomena have different temporal scales.

Moreover, they have different functions. 



pre               

j

post i

𝑤𝑖𝑗

+50ms

Changes 

  - induced over 0.5 sec

  - recover over 1 sec

20Hz

Data: Silberberg,Markram

Fit: Richardson (Tsodyks-Markram model)

Short-term plasticity/fast synaptic dynamics
Thomson et al. 1993

Markram et al 1998

Tsodyks and  Markram 1997

2. Classification of synaptic changes: Short-term plasticity



Previous slide. 

Plasticity phenomena have different temporal scales.

Short-term plasticity is induced over 0.5 seconds. Importantly, the induced 

changes decay back to the baseline within roughly one second.

In other words, they do not cause long-term memory.

Short-Term Plasticity (STP) can induce either a depression (as in this image) or a 

facilitation of synapses (not shown), or even a combination thereof.



pre               

j

post i

𝑤𝑖𝑗

+50ms

Changes 

  - induced over 3 sec

  - persist over 1 – 10 hours

20Hz

Long-term plasticity/changes persist

30 min

(or longer?)

2. Classification of synaptic changes: Long-term plasticity



Previous slide. 

Plasticity phenomena have different temporal scales.

Long-term plasticity can also be rapidly induced, for example within 1 to 3 

seconds. Importantly, the induced changes persist for several hours.

Therefore, they are a good candidate to be the basis of long-term memory.

Long-term plasticity comes in two flavors: Long-Term potential (LTP) and Long-

Term Depression (LTD).



Changes 

  - induced over 0.1-0.5 sec

  - recover over 1 sec

Protocol
  - presynaptic spikes

Model
  - well established
     Tsodyks, Pawelzik, Markram,  Neur. Comput. (1998) 10: 821–835

     Dayan and Abbott, Theoretical Neuroscience  (2001), MIT Press

        

Changes 

  - induced over 0.5-5sec

  - remains  over hours

Protocol
-presynaptic spikes + …

Model

  - we will see

LTP/LTD/Hebb

Short-Term (STP) vs/  Long-Term (LTP)

2.  Classification of synaptic plasticity: STP vs LTP



Previous slide. 

Plasticity phenomena have not only different temporal scales, but also different 

induction protocols.

While Short-Term Plasticity (STP) does not depend on the state of the 

postsynaptic neuron, but Long-Term Plasticity does.



pre
post

ij

Induction of changes

   - fast (if stimulated appropriately)

   - slow (homeostasis)

Persistence of changes

  - long (LTP/LTD): induced changes

stay at least for 1-2 hours.

  - short (short-term plasticity, STP)

induced changes decay back within 1s.

2.  Classification of synaptic changes



Previous slide. 

Coming back to the time scale:

There are also slower processes (sometimes called homeostatic processes) that 

are induced on a time scale of hours. These often depend only on some long-

term firing history of the postsynaptic neuron.



2-factor versus 3-factor rules

Image: Gerstner et al. (2018, review paper in Frontiers)

3-factor = Hebbian combined with 

(potentiall delayed) Neuromodulator:

→ Reward based learning/reinforcement learning

Hebbian: pre=spike

‘post’ = spikes

3-factor: pre+post+   

neuromodulator (success/reward)

Hebbian:pre=spike

‘post’ = voltage



Previous slide. 

Another important distinction is that between two-factor and three-factor rules, 

where the latter include the action of a neuromodulator.

Hebb rules are essentially two-factor rules.



pre               

j

post
i

𝑤𝑖𝑗

When an axon of cell j repeatedly or persistently 

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased  
Hebb, 1949

k

- local rule

- simultaneously active (correlations)

2.  Review: Hebb rule



Previous slide. 

Review of Hebb’s formulation. 

Hebb rules are essentially two-factor rules.



Hebbian Learning in experiments (schematic)

post
i

𝑤𝑖𝑗
PSP

pre               

j
no spike of i

PSP

pre               

j

post
i

𝑤𝑖𝑗 no spike of i

pre               

j

post
i

𝑤𝑖𝑗

Both neurons

simultaneously active

Increased amplitude ⇒ Δ𝑤𝑖𝑗 > 0

u

Synaptic plasticity: Long-Term Potentiation (LTP)



Previous slide. 

In a schematic experiment (shown already in the first week)

1) You first test the size of the synapse by sending a pulse from the presynaptic 

neurons across the synapses. The amplitude of the excitatory postsynaptic 

potential (EPSP) is a convenient measure of the synaptic strength. It has been 

shown that it is correlated with the size of the spine.

2) Then you do the Hebbian protocol: you make both neurons fire together

3) Finally you test again the size of the synapse. If the amplitude is bigger you 

conclude that the synaptic weight has increased. 

In the next slides we consider different experimental induction protocols in more 

detail.



Classical paradigm of LTP induction:  1. Strong extracellular stimulation

Image (schematic): Neuronal Dynamics,

Gerstner et al., MIT Press (2014) 

extracellular electrode

C: Late LTP (consolidation)



Previous slide. 

Here the stimulation is done with an extracellular electrode which unspecifically stimulates a bundle of 

fibers (horizontal wiggly lines).

A recording electrode measures the response. In a schematic experiment (shown already in the first 

week)

A) You first test the size of the synapse by sending a pulse from the presynaptic neurons across the 

synapses. The amplitude of the excitatory postsynaptic potential (EPSP) is a convenient measure of 

the synaptic strength. 

B) Then you repeatedly stimulate with the extracellular electrode strong enough that  the postsynaptic 

neuron emits spikes. Essentially this represents a Hebbian protocol. It is sometimes called a tetanus 

stimulation (for example stimuli are repeated at 100Hz)

C) Finally you test again the size of the synapse. If the amplitude is bigger you conclude that the 

synaptic weight has increased. 



Standard LTP 

PAIRING experiment

Test stimulus

At 0.1 Hz

LTP induction: 

tetanus at 100Hz
neuron depolarized

to -40mV

neuron at -70mV

Fig. from Nature Neuroscience 5, 295 - 296 (2002) 
D. S.F. Ling,  … & Todd C. Sacktor

See also: Bliss and Lomo (1973), Artola, Brocher, Singer (1990), Bliss and Collingridge (1993)

EPSC amplitude 

(sign-inverted)

Resting state ueq:
- 75mV< ueq <-60mV

Classical paradigm of LTP induction:  2. Pairing tetanus and depolarization



Previous slide.

A weak extracellular stimulation at 0.1 Hz serves as a test stimulus.

An intracellular (patch) electrode was used to measure the size of the EPSC 

(excitatory postsynaptic current).

TEST: To avoid any opening of NMDA receptors, the neuron was kept close to the 

resting potential at -75mV.

INDUCTION (called pairing): Three bursts of extracellular pulses  (each burst 100 

pulses at 100Hz) where applied while the postsynaptic cell was held at -40mV 

(which is above the firing threshold of the cell).

TEST: The test pulses of the same size as before now evoked a stronger EPSC 

which lasted for 30min, hence LTP was induced.



Low-frequency paired

With depolarization

100 pulses at 2Hz

many synapses

Extracellular

electrode

(stimulus)

Intracellular

recording 

electrode,

Current injection/

voltage clamp

30 min0

EPSP amplitude

100%

Ngezehajo et al. 2000,

Artola et al.

Voltage dependence

stim

LTP

Classical paradigm of LTP induction:  3. Voltage-dependence



Previous slide.

LTP is induced with 100 pulses at 2Hz if the postsynaptic cell is depolarized 

to -10mV (which is above the firing threshold)

LTD is induced with 100 pulses at 2Hz if the postsynaptic cell is depolarized 

to -30mV. 

Note that voltage measurements are never reliable because of various 

artifacts. However, the sequence  ‘no change/LTD/LTP’ for increasing 

voltage is probably reliable.



pre               

j

post
i

𝑤𝑖𝑗

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

Pre

before post

Markram et al, 1995,1997

Zhang et al, 1998

Sjostrom et al., 2001

review:

Bi and Poo, 2001

60 repetitions𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

30 min0

EPSP

amplitude

100%

ms

10ms

{

Classical paradigm of LTP induction:  4. STDP

50ms



Previous slide.



pre               

j

post
i

𝑤𝑖𝑗

𝑡𝑗
𝑝𝑟𝑒

Classical paradigm of LTP induction:  4. Interaction of voltage and timing

Sjostrom et al., Neuron, 2001 

𝑡𝑗
𝑝𝑟𝑒

10s



Previous slide.

Normally, induction of LTP with a standard STDP protocol (+10ms) does not work 

at 0.1 Hz, i.e., if the interval between pre-post repetitions is 10s. But if combined 

with depolarization, LTP is possible!

However, LTD can be induced with an STDP protocol (-10ms), even if repetitions 

occur at very low frequency. Depolarization does not change this.



Repetition : NMDA receptors needs glutamate and postsynaptic voltage

-70mV

0mV

NMDA channel

AMPA channel

glutamate



Previous slide.

The picture and function of the  NMDA channel (discussed earlier) is compatible 

with the interaction of voltage and spike timing observed in experiments.



Yagishita et al.  2014, SCIENCE

Kasai lab

Three-factor rules in striatum: eligibility trace and delayed DA

-Dopamine (DA) can come with a delay of 1s

-Long-Term stability over at least 50 min.

Striatum involved

in action selection

(later today)



In striatum medial spiny cells, stimulation of presynaptic glutamatergic fibers 

(green) followed by three postsynaptic action potentials (STDP

with pre-post-post-post at +10ms) repeated 10 times at 10Hz yields LTP if 

dopamine (DA) fibers are stimulated during the presentation (d < 0) or shortly 

afterward (d = 0s or d = 1s) but not if dopamine is given with a delay d = 4s; 

redrawn after Fig. 1 of (Yagishita et al., 2014), with

delay d defined as time since end of STDP protocol.

Lower left: the image from the beginning of this lecture comes from this 

experiment of Yagishita. This image  demonstrates the Long-Term Stability 

over at least 50 min

Yagishita et al.  2014

3. Three-factor rules in striatum: eligibility trace and delayed Da



Three-factor rules in cortex: eligibility trace and delayed NE

He et al., 2015, NEURON

Kirkwood lab.

NE = norepinephrine

5HT=serotonin



second example

In cortical pyramidal cells, stimulation of two independent 

presynaptic pathways (green and red) from layer 4 to layer 2/3 by

a single pulse is paired with a burst of four postsynaptic spikes 

(orange).

If the pre-before-post stimulation was combined with a pulse of 

norepinephrine (NE) receptor agonist isoproterenol

with a delay of 0 or 5s, the protocol gave LTP (blue trace). 

If the post-before-pre stimulation

was combined with a pulse of serotonin (5-HT) of a delay of 0 or 

2.5s, the protocol gave LTD (red trace).

(He et al., 2015).



Three-factor rules in hippocampus: Behavioral time scale plasticity

Image: Gerstner et al. (2018, review paper in Frontiers)

Complex spike can come with a delay of 1-5 seconds

Bittner et al., 2017 (Magee lab)

Hippocampus

Complex spike 

- indicates surprise(?)

- or novelty (?)

- triggered by ?

One-shot learning: no repetition necessary                



Previous slide.

In 2017, Bittner et al from the lab of Jeff Magee discovered a novel form of plasticity which was 

observed both in vivo and in vivo:

(i) In vivo: neuronal activity of many neurons in hippocampus was recorded while a mouse was 

running forward on a moving closed cyclic tape (which had a length of several meters). The

authors observed that a new place cell appeared, for example in round 7, and then stayed on for 

the remaining rounds. It is single-shot learning since the place cells had immediately full strength, 

and nearly its final shape. The appearance of the place cell coincided with a complex spike in the 

neuron

(ii) In vitro (figure). A pyramidal cell in area CA1 (orange) receives input from many cells in CA3. 

Stimulation of fibers in the pathway from CA3 to CA1 (green) caused depolarization of the 

postsynaptic cell, but no spiking. Then the authors stimulated the postsynaptic cell such that it 

emitted a complex spike (visible as a burst of spikes). The combination of presynaptic stimulation 

and postsynaptic complex spike leads to a strengthening of the synapses even if the two events 

are separated by 2 seconds.

The authors interpreted this as a novel two-factor rule, with long synaptic traces. I prefer to see this 

as a three-factor rule where the pre-spike together with postsynaptic depolarization sets the trace, 

and the complex spike  is a manifestation of the action of the third factor. Jeff Magee mentioned 

that in vivo they had the impression that a place cell emerged when the mouse was puzzled.



Aceituno, …, Grewe, bioRxiv (2024)

https://doi.org/10.1101/2024.04.10.588837;

2024:  Learning rule: Feedforward synapse on basal dendrite

depend on lateral/feedback input (on apical dendrite)

Recent experiments in L5: Grewe group (2024)

Experiments in L2/3: Williams and Holtmaat (2019)

Such a rule useful to learn ‘good’ representation!

synapse on basal dendrite

Input on

apical dendrite

synapse on basal dendrite 

does not change

synapse on basal dendrite → LTP

Consistent with voltage-dependent plasticity (Sjostrom et al 2001)

and Clopath model  (Clopath et al. 2010)



Experiments in Mouse Frontal Cortex, L5 cells, slice, from the Grewe lab (INI, Zurich).

Two  electrodes are used for extracellular stimulation at the basal dendrite  (red-green) 

and apical dendrite (blue). Voltage is recorded with the brown electrode (A).

Initially, EPSPs are evoked by small-amplitude pulse stimuli (strength s1) with the red-

green electrode yielding an EPSP of a few mV. Then the stimulation amplitude is 

increased (strength s2) so that the firing threshold is reached, and the postsynaptic 

neuron fires an isolated spike. After 8 repetitions (at 0.1Hz) no change in the EPSP 

amplitude is found. Thereafter the stimulation of basal synapses (with strength s2) is 

paired with stimulation of the apical dendrite, causing a short burst of spikes and a  

prolonged voltage response. After 8 repetitions (at 0.1Hz) the EPSP amplitude in 

response to stimulus s1 is increased (C and D).

These findings are consistent with experiments of J. Sjostrom (2001) and the voltage-

dependent plasticity model of C. Clopath (2010): synaptic changes require either multiple 

postsynaptic spikes are a prolonged depolarization of the postsynaptic neuron, or a 

combination of both.



pre
post

ij

Induction of changes

   - fast (if stimulated appropriately)

   - slow (homeostasis, over hours)

Persistence of changes

  - long (LTP/LTD)

  - short (short-term plasticity, STP)

Functionality

  - useful for learning a new behavior/forming new memories

  - useful for development (wiring for receptive field development)

  - useful for activity control in network: homeostasis

  - useful for representation learning

2.  Classification of synaptic changes



2.  Summary: Classification of synaptic changes

Several categories can be used to classify synaptic changes:
1) Do changes last for a long time (hours: Long-Term Potentiation) or do they 

decay rapidly back to baseline (around a second: Short-Term Potentiation)?

2) Do changes depend mainly on presynaptic and postsynaptic activity (Hebbian 

learning/2-factor rule), or also on the presence of a neuromodulator (three-

factor rule)?

3) Learning paradigm: is the learning scenario just exploiting input statistics 

(unsupervised learning/no teacher, no reward); or does it also involve notions 

of ‘reward’ or ‘success (reinforcement learning/neuromodulator)

4) Is synaptic plasticity induced by an artificial protocol, or by real-world learning 

experience? What is the protocol (STDP, bust-STDP, pairing pre-voltage, …)



Quiz 1.  Synaptic Plasticity and Learning Rules
Long-term potentiation

[ ] has an acronym LTP

[ ] takes more than 10 minutes to induce

[ ] lasts more than 30 minutes

[ ] depends on presynaptic activity, 

and on spikes of the postsynaptic neuron

[ ] depends on presynaptic activity, 

and on the voltage of the postsynaptic neuron

Short-term potentiation

[ ] has an acronym STP

[ ] takes more than 10 minutes to induce

[ ] lasts more than 30 minutes

[ ] depends on presynaptic activity, but not

on state of postsynaptic neuron

Synaptic changes

[ ] Hebbian learning depends on

presynaptic activity and on

state of postsynaptic neuron

[ ] Reinforcement learning 

depends on neuromodulators

such as dopamine indicating

reward

[x]

[ ]

[x]

[x]

[x]

[x]

[ ]

[ ]

[x]
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https://www.youtube.com/watch?v=iEz_SUsJMJ8

3. Model of short-term plasticity

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html

Synapses, dendrites and the cable equation 

Part 1 - Synapses (15 min) 

Part 2 - Synaptic short term plasticity (9 min) 

See Week X on MOODLE or See week 3 on: 

• Wulfram Gerstner

• EPFL, Lausanne, Switzerland

Reading for STP:

NEURONAL DYNAMICS

- Ch 3.1.3.
Cambridge Univ. Press

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html
http://www.youtube.com/watch?v=osC58gzrjA0
http://www.youtube.com/watch?v=iEz_SUsJMJ8


Lecture 14 

Synaptic plasticity and Learning

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Synaptic plasticity

motivation and aims

2. Classification of plasticity

short-term vs. long-term

unsupervised vs. reward modulated

3. Model of short-term plasticity

4. Models of long-term plasticity

        - Hebbian learning (rate model) 

         - Bienenstock-Cooper-Munro rule      

5. Spiking Models of plasticity

- STDP as Hebbian learning

- Model of STDP: synaptic traces

6. From STDP to rate models

7. Triplet STDP model

8. Online learning of memories

      

Reading for plasticity:

NEURONAL DYNAMICS

- Ch. 19.1-19.3

Cambridge Univ. Press

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Computational Neuroscience: Neuronal Dynamics



4. Repetition: Hebbian Learning (rate models)

pre               

j

post
i

𝑤𝑖𝑗

When an axon of cell j repeatedly or persistently 

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased  
Hebb, 1949

k

- local rule

- simultaneously active (correlations)

active = high rate = many spikes per second
Rate model:



4. Repetition: Rate-based Hebbian Learning

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝐹(𝑤𝑖𝑗 , 𝑀𝑂𝐷; 𝜈𝑗

𝑝𝑟𝑒
, 𝜈𝑖

𝑝𝑜𝑠𝑡
)

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎0 + 𝑎1

𝑝𝑟𝑒
𝜈𝑗
𝑝𝑟𝑒

+ 𝑎1
𝑝𝑜𝑠𝑡

𝜈𝑖
𝑝𝑜𝑠𝑡

+ 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖
𝑝𝑜𝑠𝑡

+. . .

a = a(wij)

a(wij) wij

pre               

j

post
i

𝑤𝑖𝑗

Local rule:

Taylor expansion:
Modulator MOD=const



pre               

j

post
i

𝑤𝑖𝑗

k

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟(𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝜗)𝜈𝑗
𝑝𝑟𝑒

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑏𝜈𝑖

𝑝𝑜𝑠𝑡
(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)𝜈𝑗

𝑝𝑟𝑒

presynaptically gated

BCM: 3rd order (‘triplet’)

𝜈𝑖
𝑝𝑜𝑠𝑡

Δ𝑤𝑖𝑗

𝜗 = 𝑓( ǉ𝜈𝑖
𝑝𝑜𝑠𝑡

)

Bienenstock, Cooper

Munro, 1982

Homeostatis                      

4. Repetition: Bienenstock-Cooper-Munro rule 

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑏𝜈𝑖

𝑝𝑜𝑠𝑡
(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)𝜈𝑗

𝑝𝑟𝑒

= 𝑏(𝜈𝑖
𝑝𝑜𝑠𝑡

)2𝜈𝑖
𝑝𝑟𝑒

− 𝑏𝜗𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

triplet pair

𝜗 assume 
𝜈𝑗
𝑝𝑟𝑒

> 0



Previous slide.

We saw in an earlier lecture that a nonlinear model of synaptic plasticity such as 

the BCM model can perform ICA. In the context of neuroscience it has been used 

to model the development of receptive fields. So far, all our plasticity models were 

rate-based models: the state of a neuron is described by a continuous variables 

𝜈𝑖
𝑝𝑜𝑠𝑡

, 𝑎𝑛𝑑 𝜈𝑗
𝑝𝑟𝑒

Later in this lecture we will see a spiking model of plasticity that is closely related 

to the BCM model. The terminology ‘pair’ and ‘triplet’ will become clear in the 

context of the spiking model.



unselective 

neurons

output 

neurons

output  neurons specialize:

Receptive fields

Initial:
  random
connections

Correlated input

BCM leads to specialized

Neurons (developmental learning);

Bienenstock et al. 1982

{
{

Development and learning rules:

Willshaw&Malsburg, 1976

Linsker, 1986

K.D. Miller et al., 1989

4. Repetition: Development of Cortex 



4. Repetition: Models for Hebbian Long-Term-Plasticity 

- Many ‘Hebbian’ rules

- LTP and LTD

- Can describe RF development and ICA

- BCM is a well-known example

- Competition: some synapses grow at the expense 

of others



4. Summary: Models for Hebbian Learning
- Hebbian learning refers to a family of learning rules, rather than one 

specific rule.

- Rules can be classified by mapping them to a Taylor explansion.

- Terms with a negative coefficient induce Long-Term Depression (LTD).

- A clever combination of LTP and LTD can explain the development of 

receptive fields (RF).

- A clever combination of LTP and LTD leads to synaptic competition: 

some synapses grow at the expense of others. A well-known example 

of a Hebbian rule is the Bienenstock-Cooper-Munro (BCM) rule 

(Exercise 1).
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5. Review: STDP experiments

pre               

j

post
i

𝑤𝑖𝑗

When an axon of cell j repeatedly or persistently 

takes part in firing cell i, then j’s efficiency as 

one of the cells firing i is increased  Hebb, 1949

k

Experiments: Levy and Stewart, 1983, … 

Markram et al. 1997, Bi and Poo, 1998, Sjostrom et al. 2001…  
Reviews: Sjostrom et al. 2008...

Markram et al. 2011, ...

‘causal aspect’: ‘pre before post’



Previous slide.

We have seen the citation of the text by Hebb several times. It is interesting to 

focus on the formulation ‘takes part in firing’ the postsynaptic neuron. This 

formulation suggests a causal aspect.

But causality requires that the presynaptic spike occurs before the postsynaptic 

one. Hence the exact timing of pre- and postsynaptic spikes should matter.



pre               

j

post i

𝑤𝑖𝑗

Changes 

  - induced over 3 sec

  - persist over  hours and days

+50ms 20Hz

Long-term plasticity/changes persist

30 min

before
after

Models of STDP 
Gerstner et al. 1996, Kempter et al., 1999, Song et al. 2000, 

Senn et al. (2001), van Rossum et al. 2000, Rubin et al. 2001

Shouval et al.  (2002), Clopath et al. (2010)

5. STDP as Hebbian Learning



Previous slide.

In this example of an STDP experiment, both neurons are active, but the 

presynaptic neuron fires 10ms before the postsynaptic one. The pairs pre-post 

are repeated several times.

The question arises how the sequence of timing can be detected. The answer are 

synaptic traces that we see on the next slide. 



5. Spike-timing dependent plasticity: ‘traces’ for STDP

pre               

j

post
i

𝑤𝑖𝑗

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

𝜏+
𝑑

𝑑𝑡
𝑧𝑗
+ = −𝑧𝑗

+ + 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

) jump at  presyn. spike

𝜏−
𝑑

𝑑𝑡
𝑧𝑖
− = −𝑧𝑖

− + 𝛿(𝑡 − 𝑡𝑖
𝑝𝑜𝑠𝑡

)
jump at postsyn. spike

𝑧𝑗
+

𝑧𝑖
−

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎(𝑤𝑖𝑗)𝑧𝑗

+𝛿(𝑡 − 𝑡𝑖
𝑝𝑜𝑠𝑡

) − 𝑏(𝑤𝑖𝑗)𝑧𝑖
−𝛿(𝑡 − 𝑡𝑗

𝑝𝑟𝑒
)

pre-before-post post-before-pre

Simple STDP model
(Gerstner et al. 1996,

Song-Miller-Abbott 2000, etc)

pair

Data: 
Bi&Poo, 1998

time scale: 10 

ms



Previous slide.

A presynaptic spike at time 𝑡𝑗
𝑝𝑟𝑒

leaves a trace 𝑧𝑗
+ at the synapse which decays 

over a few milliseconds. This trace could correspond to the fraction of glutamate 

bound to the postsynaptic channel.

A later postsynaptic spike also leaves a trace 𝑧𝑖
− . This trace could be the  running 

average  of the postsynaptic voltage or something else.

LTP happens if a postsynaptic spike occurs while the presynaptic trace is still non-

zero; LTD happens if a presynaptic spike occurse while the postsynaptic trace is 

non-zero. 

The relative timing of the pair of spikes yields the STDP window shown at the 

bottom left.

The effects of all pairs are simply added (even though variants exist).



5. Summary: Spike-timing dependent plasticity (STDP)

STDP is a form of Hebbian learning induced by spikes.

For a phenomenological model, we can take the view that 

each spike arriving at the presynaptic terminal leaves a 

trace at the synapse (e.g., amount of glutamate in the 

synaptic cleft, or bound to the postsynaptic receptor).

If a spike of the postsynaptic neuron coincides with the 

trace left by the presynaptic spike, a change happens 

(proportional to the momentary value of the trace). 

The total weight change after many pairs of spikes is

Δ𝑤𝑖𝑗 =෍

𝑓,𝑓′

𝑊(𝑡𝑖
𝑓
− 𝑡𝑗

𝑓′
)



Exercise 
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Δ𝑤𝑖𝑗 = ෍

𝑓,𝑓′

𝑊 𝑡𝑖
𝑓
− 𝑡𝑗

𝑓′
(1)

𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

6. from STDP to rate models

1

𝑇
Δ𝑤𝑖𝑗 =

1

𝑇
0׬
𝑇

∞−׬
∞

𝑊 𝑠 𝑆𝑖 𝑡 𝑆𝑗 𝑡 + 𝑠 𝑑𝑠 (2) 

Blackboard



Δ𝑤𝑖𝑗 = ෍

𝑓,𝑓′

𝑊 𝑡𝑖
𝑓
− 𝑡𝑗

𝑓′
(1)

𝜈𝑗
𝑝𝑟𝑒

Preparation: STDP driven by Poisson spikes

𝜈𝑖
𝑝𝑜𝑠𝑡

Assume presynaptic spikes are generated by Poisson process

with rate        

Assume postsynaptic spikes are generated by Poisson process

with rate           . Important spikes post are independent of pre.

𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

What is the expected change of weights in a time T ? 

(T  >>                   ) 𝜏𝐿𝑇𝑃, 𝜏𝐿𝑇𝐷



𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

6. from STDP to rate models

1

𝑇
Δ𝑤𝑖𝑗 =

1

𝑇
න

0

𝑇

න

−∞

∞

𝑊(𝑠) 𝑆𝑖(𝑡)𝑆𝑗(𝑡 + 𝑠) 𝑑𝑠

=
1

𝑇
න

0

𝑇

න

−∞

∞

𝑊(𝑠) 𝑆𝑖(𝑡) 𝑆𝑗(𝑡 + 𝑠) 𝑑𝑠

= 𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

∞−׬
+∞

𝑊 𝑠 𝑑𝑠    (4)



Previous slides. 

Eq. (1) In the pair-based plasticity rule, the total weight change is the sum over all pair of 

spikes, inserted into the ‘STDP window’ 𝑊 𝑡𝑖
𝑓
− 𝑡𝑗

𝑓′
.

The same equation can be written as an integral, where S(t) denotes the spike train, that 

is the sequence of pulses. This gives Eq. (2).

We now assume that all pulses are generated by Poisson processes. Moreover, since the 

postsynaptic neuron receives spike trains from  thousands of different input neurons, we 

assume that the spikes of the output spike trains are not correlated with those of the input 

spike trains (beyond correlations arising from the rates, i.e., if one neuron switches to 

firing at a higher rate, the output neuron will also fire at a slightly higher rate; yet we 

assume here that there are no spike-spike correlations)

Then, Eq. (4), the expected weight change (averaged over the statistics of the Poisson 

process), is just the expectations of the individual Poisson processes. This results in a 

plasticity rule for firing rates. If the firing rates are constant, then the integral over the 

STDP window yields the pair based of the Taylor expansion of the rate-based Hebbrule.



6. Summary: from STDP to rate models

In an STDP model, changes of synapses depend on the exact 

timing of pre- and postsynaptic spikes.

However, if we assume that both presynaptic and 

postsynaptic spike trains are generated by a homogeneous 

Poisson Process (with stationary firing rates i and i), we can 

translate the effect induced by STDP after many spikes into 

an equivalent rate model by evaluating the expected change.

The standard STDP window gives then a rate model 

c i j

where c is the integral over the STDP window W(s).



Expectations and Correlations of Poisson spike train:

see my other class, or 

Watch video ‘Membrane Potential fluctuations’ on:

http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOCall.html
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7. Why do we need a Triplet STDP model? 

→ 1) STDP window is only part of story

→ 2) Pair-based STDP model is not sufficient 

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

60 repetitions of spike-pairs ‘pre-post’:

Amount of LTP depends on repetition frequency:



Previous slide.

The STDP window (shown on the right-hand side) gives a biased view of the 

underlying plasticity process since it focuses only on the relative timing within one 

pair of spikes.

However, induction of LTP requires several repetition of pre-post-pairs and the 

repetition frequency matters!



7. frequency dependence of  STDP

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

60 repetitions𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

Sjostrom et al. 2001

See also:

Markram et al. 1997,

Senn et al. 2001,

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

increase of repetition frequency 

pre-before-post (10ms)

post-before-pre (10ms)

10ms

{
10ms

{

No plasticity

At low frequency



Previous slide.

The standard STDP window is evaluated at a repetition frequency  of 20 Hz.

At a repetition frequency of 50Hz, the pre-post-pre-post … sequence  is 

symmetric (except for the very first spike). Therefore, it is expected that the LTD 

protocol and the LTP protocol give the same result. What is not expected is that 

the net effect if positive!

If the repetition frequency is reduced to 0.1 Hz, there is no LTP even though the 

same number of pre-post pairs (with distance 10ms) was used as at the other 

repetition frequencies. This shows that LTP is NOT induced by pairs of spikes!

The triplet STDP model discussed on the next slides is able to account for these 

observations.



7. Triplet STDP model 

Triplet 

LTP

𝑑

𝑑𝑡
𝑤𝑗
+ = +𝐴+ 𝑧𝑗

+𝑧𝑖
𝑠𝑙𝑜𝑤𝛿(𝑡 − 𝑡𝑖

𝑝𝑜𝑠𝑡
)

pre postpost

Triplet

fast exponential trace:

𝑧𝑗
+

slow exponential trace:

𝑧𝑖
𝑠𝑙𝑜𝑤



Previous slide.

LTP needs not a pair of spikes, but a triplet of spikes  post-pre-post (or pre-post-

post).

The first post-spike leaves slow trace. The pre-spike leaves a faster trace (e.g.

glutamate bound to the postsynaptic terminal). The next postsynaptic spike 

causes the weight change proportional to

(i) The momentary value of the slow postsynaptic trace.

(ii) The momebtary value of the presynaptic trace



7. Triplet STDP model 

𝑑

𝑑𝑡
𝑤𝑗 =

Pre: spike

Post: spike-trace

Pre: spike-trace

Post: spike-now

spike-trace

−𝐵𝑧𝑖
−𝛿(𝑡 − 𝑡𝑗

𝑝𝑟𝑒
)

+𝐴+ 𝑧𝑗
+𝑧𝑖

𝑠𝑙𝑜𝑤𝛿(𝑡 − 𝑡𝑖
𝑝𝑜𝑠𝑡

)

Pfister and Gerstner, 2006

fast exponential trace:  𝑧𝑖
−



Previous slide.

The triplet LTP term is combined with a pair-based LTD term (similar to the 

standard STDP model).



7. Triplet STDP model 

No plasticity

At low frequency

Pfister and Gerstner, 2006

Similar triplet mechanism in

Senn et al. 2001, 

Rubin et al.  2005,

Clopath et al. 2010



Previous slide.

The result is the triplet STDP model. This model is closely related to earlier

models, in particular an elegant model of Walter Senn et al. (2001) and a calcium-

based model of Jonathan Rubin et al (2005).



7. Triplet STDP model → BCM model

𝑑

𝑑𝑡
𝑤𝑗 =

Pre: spike

Post: spike-trace

Pre: spike-trace

Post: spike-now AND

Post: slow spike-trace

−𝐵𝑧𝑖
−𝛿(𝑡 − 𝑡𝑗

𝑝𝑟𝑒
)

+𝐴+ 𝑧𝑗
+𝑧𝑖

𝑠𝑙𝑜𝑤𝛿(𝑡 − 𝑡𝑖
𝑝𝑜𝑠𝑡

)

Assume Poisson firing

𝑑

𝑑𝑡
𝑤𝑗 = 𝑐+𝐴+𝜈𝑗

𝑝𝑟𝑒
(𝜈𝑖

𝑝𝑜𝑠𝑡
)2 − 𝑐−𝐵 𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖
𝑝𝑜𝑠𝑡

Bienenstock, Cooper, Munro, 1982

Pfister and Gerstner, 2006



Previous slide.

If we assume that all spikes are generated by Poisson processes, we can now 

use the same arguments as for the pair-based STDP model.

The resulting weight change is then exactly the one of the BCM model.

An important side result is that the parameters of the (ad hoc) BCM model can 

hence be extracted from STDP experiments!



7. Summary: Triplet STDP → BCM model

Triplet STDP model
- parameters can be extracted from experimental data

- for Poisson spikes closely related to rate-based BCM

- but captures additional spike-timing effects (pre-before-post)

- simple pair-based STDP model is not sufficient,

because STDP depends also on repetition frequency

(and not only on relative timing of pairs of spikes).
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Experimental induction protocols (1)

STDP
60 repetitions at 20Hz

5-10 synapses

Intracellular

electrode

(Pulse injection)

Intracellular

recording electrode,

Hebbian interpretation:

Pre-post = causal relation

30 min0

EPSP amplitude

100%

Pulse injection

stim

STDP curve,
Markram 97,

Bi and Poo 98,

Zhang 98



Experimental induction protocols (2)

Low-frequency paired

With depolarization

100 pulses at 2Hz

50 synapses

Extracellular

electrode

(stimulus)

Intracellular

recording 

electrode,

Current injection/

voltage clamp

Hebbian interpretation:
Depolarization similar to

activity of postsyn. neuron,

together with presyn. 

spike arrival

30 min0

EPSP amplitude

100%

Ngezehajo et al. 2000,

Artola et al.

Voltage dependence

stim

LTP



Reminder: Clopath model (1) – static voltage dependence

Clopath et.al., Nature Neuroscience, 2010;
Artola, Bröcher, Singer. Nature 1990 

θ-

θ+

Ngezahayo et al. J. of Neurosci., 2000

Depression term

Potentiation term +𝐴+ [𝜎+(𝑢)]2𝑝𝑟𝑒

−𝐴− 𝜎−(𝑢)𝑝𝑟𝑒

−𝜎−(𝑢)

[𝜎+(𝑢)]2

θ+

θ-

ReLU



Previous slides.

The triplet model is an excellent model of STDP induction, but – by design - it 

cannot account  for voltage dependence of plasticity.

The Clopath model can be seen as a voltage-based formulation of the triplet 

model.

As a reminder, spikes – as used in STDP experiments – are short voltage pulses. 

Hence each spike leaves a trace in the Clopath model.

Moreover, by construction, the Clopath model has explicit voltage dependence as 

found in the experiments of Ngezehayou et al. (2000) or Artola et al (1990).



Pair   

LTD

σ-

θ-
resting potential

𝑑

𝑑𝑡
𝑤𝑗
− = −𝐴2

−𝑋𝑗(𝑡)𝜎
−( ǉ𝑢−)

where

presynaptic spike train

postsynaptic u low-pass (τu-)

𝑋𝑗(𝑡) =෍

𝑖

𝛿(𝑡 − 𝑡𝑗
𝑖)

𝜏𝑢−
𝑑

𝑑𝑡
ǉ𝑢− = − ǉ𝑢− + 𝑢

𝜎−( ǉ𝑢−) = [ ǉ𝑢− − 𝜃−]+ piecewise linear function (ReLU)

Some trace,

calcium? 

second messenger?

pre

Reminder: Clopath model (2) – dynamics of depression



𝑑

𝑑𝑡
𝑤𝑗 =

−𝐴2
−𝑋𝑗(𝑡)𝜎

−( ǉ𝑢−)
Pre: spike

Post: voltage-av

+𝐴3
+𝑥𝑗

𝑝𝑟𝑒
𝜎+(𝑢)𝜎−( ǉ𝑢+)

Pre: spike-trace

Post: voltage-now

voltage-av

Reminder: Clopath model summary

LTP (positive change) needs: - presynaptic spike a few ms before

- voltage above threshold now

- voltage above rest previously

LTD (negative change) needs:  - voltage > rest a few ms before 

- presynaptic spike now

LTD

LTP

Clopath et.al. Nat.NS 2010;



𝑑

𝑑𝑡
𝑤𝑗
+ = +𝐴3

+𝑥𝑗
𝑝𝑟𝑒

𝜎+(𝑢)𝜎−( ǉ𝑢+)

rest
firing 

threshold

127

where
trace of presyn. spike:  glutamate?

postsynaptic u low-pass: Ca concentration?

piecewise linear function

𝜏𝑟
𝑑

𝑑𝑡
𝑥𝑗
𝑝𝑟𝑒

= −𝑟𝑗
𝑝𝑟𝑒

+ 𝑋𝑗

𝜏𝑢+
𝑑

𝑑𝑡
𝑢+ = −𝑢+ + 𝑢

𝜎−/+(𝑥) = [𝑥 − 𝜃−/+]+

pre post post

Triplet

Triplet 

LTP

Clopath model applied to STDP experiments Clopath et.al. Nat.NS 2010;



Previous slide.

We suppose that spikes are artificially induced by the experimentalist using 

injection of short current pulses. Then the voltage trajectory is essentially 

described by isolated spikes.

In this case, the traces left by the voltage are identical to the traces left by the 

spikes in the triplet model.



10ms

T 60 repetitions

Model
Clopath et.al., Nat. Neurosci. 2010

See also:

Pfister et al., J. Neurosci. 2006

Sjostrom et al., Neuron, 2001 

Senn et al. 2001

LTP

+10ms
1/T=

+10ms

-10ms

Data: Sjostrom

See also:

Senn et al. 2001

No plasticity

at low frequency

Clopath model applied to STDP experiments Clopath et.al. Nat.NS 2010;



Previous slide.

Hence it is expected, that the Clopath model explains the frequency dependence 

of STDP. The interval T between two repetitions yields the repetition frequency

 = 1/T



10ms

Timing difference

T

LTP

+10ms
Plasticity is voltage dependent

Postsynaptic spike=voltage peak

60 repetitions

Clopath model applied to STDP experiments Clopath et.al. Nat.NS 2010;



Previous slide.

Moreover, the Clopath model explains the spike-timing dependence as 

summarized in an STDP window. 



STDP interacts with voltage: Data and Clopath model

Data:
Sjoestroem et al.

2001

0.1Hz

0.1Hz

Model:

Clopath et.al.
Nat.NS, 2010



Previous slide.

Finally, the Clopath model can also explain the interaction of spikes and voltage. One

experiment of Sjostrom et al (2001) used a pre-post (10ms) sequence at 0.1 Hz 

repetition frequency that normally gives no LTP.

However, when the postsynaptic spikes are embedded in a weak subthreshold 

current that puts the membrane potential of the postsynaptic neuron above rest (but 

below the firing threshold), then the same  pre-post (10ms) sequence at 0.1 Hz 

repetition frequency  gives  LTP.

Bottom right: Blue dots with error bars are data; gray histogram bars are results of 

the Clopath model.



Interaction of voltage-spike-LTP: consequences

- Sjostrom et al (2001): local voltage interaction 

inside postsynaptic neuron

- Aceituno et al. (2024): voltage interaction from 

apical to basal dendrite.



Aceituno, …, Grewe, bioRxiv (2024)

https://doi.org/10.1101/2024.04.10.588837;

2024:  Learning rule: Feedforward synapse on basal dendrite

depend on lateral/feedback input (on apical dendrite)

Recent experiments in L5: Grewe group (2024)

Experiments in L2/3: Williams and Holtmaat (2019)

Such a rule useful to learn ‘good’ representation!

synapse on basal dendrite

Input on

apical dendrite

synapse on basal dendrite 

does not change

synapse on basal dendrite → LTP

Consistent with voltage-dependent plasticity (Sjostrom et al 2001)

and Clopath model  (Clopath et al. 2010)



Experiments in Mouse Frontal Cortex, L5 cells, slice, from the Grewe lab (INI, Zurich).

Two  electrodes are used for extracellular stimulation at the basal dendrite  (red-green) 

and apical dendrite (blue). Voltage is recorded with the brown electrode (A).

Initially, EPSPs are evoked by small-amplitude pulse stimuli (strength s1) with the red-

green electrode yielding an EPSP of a few mV. Then the stimulation amplitude is 

increased (strength s2) so that the firing threshold is reached, and the postsynaptic 

neuron fires an isolated spike. After 8 repetitions (at 0.1Hz) no change in the EPSP 

amplitude is found. Thereafter the stimulation of basal synapses (with strength s2) is 

paired with stimulation of the apical dendrite, causing a short burst of spikes and a  

prolonged voltage response. After 8 repetitions (at 0.1Hz) the EPSP amplitude in 

response to stimulus s1 is increased (C and D).

These findings are consistent with experiments of J. Sjostrom (2001) and the voltage-

dependent plasticity model of C. Clopath (2010): synaptic changes require either multiple 

postsynaptic spikes are a prolonged depolarization of the postsynaptic neuron, or a 

combination of both.



The end
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