Wulfram Gerstner

Learning in Neural Networks (week10) SPEL Lousanne. Sitzerant
The role of exploration, novelty, and surprise in RL

ODbjectives for today:
- how to encourage exploration
- understand surprise
- understand difference of novelty and surprise
- use of surprise to modulate learning rate
- use of novelty to guide exploration



Previous slide.

Background reading:

An analysis of model-based Interval Estimation for Markov Decision Processes
Strehl and Littman, 2008

https://www.sciencedirect.com/science/article/pii/S0022000008000767

Novelty is not Surprise: Human exploratory and adaptive behavior In
seguential decision-making

HA Xu*, A Modirshanechi*, MP Lehmann, W Gerstner, MH Herzog, PLOS
Comput. Biol. E1009070, (2021)

Learning In Volatile Environments with the Bayes Factor Surprise
V Liakoni*, A Modirshanechi*, W Gerstner, J Brea
Neural Computation 33 (2), 269-340 (2021)

A taxonomy of surprise definitions
A Modirshanechi, J Brea, W Gerstner
Journal of Mathematical Psychology 110, 102712 (2022)



https://scholar.google.ch/citations?view_op=view_citation&hl=en&user=ysDOYB8AAAAJ&citation_for_view=ysDOYB8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.ch/citations?view_op=view_citation&hl=en&user=ysDOYB8AAAAJ&citation_for_view=ysDOYB8AAAAJ:9yKSN-GCB0IC
https://scholar.google.ch/citations?view_op=view_citation&hl=en&user=ysDOYB8AAAAJ&citation_for_view=ysDOYB8AAAAJ:hqOjcs7Dif8C

Novelty and Surprise

Q1: Why does an agent need to explore?
Q2: What Is novelty?

Q3: What Is surprise?

Q4: What Is the difference between the two?
Q5: Why are they useful?

Q6: Why should we talk about novelty In this class?



Previous slide.

Today we will ask 6 questions:

Why Is exploration important?

What Is novelty, What Is surprise, What is the difference, Why are they useful.

And why should we talk about it in this class?
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1. Exploration and intrinsic ‘rewards’



Previous slide.
We start with recalling the problem of exploration-expoitation



Review: Multi-armed Bandits: MAB (1-step horizon)

* Single state. We have K possible actions:

Which action to choose at time t?

___________________________________________________________________________________________________________________________________________________________________________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________

~ Not optimal: @, = arg max ijgt)
5 l
() ZTETi(t) 't () (6) (6) (6) Solutions based on random exploration:
Hi ™ = T(t)‘ H1 H2 Hz = o Mk~ - Epsilon-greedy
N i Y, - Softmax




Comments for the previous slide:

* |f we knew the exact average reward u; = E|r|a = i] of each arm, then the optimal solution
would trivially be to choose the arm with highest average reward: a; = arg max y;
l

* A naive approach iIs to estimate the average reward by the empirical averages and greedily
choose the action with maximum estimated average reward: a; = arg max ﬁl@
l

* The naive greedy policy Is prone to fail in finding the best action.

* You have seen epsilon-greedy and the softmax policy as two approaches for dealing with this
problem by adding randomness to the action-selection.

» Qur focus will be on “directed exploration” by using exploration bonuses.



EXample: average rewards In MAB (1-step horizon)

* MAB with 4 possible actions (Example):

u; = Elr|la = i]
rewards are stochastic (binomial)

P(ry =2p;la=1i) =05 =Py =0]d|=1)

. Y o A after 200 trials each

|

[ J distribution of outcomes,
=3 after T”= 40 trials
us = 9. /I

e =100 |

j \Kfor each action //%TN

1 ,u(t) after 40 trials 10

ldea: explore

while talls of
distributions overlap | fOr each action




Comments for the previous slide:

Example of MAB with 4 actions. Each action yields a reward with 50 percent probability.
Two actions have low rewards (about 1); the two other have high rewards about 20.

Imagine that at the beginning you played each action 40 times and evaluate the mean return.
If you repeated the game many times, each time starting with playing each action 40 times,
you would get a distribution (hand-drawn here).

As long as the distributions overlap, we continue to play all actions. Hence, after t=160, we
should continue to play actions 3 and 4, while actions 1 and 2 can be safely dropped as a
possibility.

Note that the width of the distributions can be pre-calculated with a model of stochasticity

10



Assuming we know the true P(s’|s,a) and R(s, a), the Bellman equation is

Q*(s,a) = R(s,a) +y )y P(s’|s,a) max Q*(s’, a’), a; = argmax Q* (s, a)
a

If we do not know the true P(s’|s,a) and R(s, a), the Bellman equation can be replaced by

a5, @) = RO(s,@) + Bonus(s,a) +v ) PO(s'ls,0) max Qifh(s,@); a, = argmax Qigh (se, @)
4

p

()
Igq

One of the choices is Bonus(s,a) =

\

 Adding exploration bonus provably improves the performance of RL
algorithms.

 Hence, to optimally seek areward, best seek a ‘modified reward’ .



« Comments for the previous slide:

P (s’|s, a) is the estimated transition probability

The theory Itself is not treated In class. The main point of the
slide to show that in CS and RL, the problem of exploration Is
known to be important and has been addressed.

There are several ‘good’ choices to add an exploration bonus.

The exploration bonus is integrated into the standard Bellman
eguation.

12



Standard theory of exploration assumes:

- stationary environment (but the world Is not stationary!)
- many trials (but does a biological agent has the time for many repetitions?)

- model-based RL with update of Bellman equation in background
(but Is that plausible for biological agents?)

- adds an exploration bonus into the general Bellman equation for reward
(but why treat search for novelty as the ‘same kind of’ reward?)



« Comments for the previous slide:

The assumptions of the theory do not fit with what we know about biological
agents!

14



Review: Neuromodulators

-4 or 5 neuromodulators
- near-global action

- Internally created signals

Dopamine/reward/TD:
Schultz et al., 1997,
Schultz, 2002
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Previous slide. Review

The most famous neuromodulator iIs dopamine (DA) which is related to reward,
as we will see.

But there are other neuromodulators such as noradrenaline (also called
norepinephrine, NE) which Is related to surprise.

Left: the mapping between neuromodulators and functions Is not one-to-one.
Indeed, dopamine also has a ‘surprise’ component.

Inversely, noradrenaline also has a reward component.

Right: most neuromodulators send axons to large areas of the brain, in particular
to several cortical areas. The axons branch out in thousands of branches.

Thus the information transmitted by a neuromodulator arrives nearly everywhere.
In this sense, it is a ‘global’ signal, available in nearly all brain areas.

Note that the TD error is an internally created signal. The TD can be positive at
time t even If no explicit reward Is given at time t.

Similarly, surprise iIs an internally generated signal indicating model mismatch.



Review: Neuromodulators (NM)

- several neuromodulators: not just dopamine but also others
- each has near-global action

- Internally created signals, could be used as ‘internal rewards
- they are related, but different signals

combinations of neuromodulators relay different functions

(1) changes In environment - surprise signal

(11) exploration of environment - novelty signal

(1) unexpected reward -> success signal

‘general emotional brain signals are related to neuromodulators’

No reason to combine them Into a single Bellman equation!

)



Previous slide.
Since there are different neuromodulator signals that code for different

functionalities, there i1s no need to combine them into a SINGLE internal reward
signal! (In contrast to the CS/RL theory of exploration!)
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Previous slide.
Searching for something ‘novel’ could be a good heuristic exploration bonus.

We now turn to our Intuitions of novelty and surprise.



Enjoy the images!

Novelty is not Surprise
Surprise is against models (beliefs)




Previous slide.
The video contains a sequence of about 15 flashed images.
Which ones are ‘novel’?

Which ones are ‘surprising’?



Novelty and Surprise

Q4: What is the difference between the two?
First answer — novelty and surprise are not the same.

Second answer (more precise):
Surprise Is ‘against beliefs’ or ‘against expectations’
whereas novelty Is not.



Previous slide.



Novelty and Surprise

Surprise is ‘against expectations’: an example



Previous slide.



Novelty in a tahular environment: discrete states

events = states s (e.g., one image). Total number Is |s|

Novelty n:
1) count events of type s up to time t: Ct(s)

2) a higher count gives lower novelty.

3) the agent has spent a time t In the environment

Ct(s) +1
t + |s|

4) the empirical observation frequency is pn(s) =

Definition: The ‘Novelty’ of a state s attime t Is

n.(s) = —logpy(s)



Previous slide.

Novelty can be defined empirically as the negative logarithm of the empirical
frequency.

This definition gives

- At the beginning (t=0), all states have the same high novelty (related to the
total number of known states.

- The novelty of state s goes down if it has been observed several times, since
ItS count Increases.
- If a state has not been observed for a long time, it will slowly become novel

again as time increases — and during that time other states have been
observed.



surprise in a tabular environment: discrete states and actions
events = transitions (s,a->s’) given action a In state s.

Surprise §:
1) count events of type (s,a=>s’) up to time t: C*(s,a —» s')
2) a higher count gives lower surprise.
3) the agent has spent a time t In the environment
4) the empirical observation frequency Is
Ct(s,a—>s")+1

Et(s, a) + |s|
Definition: The ‘Surprise’ of a transition is Bayes
PTiOT Factor
Surprise

t _
P° (Sty1 = S'|St, ar)=

S51(") =

p§(5t+1 =5’\5t»at)



Previous slide.

Surprise Is related to expectation — If you do not expect something, then you
cannot be surprise. Hence surprise needs contexts and experience that enable an

agent to build a belief. Expectations arise from the belief.

While novelty is derived from observation counts of states, surprise Is derived
from observation counts of transitions.

There are several definitions of surprise.
The specific surprise considered her is the Bayes Factor Surprise.



Definitions of Novelty and Surprise

Q1: What Is novelty?
Definition: The ‘Novelty’ of a state s is
nt(s) = —logpy(s)
Q2: What Is surprise?

Definition: The ‘Surprise’ of a transition is
PTrioT

S51(") =

p§(5t+1 =s'| Se,¢)

There are 17 different definitions of Surprise.  wmodirshanechi et al
This here Is the Bayes-Factor surprise. (2022)



Previous slide. Summary:.

Note that there are also other definitions of surprise.



Teaching monitoring — monitoring of understanding

| | up to here, at least 60% of material was new to me.

[ ] 1 have the feeling that | have been able to follow
(at least) 80% of the lecture up to here.



Previous slide. Summary:.
We now turn to Question 4. Why Is surprise (or novelty) useful?

We start with surprise.
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Previous slide. Summary:.
We now turn to Question 4. Why Is surprise (or novelty) useful?

We start with surprise.



When are we surpriseds?
397397397397394397

Surprise against expectations from your current belief

®* Expectations arise from models of the world
®* We always make models
®* We know that the models are not perfect

® Surprise enables us to adapt the models

- Hypothesis:
Surprise boosts plasticity (3"d factor)/ increases the learning rate

Note: no reward!!!!



Previous slide. Review

Similar to the video with the fractals, the series of numbers has a surprising
element.

The world around us Is Iincredibly complex. We try to understand it by making
models. However, our brain is prewired (inference prior set by evolution) so that

we know that our models are simplified and wrong.

At the moment when our expectations arising from our world model Is wrong we
get a surprise signal. The use of the surprise signal Is to increase the learning

rate so that we can rapidly re-adapt our model.



Review: Neuromodulators

-4 or 5 neuromodulators
- near-global action

- Internally created signals

Dopamine/reward/TD:
Schultz et al., 1997,
Schultz, 2002
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Previous slide. Review

The most famous neuromodulator iIs dopamine (DA) which is related to reward,
as we will see.

But there are other neuromodulators such as noradrenaline (also called
norepinephrine, NE) which Is related to surprise.

Left: the mapping between neuromodulators and functions Is not one-to-one.
Indeed, dopamine also has a ‘surprise’ component.

Inversely, noradrenaline also has a reward component.

Right: most neuromodulators send axons to large areas of the brain, in particular
to several cortical areas. The axons branch out in thousands of branches.

Thus the information transmitted by a neuromodulator arrives nearly everywhere.
In this sense, it is a ‘global’ signal, available in nearly all brain areas.

Note that the TD error is an internally created signal. The TD can be positive at
time t even If no explicit reward Is given at time t.

Similarly, surprise iIs an internally generated signal indicating model mismatch.



Review: Formalism of Three-factor rules with eligibility trace

x; = activity of presynaptic neuron Modulator signal

Stimulus

@; = activity/state of postsynaptic neuron pPre ZM (5(3,%))
\

Step 1: co-activation sets eligibility trace POSt

Az;; =n f(@;) 9(x)) e
Step 2: eligibility trace decays over time

Zij < Nz
Step 3: eligibility trace translated into weight change

sy =M@ D)z [ M(S): T Ioer



Previous slide.
Three-factor rules are implementable with eligibility traces.

1. The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is
similar to the Hebb-rule, but the change of the synapse Is not yet implemented.

2. The eligibility trace decays over time

3. However, If a neuromodulatory signal M arrives before the eligibility trace has
decayed to zero, an actual change of the weight is implemented.

The change Is proportional to

- the momentary value of the eligibility trace

- the value of the neuromodulator signal

The neuromodulator could signal the

- TD-error

- Or Surprise

Usefulness of Surprise? It modulates(similar to the TD error) the learning rate of
RL! Surprising events increase the learning rate.
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Previous slide.

Our claim is that the Bayes-Factor surprise is ideal for detecting change points.



surprise hoosts plasticity in volatile environments

Volatile environment:

abrupt changes with small probability
-> ‘change points’

observation

-> you have to reset model after a change point

T 11

generative model = nonstationary stochastic process
here: - mean of Gaussian Is fixed for many steps
- mean jumps at ‘change points' : probabillity << 1
- variance Is fixed
- task Is to estimate momentary mean of Gaussian



Previous slide.

The volatile environment has stationary segments, interrupted by unpredictable
‘change points’ that occur at low probability.

If you want to make predictions about the next stimulus (or here: its mean), then
the best strategy Is to reset your model completely if you have detected a change
point.



Surnrlse hoosts nlastlcltv |n volatile environments

observation

| Task: estimate momentary mean 0 reset/
learning rate

Surprise, S

| | ) | | |
550 600 ‘650 mP 750 801 Yafo

INn volatile environment, best approach (Bayesian):
reset your belief to prior, If observation does not make sense
plasticity of system must increase if ‘surprising observation’



Previous slide.

The volatile environment has stationary segments, interrupted by unpredictable
change points that occur at low probability.

During the stationary segment your belief gets more precise, and your predictions
(regarding the mean of the distribution) get therefore better.

But the best strategy Is to reset your model completely if you have detected a
change point. So the challenge Is to detect the change points.

The optimal way of doing this is the Bayes-Factor surprise.

Plasticity of the model must then increase when you detect a change point, so
that you reset to the prior and integrate new data points starting from the prior.

Plasticity (learning rate) of the model must then increase when you detect a
change point, so that you reset to the prior and integrate new data points starting

from the prior.



surprise hoosts plasticity in volatile environments

Probability of observation y
P(ypiq:7@)  under prior belief 7(®

Snp( :_ﬂ’(t} — . . -
Y127 P(yyq:m®) Probability of observation y

under current belief 7 (t)

—>reset your belief to prior, If observation y does not make sense

ﬂ_HE‘N(Q) _ (1 ‘@ﬂ_i11‘5~9,gr1::~1tin:m(6;‘ynue‘aﬁfj ﬂ_old) @reset(e‘yHEEETj ,ﬂ.(U))_

Y.
—>’exact Bayesian inference’ r e -
: : : Vg = 7 € 10,
INn volatile environment modulates 1+ mSy;
update with factor vy 0 Surprise, SBF



Previous slide.

We claimed that plasticity (learning rate) of the model must Increase when you detect a
change point, so that you reset to the prior and Iintegrate new data points starting from
the prior.

This Is formalized in the long equation in the middle.

Using a careful analysis of the statistical estimation in the presence of change points
you find that:

If it unlikely (small y) that there was a change point between the previous data and the
current data point (observation y*new), then you should use standard statistical updates
of your estimates to INTEGRATE the new data into your current belief.

If it Is likely ( vy close to 1) that there was a change point, then you should reset to your
prior and integrate the new data point using statistical updates starting with the prior as
your current belief.

Moreover, this factor y depends monotonically on the Bayes-Factor Surprise Ser



surprise hoosts plasticity in volatile environments

Probability of observation y
o Ply:©®)  under prior belief 7(®
SBr(Yip1; T ) =

P(y;c1: 7)) Probability of observation y
under current belief (9

—>reset your belief to prior, If observation y does not make sense

Exact update rule not implementable, but

Bayes-Factor Surprise plays crucial role in approximate methods:
- Particle Filter with N particles,

- Message-Passing with N messages,
- Published approximations

V. Liakoni et al., Neural Computation 2021



Previous slide.

The general theoretical framework cannot be integrated out over several time
steps. Therefore approximations are necessatry.

However, what Is important is the gist of the argument:
A high surprise indicates that the learning rate should be increased.



summary: Definitions of Novelty and Surprise

What is novelty? _CHs)+1
pn(s) = (+ 5|

Definition: The ‘Novelty’ of a state s is

n'(s) = —logpy(s)

What Is surprise? Ct(s,a—>s")+1

t _
p* (Ser1 = S'|Se, ar)=

Definition: The ‘Surprise’ of a transition is
DTLOT

Et(s, a) + |s|

S51() =

p§(5t+1 =5'| S, ¢)

There are 17 different definitions of Surprise.  wmodirshanechi et al
This here Is the Bayes-Factor surprise. (2022)



Summary: Why is surprise useful?

- Detect change points in environment statistics
- Adapt learning rate after change point.
- Bayes-Factor Surprise Is a good surprise measure for this
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Previous slide.

We are done with surprise and turn now to the second part of Question 4.
Why Is novelty useful?

We start with a detour In order to review well-known results from RL, in particular
TD learning and eligibility traces.



Exercise 1. How fast can we find the goal state with a stationary policy?

Consider an environment with the state space §, a goal (terminal) state G € S, and an action space A in
non-gaol states (i.e., S — {G}). After taking action a € A in state s € S, the agent moves to state s’ € S
with the transition probability p(s’|s,a). These transition probabilities are unknown to the agent. We use 7" to
denote the first time an agent find the goal state GG, i.e., s = GG. If we assume that the agent uses a stationary
policy 7, then we can define the average of T' given each initial state s € S as

pr(s) :=E.[T|sg = 5],

where s( is the state at time ¢ = 0. In this exercise, we study p,(s) in its most general case.
a. What is the value of p,(G)?
Hint: Note that T is equal to the smallest ¢ > 0 when we have s, = G.

b. What is the realtionship between E,[T'|s; = s|] and p.(s)?

Hint: Note that u,(s) is the average of 1" if the agent starts in state s at time t = 0, whereas E[T'|s; = s]
is the average of T' if the agent starts in state s at time t = 1.

c. Find a system of linear equations for finding p,(s) for s € § — {G}.
Hint: Use the fact that p,(s'|s) = >, .4 m(als)p(s'|s,a).

Exercise 2. The magic of seeking novelty.




Previous slide.

We are done with surprise and turn now to the second part of Question 4.
Why Is novelty useful?

We start with a detour In order to review well-known results from RL, in particular
TD learning and eligibility traces.



Review: TD- |Bill‘lllll!l inthe general SCISE

Q)= 2Py | R 47 L r(s (')

SARSA
AQ(s,a) = N[r; +yQ(s,a) — Q(s,a)]
Expected SARSA

AQ(s, @) = M[ry + ¥{Za (s, a)0(s, a)} — (s, a)] 5
Q-learning W
AQ(S, Cl) — n [rt T Y MadXg;, Q(SII Cl,) T Q(S Cl)]




Review: Eligibility Traces, SARSA().)
O O G Idea:

() (—=++) - keep memory of previous state-action pairs
) by - memory decays over time
[ - update eligibility trace for all state-action pairs

OO @

e(s,a) <« Ae(s,a) decay of all traces
OO OO e(s,a) <« e(s,a)+1 Iifactionachosen in state s
9 @«@ «) -update all Q-values at all time steps t:

AQ(s,a) = t + ¥ Q(st+1,at+1) - Q(stat ’
Q&Q 9 (sa) =M [\f” yQ(s ? ) -Q(s a}]]e(SG]
OO 1O

RPE = TD error ot
Note: A=0 gives standard SARSA



- learns model of environment
transition matrix’
- knows ‘rules’ of game

- planning ahead Is possible
- can update Bellman equation
In "background’ without action

- can simulate action sequences
(without taking actions)

- IS not

Model-free
does not

does not
cannot plan ahead
cannot
cannot
Eligibility traces and V-values
keep memory of past

completely online, causal,
forward In time.



Reward-based learning versus Novelty-based learning

rewards It

Q-values Q(t) (s,a)

Bellman eq.
estimation/update
/ N\
Model-based| |Model-free
prioritized eligibility
sweeping traces

JE/Z);R(S a) IE;I):R(S a)

novelty ny

Q-values Q(t) (s,a)

Bellman eq.
estimation/update
/ N\
Model-based| |Model-free
prioritized eligibility
sweeping traces
L L
IE/I;,N (S' a) ]E/[;‘,N (S: a)



Environment with 10 states (+ goal)
4 actions per state

action 2 action 3 action 4

9,0,0.0.0.0.0;

2 actions from each state

3 actions from
each state

1 action from
each state

Trap states

Actions are deterministic.
Fixed random assignment.

Start In state 1.
With random policy,
how many actions
on average before
finding goal?

[ ] 100-500

[ ] 1000 — 5000

| | more than 10000



Previous slide.

With random exploration, how long would it take on average to find the goal?
There are only 10 states with four actions each, plus the goal.



Focus on 15t episode, before any reward.

action 2 action 3 action 4

Improve exploration! Solutions?

o 5@
1 . Optl m IStIC In Itlal IZathn7 2 actions from each state

3 actions from
each state

1 action from
each state

Initialize 0 (s,a) = 10 for all s,a

AQr(s,a) = nlr; + ymaxg, Qr(s,a’) — Qr(s,a)]

-> Possible but comparatively slow.
-> Does not generalize well for episode 2.



Previous slide.
Optimistic Initialization Is not sufficient to drive exploration.



Novelty encourages explioration of an environment

Focus on 15t episode, before any reward.

action 2 action 3 action 4
ARARAEARGEANG
0,0/0,0/0/0/0/C

2 . N Ove Ity a,t tl m e t IS nt 2 actions from each state

1 action from
each state

Novelty Prediction Error (NPE)
AQy(s,a) = n[n; + y maxy, Oy (s’,a’) — Qn(s, a)]

Improve exploration! Solutions?

3 actions from
each state

- Separate Q-value for novelty!



Previous slide.

We now use the novelty-Q-values.

Note that every state has some level of novelty. So the novelty prediction error
NPE gives non-zero values for most transitions.

Does this lead to good novelty values? To answer this let us look at the next slide.

RPE: Reward Prediction Error
NPE: Novelty Prediction Error



Novelty encourages explioration of an environment

Focus on 18t episode, before any reward; with some policy

novelty of goal

first encounter of state 7 novelty of state 7

9.9 ;

N D
g O

o

Number of visits
- — N
(@) o
Novelty
(&%)
(@)
&

"_,—"' | , e Trap states
~ . ) 15] WV e o=
0 100t 200 5 00 ¢ 200 B

Trials Trials 2.0 2.5 3.0 3.5 4.0

o O,

State 8 State 9 State 10 State 4 State 7 Goal Novelty Value

-> use novelty values QIE,t) (s, a)for action policy!



Previous slide.

The novelty of state 7 or of the goal state increases over time during
episode 1.

The plot on the right shows novelty Q-values at the moment when state
/ was found for the first time. There Is a nice gradient of increasing
novelty towards the goal.

This suggests that novelty Q-values are useful to guide exploration

Fig 3. Novelty in episode 1 of block 1. A. The number of state visits (left panel) and novelty (right panel) as a function of time for one representative participant: The
number of visits increases rapidly for the trap states and remains 0 for a long time for the states closer to the goal. Novelty of each state is defined as the negative log-
probability of observing that state (see Egs 1 and 2) and, hence, increases for states which are not observed as time passes. The first time participants encounter state 7
(the state before the goal state) is denoted by 1*. B. Average (over participants) novelty (color coded) at £*: Novelty of each state is a decreasing function of its distance
from the goal state.
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Previous slide.
Now we study a specific model that combines many aspects.

Reminder:

RPE: Reward Prediction Error = TD error of reward-consistency
NPE: Novelty Prediction Error = TD error of novelty consistency



GCombine Novelty and Reward: ideas

-> use separate novelty values QIE,t) (s, a) for action policy!
- exploration

-> use separate reward values Ql(f) (s, a) for action policy!
- exploitation

- Combine the two and switch relative importance
- Switch from exploration to exploitation (and back)

—_—a) A~
Omp S =R (s, a)
_ N




Previous slide.
Now we study a specific model that combines many aspects.

Reminder:

RPE: Reward Prediction Error = TD error of reward-consistency
NPE: Novelty Prediction Error = TD error of novelty consistency



Hybhrid model with separate paths for Novelty and Reward
(learning rate controllied by Surprise}

+  Internal Model Surprise

(t) (t)
Model-based (QMBvR ? QMB,N)

(World-model) >
St\ | - Qe [ ] (St41
’rt E (Internal motivation) S holey ; i SRR, )_’ Tt__l
| Model-free — E

(TD-learner)
PR (@Shrn > Qb

NPE and RPE

---------------------------------------------------------------------------

RPE = [r; + ymaxg,, Qr(s’,a’) — Qr(s,a)] 4 separate
o - sets of
NPE = [nt T Y MMaXg, QN (S , A ) _ QN(SI (1)] Q-ValueS!




Previous slide.
In total we have In this Hybrid model 4 sets of Q-values:

Reward-driven Q-values, In the versions model-free and model based.
Novelty-driven Q-values, in the versions model-free and model based.

All 4 Q-values are then combined in a softmax fashion to choose the best action.

The relative weighting factors can be changed.
Before the first episode, it might be good to give more importance to novelty,
and after the first episode more importance to rewards.

algorithm: Information of state s; and reward r; at time ¢ is combined with novelty n; (grey block) and passed on to the world-model (blue block, implementing
the model-based branch of SurNoR) and TD learner (red block, implementing the model-free branch). The surprise value computed by the world-model
modulates the learning rate of both the TD-learner and the world-model. The output of each block is a pair of Q-values, i.e, Q-values for estimated reward Qg
and Qwmp,r as well as for estimated novelty Qpmen and Qump n. The hybrid policy (in purple) combines these values.



Hybrid model with separate paths for Novelty and Reward

[learning rate controlied by Surprise)

B8 oo s s i N o N A S
Internal Model |
Model-based (QMB R QMB N .
: (World-model) \
| A+
’l"t : (Internal motivation) .
i R
wviodal-frao :

Ss . ’ (TD-learner)
St Te,Phe) (s, s

---------------------------------------------------------------------------

Environment

~

/

World model: estimated transition matrix P(t) (s’[s, @)
- used In model-based Q-learning for background updates
—> used to evaluate surprise (Bayes Factor Surprise)

- surprise Iinfluences learning rate

St-

Tt



Previous slide.
In total we have In this Hybrid model 4 sets of Q-values:

Note that the model-based version need a ‘world model'.
- The world model can be used for background updates.
- The world model contains estimated transition probabilities
- The world model can then also used to evaluate ‘surprise’
- We use the Bayes Factor surprise
- Surprise will influence the learning rates of ALL four RL algorithms
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3. Change-point detection by Bayes-Factor Surprise
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6. Two Experiments (Markov Decision Problem for humans!)



Previous slide.

RL algorithms are inspired by human and animal behavior.

Thus, sometimes it Is a good idea, how humans would perform in a given
environment.

Markov Decision Processes are ideal testbeds for tabular RL algorithms.
So, let us test humans in such an environment!



& S action 2 action 3 action 4
Real time . '
(1 9,0,
at ‘ 650 ms 2 actions from each state
- (EEG) End of the episode
St = — 1 acti':)ntfrtom 3 :;tci;cr)‘nsst ;‘:gm
- 650 ms / %700 mns Trap states
(EEG) Unlimited response time
A/oov-woo ms p
50, ] Finding 1)
s ™ - Participants need about 150 actions In episode 1
£ l Finding 2)
LB e . . . INnepisode 2, participants go straight to goal

E1 E2 E3 E4 E5



Previous slide.

Human participants are put into a Markov Decision Process.

They have four action buttons to navigate from one image to the next.

The have been told before the experiment that there are 10 states and one goal
states, each identified by an image. The 11 images (including goal) have been
shown once.

Until image onset, participants have to wait for a time of about 1s until four grey
disks were present — these are the action buttons.
The goal image In this example Is the thumb-up Image.

Right: Structure of the environment for the first 5 episodes (block 1).

Findingl) humans are MUCH faster than the random exploration strategy to find
the goal for the first time.

Finding 2) humans are extremely good in episodes 2-5 to return to the goal. The
starting condition is not always state 1, but can also be a different state (varies
across episodes, but the same starting state for all participants).



Finding 3)
In eplsodes 5 and 6, part|C|pants rapldly relearn!

—— (TR A A A AT HE)

Number of actions

250 -

200 -

150 -

¥ ~
y ’ 2 actions from each state
- - ' 1 action from 3 actions from
e — - each state
j -i:- * * each state

100

50

650 m;
(EEG)

0

.- Is Surprise necessary to explain relearning? ...

Questions:

state

- Are humans model-based or model-free?
- Is novelty a good explanation of results?

mm Block 1

* = Block 2 action 2 action 3 action 4

e I ol T
2 A 4 p{ S5

g D 2O

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Trap states



Previous slide.

After episode 5, states 3 and 7 have been swapped. Thus the environment Is not
stationary (volatile environment).

Humans rapidly readapt.
Would algorithms also re-adapt?



Review: Hybrid model with separate paths
surprise, Novelty, Reward (SurNoR)

BF i om0 4 B U
+  Internal Model Surprise
(t) (t)
Model-based (QMB’R ! QMB’N)
(World-model)
St :
’rt : (Internal motivation)

(TD-learner)
PR (@Shen > Qb

NPE and RPE

---------------------------------------------------------------------------

RPE = [ry + ymaxy, Qr(s’,a’) — Qr(s,a)] ‘

- Qg ( k St+1
Surprise Hybrid policy : » Envionment |—
E 3 i Ft+1
Model-free E

S—

NPE = [n; +ymaxg, Qy(s’,a’) —Qy(s,a)]

4 separate
sets of
Q-values!



Previous slide.

Note that in the formal theory of exploration bonus, we simply added the bonus In
the Bellman equation.

However, here we claim that it is useful to develop two separate Bellman
eguations, one for novelty and one for reward. Each one has separate Q-values.

Each one of these, can be implemented as model-free or model-based.



Gomparison of Models: Surprise, Novelity, Reward

Finding 4)

Rapid relearning needs surprise z

Model-based (Qgt&)BR- Q%\?B N) Exceedence probability = 0.99
e-pase v '

(World-model)
Hybrid policy
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0.0
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- Turn off model-based >MF Ph=2hSiz=2i3iT3
s =2 - = E::I?I

- Turn off model-free >MB \ |
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Previous slide.
The best model is the combination of Surprise, Novelty and Reward (SURNOR).

The second best model iIs model-free (MF) RL with surprise (S), novelty (N), and
reward.

Turning off surprise lowers the performance (Hybrid model and surprise).
Model-based compares less well with human data than model-free. The

combination of model-based and model-free (Hybrid model/SURNoOR) explains the
data best.



Finding 5) surprise-modulated learning rate
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Previous slide.

One can separately analyze the relative importance of the model-free and the
model-based pathway to the hybrid policy in the SURNoR model.

One finds that model-based never dominates, so that we conclude that human
participants are best described by model-free algorithms with surprise.



surprise is used modulate learning in RL

Finding 6)
Surprise Is against expectations.
Hence surprise needs a world model.

However, world model Is
- Not used to do planning!
- Only used to extract surprise!




Previous slide.

Surprise needs a world model, but we said that the model-free algorithm better
explains the behavior.

The interpretation Is that human participants develop a model of the world, but
they only use it to detect surprise (change points) which allows them to re-adapt

the model.

But they do not use It to plan ahead or do updates of the Bellman equation In the
background.



surprise, World models, and Planning
Finding 6)
World model is available to humans

- But not used to do planning!
- Only used to extract surprise!

For humans:

- Planning Is hard (not intuitive/natural)

- Exception: Planning in 2-dim or 3-dim environments

- Planning needs ‘paper and pencil’: “let's work this out”

Humans are not ‘optimal’. Humans use heuristics.
Heuristics Is mostly good for natural tasks.
Markov Decision Problems are ‘not natural’




Previous slide.

Planning is simple for humans in 2-dim or 3-dim environments.

But not for Markov Decision Problems.

Abstract problems require (for most humans) a slow process of math-like solution

process:. whenever you feel, it would be easier to work something out with paper
or pencil, you try to use a ‘world model’ that is non-intuitive for humans.



Reward-Prediction Error? - Surprise

defined as - defined as
TD error Bayes Factor Surprise

stimulated by

| stimulated by observations
chocolate, money, B

not consistent with momentary

praise, ... model of environment
modulates . modulates
learning rate 2

learning rate



Previous slide.

Summary: Comparison of Reward Prediction Error and Surprise.



second experiment:
Detect Brain Signals during
Reinforcement Learning with Surprise Trials

@

fMRI machine

(standard image from WEB) V. Liakoni et al. (2022), Brain signals of

a Surprise-Actor-Critic model.
Neurolmage 246 (2022) 118780



Previous slide.

We now turn the the second experiment. It is similar in spirit to the first one, but

simpler and can be used In a brain-imaging device for function Magnetic
Resonance Imaging (fMRI).

In the fIMRI activated brain areas are visible by increased oxygen indicating
Increased blood circulation (called BOLD signal).

Normally, the BOLD signal iIs compared across two conditions A and B and the
difference in the BOLD signal is plotted projected onto a cut through the brain.



Behavioral Task used to detect Brain Signals

Goal!
action

state
action
start state

V. Liakoni et al. (2022), Brain signals of
a Surprise-Actor-Critic model.
Neurolmage 246 (2022) 118780




Previous slide.
The task Is related to the one on the previous slides, but simplified to make it

usable in fMRI devices. The aim Is to record brain signals correlated with an RL
model.

The task consists of 7 states and one goal state. In each state two actions are
possible. One of these (green) brings the participant closer to the goal.

Importantly, several states can be classified as ‘two steps from goal’ and others
as ‘three steps from goal'.

This Is Important because If after N trials, the states in the same category (e.qg.,

two steps from goal’ have been visited an equal number of times), then they are
expected to have the same V-values.

Bottom: Occasionally an action that would normally lead closer to the goal leads
to a completely different state (surprise trials). Note that the both state S3 and S5
have the same distance from goal (one step from goal), and therefore the same
V-values. Hence a potential surprise signal is not influence by an additional
difference in V-values.



surprise Actor-Gritic and other RL algoritms
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Previous slide.

LEFT:

One specific algorithm Is the Surprise-modulated Actor-Critic algorithm (top). The world
model (right box) Is only used in order to modulate the learning rate of the actor-critic,
but not for planning. The actor-critic iIs model-free with eligibility traces.

Bottom: RL algorithms come in different flavors:
1) Model based (right) versus model-free (left) or hybrid therefore (orange, bottom)
2) TD-type algorithm versus policy gradient algorithm (actor, right with-in left box)
or actor-critic that combines TD (value estimation) with policy gradient (actor).
The Surprise Actor-Critic algorithm is one specific combination of these ingredients, but
many other algorithms can be formulated in this framework.

RIGHT: Performance In terms of negative log-evidence of many algorithms in explaining
the behavior data of human participants (lowest is best). The 7 best ones amongst
these are indistinguishable In terms of log-evidence and also indistinguishable in terms
of ‘protected exceedance probability'.



relative median adjusted R?

Model Performance on explaining brain activity
Surprise Actor-Critic

1072
[ [
p = 1.0642¢ — 04
p=3.6712¢ — 04
0.5 p=21417e — 04
I1.5.
0 — o)
—0.5 % -Tr
—1
—1.5
—2
| | |
§ & & £ 8
& 85 g § 8
"\‘\-' NY o L )
& & R A% A4
& & &
§ 3

A SPEgp

V. Liakoni et al. (2022),
Neurolmage 246 (2022) 118780




Previous slide.

Fig. 5. Neural model comparison. A. Difference in median adjusted R? across the whole brain for the winning computational models and the Surprise Actor-critic.

Each red line corresponds to a participant and is centered with respect to the Surprise Actor-critic. The median adjusted R? of the Surprise Actor-critic is significantly
larger from the one of the REINFORCE, Surprise REINFORCE and the Actor-Critic (Wilcoxon signed rank test p < .001, i.e. passing a Bonferonni corrected threshold

of 0.0125 for the 4 comparisons performed). The performance of the Surprise Actor-critic and of the Hybrid Actor-critic were not significantly differen

Fig. 6. Neural correlates of learning signals of the Surprise Actor-critic - GLM,. T-statistic maps (21 subjects, random effects whole brain analysis, cluster-wise
correction with a cluster-defining threshold (CDT) of p = 10~* and a FWE-corrected threshold of p = .05, nonparametric permutation test with maximum statistic
approach) of A. SPE;.. We find significant correlation in SMA, insula, middle frontal gyrus, angular gyrus, supramarginal gyrus and in the superior frontal gyrus. B.

RPE. We find significant correlation in the inferior frontal and orbitofrontal gyrus, the striatum (putamen and pallidum), the vimPFC, and the inferior occipital gyrus.
C. S;:- We find significant correlation in the right insula and the right middle frontal gyrus. . ) . 3

Left: Message of Fig. 5: Brain data is best explained by the Surprise Actor-Critic (model-
free) and equally well by the hybrid actor-critic. For Fig. 6 we use the model-free
Surprise Actor-Ciritic since it Is simpler.

Right: Message of Fig. 6: Precise brain areas can be identified that have activity
significantly correlated with the State-Prediction Error (SPE), the Reward-Prediction
Error (RPE), or the Bayes-Factor Surprise (S_BF). The areas identified for RPE In this
specific experiment are similar to those identified in many other studies. The state

prediction error is the update signal for the transition matrix P(O(s’[s, a).



N

brain .
behavior algorithms

_/

- Exploration - not exploration bonus, but separate modules
- Novelty - Novelty supports exploration
- Surprise - Surprise detects changes/adapts learning rate




Previous slide. Review from previous lectures.

RL has two roots: optimization for Markov Decision Problems and Brain
sciences/psychology

The interaction has not stopped. Modern RL still takes up influences from Brain
Sciences. Examples are the role of novelty, surprise, and their roles for

exploration and in volatile environments.
At the same time RL has strongly influence the brain sciences!



The END



Previous slide.
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Appendix: More on Formal Exploration Bonus

(Thanks to Dr. Alireza Modirshanechi)



Previous slide.
We start with some results from the formal theory of exploration.

a) For multi-armed bandits (1-step horizon)
b) For full Markov Decision Problem (multi-step horizon)



Review: Multi-armed Bandits: MAB (1-step horizon)

* Single state. We have K possible actions:

Which action to choose at time t?

___________________________________________________________________________________________________________________________________________________________________________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________

~ Not optimal: @, = arg max ijgt)
5 l
() ZTETi(t) 't () (6) (6) (6) Solutions based on random exploration:
Hi ™ = T(t)‘ H1 H2 Hz = o Mk~ - Epsilon-greedy
N i Y, - Softmax




Comments for the previous slide:

* |f we knew the exact average reward u; = E|r|a = i] of each arm, then the optimal solution
would trivially be to choose the arm with highest average reward: a; = arg max y;
l

* A naive approach iIs to estimate the average reward by the empirical averages and greedily
choose the action with maximum estimated average reward: a; = arg max ﬁl@
l

* The naive greedy policy Is prone to fail in finding the best action.

* You have seen epsilon-greedy and the softmax policy as two approaches for dealing with this
problem by adding randomness to the action-selection.

» Qur focus will be on “directed exploration” by using exploration bonuses.
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Regret In Multi-armed Bandits (1-step horizon)

* MAB with K possible actions:

[ui = E|r|a = i] J Highest reward rate: u* = max y;
l

 "Regret” of algorithm A +» Consistent algorithms:
(e.g., e-greedy):
im0 D — o =  limyp EA[ZZ:luat]= '
% - ~ : T
R,(T) =E Z S =
a(T) = Ey t=1fl f"“t /Theorem1of Lai and Robbins 1985: h
- ~ i Under specific conditions, it algorithm A is consistent, then,
loosely speaking, R4(T) is at least proportional to logT.
with best With your & oF ’ A( ) o ° /J
action you  actual choices hf

a loose notion of optimality

can choose :
ldea: you need to play other actions, even
If that means that R,(T) increases



Comments for the previous slide:

Before discussing how to deal with exploration-exploitation dilemma, we discuss a common
method for evaluating different algorithms in multi-armed bandits.

A key notion to evaluate an algorithm A is regret R,(T) measuring the expected difference
between the choices of the algorithm and the best possible actions, summed over the first T
steps.

R A(T . i
A1)\ anishes over time.

An algorithm Is called consistent, If its average regret

It IS proven (under certain conditions; see Lal and Robbins 1985 in Advances in Applied
Mathematics) that the regret R,(T) of a consistent algorithm scales at least logarithmically
with time T.

At the same time, consistency requires that the regret R,(T) increase slower than 7. The
statement therefore Is logT Is the best you can do.

This framework introduces a loose notion of optimality: An optimal algorithm Is a consistent
algorithm whose regret scales logarithmically with time T. 114



EXample: average rewards In MAB (1-step horizon)

* MAB with 4 possible actions (Example):

u; = Elr|la = i]
rewards are stochastic (binomial)

P(ry =2u;la=1i) =05 =P(ry =0|a =1i)

S,

What Is the probabillity that

ﬁf60)—2’>

[1(;)2 7%
[ 1 between 107 and 100®

=1
[“1 ] s 3 O
(t) TETi(t) T
[.Uz = 0.9 J z
_ Y,
I

1 i

(t) after 40 trials 10
for each action




« Comments for the previous slide:

* We assume that each action is played 40 times (t=160 total time).

 How likely is it in the above example that the ‘best’ action with mean reward 10 would have
after 40 trials a value of 2?
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EXample: average rewards In MAB (1-step horizon)

* MAB with 4 possible actions (Example):

u; = Elr|la = i]
rewards are stochastic (binomial)

P(ry =2p;la=1i) =05 =Py =0]d|=1)

4 ™\ _
o Lrer®Tr after 200 trials each

distribution of outcomes,
after T”= 40 trials

j kfor each action __%JTN

~ (1)
actions if tails of 1 f;~ after 40 trials 10
distribution overlap for each action

o

ldea: play other




Comments for the previous slide:

Example of MAB with 4 actions. Each action yields a reward with 50 percent probability.
Two actions have low rewards (about 1); the two other have high rewards about 20.

Imagine that at the beginning you played each action 40 times and evaluate the mean return.
If you repeated the game many times, each time starting with playing each action 40 times,
you would get a distribution (hand-drawn here).

As long as the distributions overlap, we continue to play all actions. Hence, after t=160, we
should continue to play actions 3 and 4, while actions 1 and 2 can be safely dropped as a
possibility.
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EXploration Bonus for MAB (1-step horizon)

* MAB with K possible actions:

* Reminder: greedy algorithm ﬁgt) ﬁgt) ﬁ:gt) ﬁg)
4 )
(t) Prer®
Hi ™ = )] a; = argmax ;"
L
\ J

vl vl vl L Uy

4 )

g® = 5 ® 2logt a, = arg max Ui(t)
S = U; -+ l
SR ) ’ \
_ ] N y Theorem 1 of Auer et al. 2002:
) | | | | Rycg1(T) «< log T + const.
The naive estimate of Bonus for exploration N Y
average reward (compare: Monte Carlo Tree Search)

Play greedy, but with a modified ‘value’ Uk

-> Add exploration bonus to empirical average of reward



Comments for the previous slide:

A smart optimal algorithm is Upper Confidence Bound (UCB; proposed by Auer et al. 2002 In

Machine Learning) that computes a confidence bound index Ui(t) for each action and
chooses the one with highest index.

The index Is equal to the naive estimate average reward ﬁl@ plus an exploration bonus that
79| but (ii) an

IS (1) a decreasing function of how many times an arm has been chosen
Increasing function of how many actions have been taken in total (i.e. t).

The regret for the UCB algorithm scales logarithmically with T, hence it is an “optimal”

algorithm. The constants of the regret can be fine-tuned by some variations of the algorithm
(see Auer et al. 2002).
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Quiz: exploration Bonus (1-step horizon)

@ » A consistent learning algorithm eventually achieves a zero average regret
in Multi-Armed Bandits (MAB).

* An optimal algorithm in MABs achieves a constant total regret.

l

log(t)

(t)
\/ T;

* A good exploration bonus Is

@ * A good exploration bonus Is %



Teaching monitoring — monitoring of understanding

| | up to here, at least 60% of material was new to me.

[ ] 1 have the feeling that | have been able to follow
(at least) 80% of the lecture up to here.



* MAB with K possible actions:

 Markov Decision Processes (MDP):

» P:transition probabilities, e.g. P(s’|s, a)
* R: expected reward, e.g. R(s, a)




« Comments for the previous slide:

* We now want to extend from 1-step horizon (MAB) to multi-step horizon. The
Multistep horizon leads to the Markov Decision Problem (MDP).
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Exploration Bonus for multi-step horizon
Bellman equation (optimal action choice)

* Dynamic programming with true P(s’|s,a) and R(s, a) :

Q*(s,a) = R(s,a) +vy E P(s’|s,a) max Q*(s’,a’) a, = argmax Q* (s, a)
a a
S)

* Naive model-based (MB) RL:

0sh(s,@) = RO (s,a) + VZ P(s'|s, a) max Omp (s’ a) a; = argmax Qvig (51, @)
~

p } N J N The exploration-exploitation

X 2 ® 77 X T trade-off is even more

R (s,a) = ——= PIO(s's,a) =55 serious in MDPs than MABs.

Ts,a Ts,a _ o
~ 4 ~ ~ Any trick similar to
UCB?

TS(Q ={tr<t:a, =a,s; =S} TS(,ZS, ={t<tia,=a,5;,=S5,5,,1 =S}



Comments for the previous slide:

« Similar to the bandit setting, if we have access to the true transition probabilities
and reward functions, then the optimal policy would be to use Dynamic

Programming, solve the optimal Bellman equations, and use a greedy policy on the
resulting Q-values: a; = argmax Q*(s¢, a)
a

* |In the absence of the complete knowledge of the environment, a naive model-
based approach Is to approximate the transition probabillities and the reward
values, solve the optimal Bellman equations by using these estimates, and use a

greedy policy on the resulting Q-values: a; = arg max Qﬁ% (s¢,a)
a

* The nalve model-based approach is prone to be stuck in some parts of the
environment and never find the optimal policy. You have seen epsilon-greedy and
the softmax policy as to approaches to deal with this issue by adding randomness
to the action-selection. Here, we ask whether we can find a directed exploration
approach like UCB for MDPs. What is a good exploration bonus?
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* Dynamic programming with true P(s’|s,a) and R(s,a) :

0*(s,a) = R(s,a) + yz P(s’|s,a) max 0*(s’, a’)

* Nalve model-based (MB) RL:

0\ (s,a) = RO(s,a) + VZ PO(s's, a) maxQ p(s' @)

 Model-based interval estimation with exploration bonus (MBIE+EB In Strehl and
Littman 2008):

(t) (S a) — R(t)(s a) sz(t)(S ‘S a) maXQ (S,) a,)
(t) S
I

\
The naive estimate T

of average reward Bonus for exploration (different from UCB regarding log t)




« Comments for the previous slide:

 Model-based interval estimation with exploration bonus (MBIE+EB; proposed by
Strehl and Littman 2008 in the Journal of Computer and System Sciences) uses
the exact same procedure as the naive model-based approach except that it adds
an exploration bonus to the reward function.

* The exploration bonus is a decreasing function of how many times a specific action
IS taken In a specific state, so it encourages to take actions that have been taken
less frequently In the past.
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 Model-based interval estimation wit@oration bonus)(MBIE+EB in Strehl and Littman 2008):

01 (s,a) = RO(s,a)

-y z PWO(s'|s, a) max @ﬁ% (s’,a)
~

e Theorem 2 i1n Strehl and Littman 2008:
MBIE+EB is Probably Approximately Correct for MDPs (= it is PAC-MDP).

4 )
= |oosely speaking, its choices are good enough with high probability.
G J

« Alternative: Bayesian Exploration Bonus (BEB) by Kolter and Ng 2009

-
b It is not PAC-MDP Theorem 2. Exploration based on a bonus proportional to

: : —D
1+Ty%, ) butis near-Bayesian. | (TS) * is not PAC-MDP if p > 0.5.
' _ Y

Bonus =




« Comments for the previous slide:

 MBIE+EB Is proven to be PAC-MDP (see Strehl and Littman 2008): In short and
loosely speaking, this means that, with high probability, most of the actions taken
by MBIE+EB are close to the actions that would have been taken by the optimal

policy.

» Alternative exploration bonuses are possible, but they have different properties.

For example, an exploration bonus proportional to one over TS(’Z) IS hot PAC-MDP

but is "near Bayesian” (i.e., another notion of optimality; see Kolter and Ng in ICML
2009).
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[ ] Assuming we know the true P(s’|s,a) and R(s, a), the Bellman equation is

Q*(s,a) = R(s,a) +y Ly P(s'[s,a) max Q*(s’, @’); a; = argmax Q" (s, a)
a
[ 1If we do not know the true P(s’|s,a) and R(s, a), the Bellman equation can be replaced by

Alg/f])a(S; a) = RW(s,a) + Bonus(s,a) + )’z PO(s'[s, ) max @ﬁ])g(S'; a'); a,=arg max @ﬁ%(st, a)
=

L p
[] One of the choicesis  Bonus(s,a) = ——
()
V S,a
p b

[ ] A function decreases more slowly than

t
(D) 1475
S,a



stummary: Exploration Bonus for multi-step horizon

 Adding exploration bonus provably improves the performance of RL
algorithms.

 Hence, to optimally seek areward, best seek a ‘modified reward’ .

 There s, however, not a single (unique) approach to

» define an exploration bonus
 evaluate its performance.

 For MDP a possible exploration bonus:
b
14T

Bonus =

 These CS approaches assume: (I) stationary problem (i1) model-based
RL (update of Bellman equation in the background)



Teaching monitoring — monitoring of understanding

| | up to here, at least 60% of material was new to me.

[ ] 1 have the feeling that | have been able to follow
(at least) 80% of the lecture up to here.



« Comments for the previous slide:
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