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The role of exploration, novelty, and surprise in RL

Objectives for today:

- how to encourage exploration

- understand surprise

- understand difference of novelty and surprise

- use of surprise to modulate learning rate

- use of novelty to guide exploration



Previous slide.   

Background reading:

Novelty is not Surprise: Human exploratory and adaptive behavior in 

sequential decision-making

HA Xu*, A Modirshanechi*, MP Lehmann, W Gerstner, MH Herzog, PLOS 

Comput. Biol. E1009070, (2021)

Learning in Volatile Environments with the Bayes Factor Surprise

V Liakoni*, A Modirshanechi*, W Gerstner, J Brea

Neural Computation 33 (2), 269-340 (2021)

A taxonomy of surprise definitions

A Modirshanechi, J Brea, W Gerstner

Journal of Mathematical Psychology 110, 102712  (2022)

An analysis of model-based Interval Estimation for Markov Decision Processes

Strehl and Littman, 2008

https://www.sciencedirect.com/science/article/pii/S0022000008000767

https://scholar.google.ch/citations?view_op=view_citation&hl=en&user=ysDOYB8AAAAJ&citation_for_view=ysDOYB8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.ch/citations?view_op=view_citation&hl=en&user=ysDOYB8AAAAJ&citation_for_view=ysDOYB8AAAAJ:9yKSN-GCB0IC
https://scholar.google.ch/citations?view_op=view_citation&hl=en&user=ysDOYB8AAAAJ&citation_for_view=ysDOYB8AAAAJ:hqOjcs7Dif8C


Novelty and Surprise

Q1: Why does an agent need to explore? 

Q2: What is novelty?

Q3: What is surprise?

Q4: What is the difference between the two?

Q5: Why are they useful?

Q6: Why should we talk about novelty in this class? 



Previous slide. 

Today we will ask 6 questions:

Why is exploration important? 

What is novelty, What is surprise, What is the difference, Why are they useful.

And why should we talk about it in this class?  
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1. Exploration and intrinsic ‘rewards’



Previous slide. 

We start with recalling the problem of exploration-expoitation



• Single state. We have 𝐾 possible actions:

1 2 3 𝐾…

• With true average reward:

𝜇1 𝜇2 𝜇3 𝜇𝐾… Optimal policy: 𝒂𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊

𝝁𝒊

Which action to choose at time 𝑡?

• Naïve estimates of averages:

Ƹ𝜇1
𝑡

Ƹ𝜇2
𝑡

Ƹ𝜇3
𝑡

Ƹ𝜇𝐾
𝑡

…

Not optimal: 𝒂𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊

ෝ𝝁𝒊
𝒕

𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖

Ƹ𝜇𝑖
𝑡
=

σ
𝜏∈𝑇𝑖

𝑡 𝑟𝜏

𝑇𝑖
𝑡

Solutions based on random exploration:

- Epsilon-greedy

- Softmax

𝑇𝑖
𝑡
= 𝜏 ≤ 𝑡: 𝑎𝜏 = 𝑖

Review:  Multi-armed Bandits: MAB  (1-step horizon)

s
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Comments for the previous slide:

• If we knew the exact average reward 𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖 of each arm, then the optimal solution 

would trivially be to choose the arm with highest average reward: 𝑎𝑡 = argmax
𝑖

𝜇𝑖

• A naïve approach is to estimate the average reward by the empirical averages and greedily 

choose the action with maximum estimated average reward: 𝑎𝑡 = argmax
𝑖

Ƹ𝜇𝑖
𝑡

• The naïve greedy policy is prone to fail in finding the best action.

• You have seen epsilon-greedy and the softmax policy as two approaches for dealing with this 

problem by adding randomness to the action-selection. 

• Our focus will be on “directed exploration” by using exploration bonuses.



How to evaluate an exploratory policy?
• MAB with 4 possible actions  (Example):

Example: average rewards  in MAB (1-step horizon)

𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖

rewards are stochastic (binomial)

𝑃(𝑟𝑡 = 2𝜇𝑖 |𝑎 = 𝑖) = 0.5 = 𝑃(𝑟𝑡 = 0 |𝑎 = 𝑖)

1 10

Ƹ𝜇𝑖
𝑡
=

σ
𝜏∈𝑇𝑖

𝑡 𝑟𝜏

𝑇𝑖
𝑡

Ƹ𝜇𝑖
𝑡

after 40 trials

for each action

after 200 trials each

distribution of outcomes,

after 𝑇𝑖
𝑡

= 40 trials

for each action

1 2 3 4

s

𝑅𝐴 𝑇 = 𝐸𝐴 ෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑎𝑡

𝜇1 = 1

𝜇2 = 0.9

𝜇3 = 9.9

𝜇4 = 10.0
Idea: explore 

while tails of 

distributions overlap

“regret”
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• Comments for the previous slide:

• Example of MAB with 4 actions. Each action yields a reward with 50 percent probability.

• Two actions have low rewards (about 1); the two other have high rewards about 20.

• Imagine that at the beginning you played each action 40 times and evaluate the mean return.

• If you repeated the game many times, each time starting with playing each action 40 times, 

you would get a distribution (hand-drawn here).

• As long as the distributions overlap, we continue to play all actions. Hence, after t=160, we 

should continue to play actions 3 and 4, while actions 1 and 2 can be safely dropped as a 

possibility. 

• Note that the width of the distributions can be pre-calculated with a model of stochasticity



෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 + 𝐵𝑜𝑛𝑢𝑠(𝑠, 𝑎) + 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’ ;

Assuming we know the true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 , the Bellman equation is

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠’𝑃 𝑠’|𝑠, 𝑎 max
𝑎’

𝑄∗ 𝑠’, 𝑎’ ; 𝑎𝑡 = argmax
𝑎

𝑄∗ 𝑠𝑡 , 𝑎

If we do not know the true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 , the Bellman equation can be replaced by

𝑎𝑡 = argmax
𝑎

෠𝑄MB
𝑡

𝑠𝑡 , 𝑎

One of the choices is 𝐵𝑜𝑛𝑢𝑠 𝑠, 𝑎 =
𝛽

𝑇𝑠,𝑎
𝑡

Exploration Bonus (multi-step horizon) 

• Adding exploration bonus provably improves the performance of RL

algorithms.

• Hence, to optimally seek a reward, best seek a ‘modified reward’ .
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• Comments for the previous slide:

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 is the estimated transition probability

The theory itself is not treated in class. The main point of the 

slide to show that in CS and RL, the problem of exploration is

known to be important and has been addressed.

There are several ‘good’ choices to add an exploration bonus.

The exploration bonus is integrated into the standard Bellman 

equation. 



How to evaluate an exploratory policy?
Exploration:

Standard theory of exploration assumes:

- stationary environment   (but the world is not stationary!)

- many trials   (but does a biological agent has the time for many repetitions?)

- model-based RL with update of Bellman equation in background

(but is that plausible for biological agents?)

- adds an exploration bonus into the general Bellman equation for reward

(but why treat search for novelty as the ‘same kind of’ reward?)
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• Comments for the previous slide:

The assumptions of the theory do not fit with what we know about biological 

agents!



- 4 or 5  neuromodulators

- near-global action

- internally created signals

(reward – exp. reward)

(surprise)

n
o

ra
d

re
n

a
lin

e
Dopamine/reward/TD:

Schultz et al., 1997,

Schultz, 2002

Review: Neuromodulators

Image:

Fremaux and Gerstner, 

Frontiers (2016) 

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)

[r+ V(s’)-V(s)]       



Previous slide. Review

The  most famous neuromodulator is dopamine (DA) which is related to reward, 

as we will see.

But there are other neuromodulators such as noradrenaline (also called 

norepinephrine, NE) which is related to surprise.

Left: the mapping between neuromodulators and functions is not one-to-one. 

Indeed, dopamine also has a ‘surprise’ component.

Inversely, noradrenaline also has a reward component.

Right: most neuromodulators send axons to large areas of the brain, in particular 

to several cortical areas. The axons branch out in thousands of branches. 

Thus the information transmitted by a neuromodulator arrives nearly everywhere.

In this sense, it is a ‘global’ signal, available in nearly all brain areas.

Note that the TD error is an internally created signal. The TD can be positive at 

time t even if no explicit reward is given at time t.

Similarly, surprise is an internally generated signal indicating model mismatch.



- several neuromodulators: not just dopamine but also others

- each has near-global action

- internally created signals, could be used as ‘internal rewards’

- they are related, but different signals

- combinations of neuromodulators relay different functions

    (i) changes in environment → surprise signal

     (ii) exploration of environment → novelty signal  

     (iii) unexpected reward   →  success signal

Review: Neuromodulators (NM)

‘general emotional brain signals are related to neuromodulators’

No reason to combine them into a single Bellman equation!



Previous slide. 

Since there are different neuromodulator signals that code for different 

functionalities, there is no need to combine them into a SINGLE internal reward 

signal!  (In contrast to the CS/RL theory of exploration!)
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The role of exploration, novelty, and surprise in RL

1. Exploration  Bonus

2. Definitions of Novelty and Surprise (tabular environment)



Previous slide. 

Searching for something ‘novel’ could be a good heuristic exploration bonus.

We now turn to our intuitions of novelty and surprise.



Novelty is not Surprise
Surprise is against models (beliefs)

Enjoy the images!



Previous slide. 

The video contains a sequence of about 15 flashed images. 

Which ones are ‘novel’?

Which ones are ‘surprising’? 



Novelty and Surprise

Q4: What is the difference between the two?

First answer – novelty and surprise are not the same.

Second answer (more precise):

Surprise is ‘against beliefs’ or ‘against expectations’

whereas novelty is not.



Previous slide.  



Novelty and Surprise

Surprise is ‘against expectations’: an example

… and this is why jokes work



Previous slide.  



Novelty in a tabular environment: discrete states

Novelty n: 

1) count events of type s up to time t:

2) a higher count gives lower novelty.

3) the agent has spent a time t in the environment

4) the empirical observation frequency is 

events = states s  (e.g., one image). Total number is |s|

Definition: The ‘Novelty’ of a state s at time t is

𝑛𝑡 𝑠 = −log 𝑝𝑁 𝑠

𝑝𝑁 𝑠 =
𝐶𝑡 𝑠 + 1

𝑡 + |𝑠|

𝐶𝑡 𝑠



Previous slide.

Novelty can be defined empirically as the negative logarithm of the empirical 

frequency.

This definition gives

- At the beginning (t=0), all states have the same high novelty (related to the 

total number of known states.

- The novelty of state s goes down if it has been observed several times, since 

its count increases.

- If a state has not been observed for a long time, it will slowly become novel 

again as time increases – and during that time other states have been 

observed. 



Surprise in a tabular environment: discrete states and actions

Surprise  S: 

1) count events of type (s,a→s’) up to time t:

2) a higher count gives lower surprise.

3) the agent has spent a time t in the environment

4) the empirical observation frequency is 

events = transitions  (s,a→s’) given action a in state s. 

Definition: The ‘Surprise’ of a transition is       

𝑆𝐵𝐹
𝑡+1 𝑠′ =

𝑝𝑟𝑖𝑜𝑟

𝑝𝑠
𝑡 𝑠𝑡+1 =𝑠′|𝑠𝑡,𝑎𝑡

𝐶𝑡 𝑠, 𝑎 → 𝑠′ + 1

෩𝐶𝑡 𝑠, 𝑎 + |𝑠|

𝐶𝑡 𝑠, 𝑎 → 𝑠′

𝑝𝑡 𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡 =

Bayes

Factor 

Surprise



Previous slide.

Surprise is related to expectation – if you do not expect something, then you 

cannot be surprise. Hence surprise needs contexts and experience that enable an 

agent to build a belief. Expectations arise from the belief. 

While novelty is derived from observation counts of states, surprise is derived 

from observation counts of transitions.  

There are several definitions of surprise.

The specific surprise considered her is the Bayes Factor Surprise.



Q1: What is novelty?

Q2: What is surprise?

Definitions of Novelty and Surprise

Definition: The ‘Novelty’ of a state s is

𝑛𝑡 𝑠 = −log 𝑝𝑁 𝑠

Definition: The ‘Surprise’ of a transition is       

𝑆𝐵𝐹
𝑡+1 𝑠′ =

𝑝𝑟𝑖𝑜𝑟

𝑝𝑠
𝑡 𝑠𝑡+1 =𝑠

′| 𝑠𝑡,𝑎𝑡

There are 17 different definitions of surprise. 

This here is the Bayes-Factor surprise. 
Modirshanechi et al. 

(2022)



Previous slide. Summary.

Note that there are also other definitions of surprise.



Teaching monitoring – monitoring of understanding 

[ ] up to here, at least 60% of material was new to me.

[ ] I have the feeling that I have been able to follow

(at least) 80% of the lecture up to here. 



Previous slide. Summary.

We now turn to Question 4. Why is surprise (or novelty) useful?

We start with surprise. 
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1. Formal Exploration Bonus

2. Definitions of Novelty and Surprise (tabular environment)

3.  Why is  Surprise useful?



Previous slide. Summary.

We now turn to Question 4. Why is surprise (or novelty) useful?

We start with surprise. 



• Expectations arise from models of the world

• We always make models

• We know that the models are not perfect

• Surprise enables us to adapt the models

→ Hypothesis: 

Surprise boosts plasticity (3rd factor)/ increases the learning rate

Note: no reward!!!! 

3 9 7 3 9 7 3 9 7 3 9 7 3 9 4 3 9 7

Surprise against expectations from your current belief

When are we surprised? 



Previous slide. Review

Similar to the video with the fractals, the series of numbers has a surprising 

element. 

The world around us is incredibly complex. We try to understand it by making 

models. However, our brain is prewired (inference prior set by evolution) so that 

we know that our models are simplified and wrong.

At the moment when our expectations arising from our world model is wrong we 

get a surprise signal. The use of the surprise signal is to increase the learning 

rate so that we can rapidly re-adapt our model.



- 4 or 5  neuromodulators

- near-global action

- internally created signals

(reward – exp. reward)

(surprise)

n
o

ra
d

re
n

a
lin

e
Dopamine/reward/TD:

Schultz et al., 1997,

Schultz, 2002

Review: Neuromodulators

Image:

Fremaux and Gerstner, 

Frontiers (2016) 

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)

[r+ V(s’)-V(s)]       



Previous slide. Review

The  most famous neuromodulator is dopamine (DA) which is related to reward, 

as we will see.

But there are other neuromodulators such as noradrenaline (also called 

norepinephrine, NE) which is related to surprise.

Left: the mapping between neuromodulators and functions is not one-to-one. 

Indeed, dopamine also has a ‘surprise’ component.

Inversely, noradrenaline also has a reward component.

Right: most neuromodulators send axons to large areas of the brain, in particular 

to several cortical areas. The axons branch out in thousands of branches. 

Thus the information transmitted by a neuromodulator arrives nearly everywhere.

In this sense, it is a ‘global’ signal, available in nearly all brain areas.

Note that the TD error is an internally created signal. The TD can be positive at 

time t even if no explicit reward is given at time t.

Similarly, surprise is an internally generated signal indicating model mismatch.



Review: Formalism of  Three-factor rules with eligibility trace

𝑧𝑖𝑗 = 𝑓(𝜑𝑖) 𝑔(𝑥𝑗) 

𝑀 𝑆 Ԧ𝜑, Ԧ𝑥 𝑧𝑖𝑗

Stimulus
pre

post
ij

Modulator signal

𝑀(𝑆 Ԧ𝜑, Ԧ𝑥 )
𝑥𝑗 = activity of presynaptic neuron

𝜑𝑖 = activity/state of postsynaptic neuron

𝑤𝑖𝑗 = 

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑧𝑖𝑗 ← l 𝑧𝑖𝑗

Step 3: eligibility trace translated into weight change

𝑀 𝑆 :
- TD-error

- surprise



Previous slide. 

Three-factor rules are implementable with eligibility traces.

1. The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is 

similar to the Hebb-rule, but the change of the synapse is not yet implemented.

2. The eligibility trace decays over time

3. However, if a neuromodulatory signal M arrives before the eligibility trace has 

decayed to zero, an actual change of the weight is implemented.

The change is proportional to 

- the momentary value of the eligibility trace

- the value of the neuromodulator signal

The neuromodulator could signal the 

- TD-error

- or Surprise

Usefulness of Surprise? It modulates(similar to the TD error) the learning rate of 

RL! Surprising events increase the learning rate.
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1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise



Previous slide.

Our claim is that the Bayes-Factor surprise is ideal for detecting change points.



Surprise boosts plasticity in volatile environments

generative model =  nonstationary stochastic process

here:  - mean of Gaussian is fixed for many steps
- mean jumps at ‘change points’ : probability << 1
- variance is fixed

- task is to estimate momentary mean of Gaussian

Volatile environment:

abrupt changes with small probability

→ ‘change points’

→ you have to reset model after a change point



Previous slide.

The volatile environment has stationary segments, interrupted by unpredictable 

‘change points’ that occur at low probability.  

If you want to make predictions about the next stimulus (or here: its mean), then 

the best strategy is to reset your model completely if you have detected a change 

point.



Surprise boosts plasticity in volatile environments

Surprise, S
0

1

reset/

learning rate

Task: estimate momentary mean 

in volatile environment, best approach (Bayesian):

- reset your belief to prior, if observation does not make sense

- plasticity of system must increase if ‘surprising observation’ 



Previous slide.

The volatile environment has stationary segments, interrupted by unpredictable 

change points that occur at low probability. 

During the stationary segment your belief gets more precise, and your predictions 

(regarding the mean of the distribution) get therefore better. 

But the best strategy is to reset your model completely if you have detected a 

change point. So the challenge is to detect the change points.

The optimal way of doing this is the Bayes-Factor surprise.

Plasticity of the model must then increase when you detect a change point, so 

that you reset to the prior and  integrate new data points starting from the prior.

Plasticity (learning rate) of the model must then increase when you detect a 

change point, so that you reset to the prior and  integrate new data points starting 

from the prior.



Surprise boosts plasticity in volatile environments

Probability of observation y

under prior belief 𝜋(0)

Probability of observation y

under current belief 𝜋(𝑡)

→reset your belief to prior, if observation y does not make sense

Surprise, SBF
0

1



→’exact Bayesian inference’ 

in volatile environment modulates

update with factor 



Previous slide.

We claimed that plasticity (learning rate) of the model must  increase when you detect a 

change point, so that you reset to the prior and  integrate new data points starting from 

the prior.

This is formalized in the long equation in the middle.

Using a careful analysis of the statistical estimation in the presence of change points 

you find that:

If it unlikely (small ) that there was a change point between the previous data and the 

current data point (observation y^new), then you should use standard statistical updates 

of your estimates to INTEGRATE the new data into your current belief.

If it is likely (  close to 1) that there was a change point, then you should reset to your 

prior and integrate the new data point using statistical updates starting with the prior as 

your current belief.

Moreover, this factor  depends monotonically on the Bayes-Factor Surprise SBF



Surprise boosts plasticity in volatile environments

Probability of observation y

under prior belief 𝜋(0)

Probability of observation y

under current belief 𝜋(𝑡)

→reset your belief to prior, if observation y does not make sense

Exact update rule not implementable, but

Bayes-Factor Surprise plays crucial role in approximate methods:

- Particle Filter with N particles,

- Message-Passing with N messages,

- Published approximations

V. Liakoni et al., Neural Computation 2021



Previous slide.

The general theoretical framework cannot be integrated out over several time 

steps. Therefore approximations are necessary.

However, what is important is the gist of the argument:

A high surprise indicates that the learning rate should be increased.



What is novelty?

What is surprise?

Summary: Definitions of Novelty and Surprise

Definition: The ‘Novelty’ of a state s is

𝑛𝑡 𝑠 = −log 𝑝𝑁 𝑠

Definition: The ‘Surprise’ of a transition is       

𝑆𝐵𝐹
𝑡+1 𝑠′ =

𝑝𝑟𝑖𝑜𝑟

𝑝𝑠
𝑡 𝑠𝑡+1 =𝑠

′| 𝑠𝑡,𝑎𝑡

There are 17 different definitions of surprise. 

This here is the Bayes-Factor surprise. 
Modirshanechi et al. 

(2022)

𝑝𝑁 𝑠 =
𝐶𝑡 𝑠 + 1

𝑡 + |𝑠|

𝐶𝑡 𝑠, 𝑎 → 𝑠′ + 1

෩𝐶𝑡 𝑠, 𝑎 + |𝑠|
𝑝𝑡 𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡 =



Summary: Why is surprise useful? 

- Detect change points in environment statistics

- Adapt learning rate after change point. 

- Bayes-Factor Surprise is a good surprise measure for this



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL  

The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise

4. Why is Novelty useful?



Previous slide.

We are done with surprise and turn now to the second part of Question 4. 

Why is novelty useful?

We start with a detour in order to review well-known results from RL, in particular 

TD learning and eligibility traces.



Why is Novelty useful?

→ helps to explore 

Next lecture at 14h15



Previous slide.

We are done with surprise and turn now to the second part of Question 4. 

Why is novelty useful?

We start with a detour in order to review well-known results from RL, in particular 

TD learning and eligibility traces.



Review: TD-learning in the general sense 𝑠

𝑠′

a

Q(s,a)

a’

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾max𝑎′ 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾{σ𝑎′𝜋 𝑠′, 𝑎′ 𝑄 𝑠′, 𝑎′ } − 𝑄 𝑠, 𝑎 ]

SARSA

Expected SARSA

Q-learning



  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 



Review: Eligibility Traces,   SARSA(l)

Idea: 

- keep memory of previous state-action pairs

- memory decays over time

- update eligibility trace for all state-action pairs

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 + 1 if action a chosen in state s

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎l decay of all traces

- update all Q-values at all time steps t:

Q(s,a) =   [rt  +  Q(st+1,at+1) - Q(st,at)] e(s,a)

Note: l=0 gives standard SARSA

RPE = TD error t



Review: Model-based               versus                                 Model-free

- learns model of environment

‘transition matrix’

- knows ‘rules’ of game

- planning ahead is possible

- can update Bellman equation

in ‘background’ without action

- can simulate action sequences

(without taking actions)

- does not 

- does not

- cannot plan ahead

- cannot 

- cannot

- Eligibility traces and V-values         

keep memory of past

- completely online, causal,

forward in time. 
- is not



Reward-based learning     versus Novelty-based learning

rewards

Q-values

Bellman eq. 

𝑟𝑡

𝑄𝑅
(𝑡)

𝑠, 𝑎

novelty

Q-values

Bellman eq. 

𝑛𝑡

𝑄𝑁
(𝑡)

𝑠, 𝑎

estimation/update

Model-based Model-free

prioritized

sweeping

eligibility 

traces

estimation/update

Model-based Model-free

prioritized

sweeping

eligibility 

traces

𝑄𝑀𝐵,𝑅
(𝑡)

𝑠, 𝑎 𝑄𝑀𝐹,𝑅
(𝑡)

𝑠, 𝑎 𝑄𝑀𝐵,𝑁
(𝑡)

𝑠, 𝑎 𝑄𝑀𝐹,𝑁
(𝑡)

𝑠, 𝑎



Initial exploration of an environment

Environment with 10 states (+ goal)

4 actions per state

Actions are deterministic.

Fixed random assignment. 

Start in state 1:

With random policy, 

how many actions 

on average before 

finding goal?

[ ] 100-500

[ ] 1000 – 5000

[ ] more than 10000



Previous slide.

With random exploration, how long would it take on average to find the goal?

There are only 10 states with four actions each, plus the goal.



Improve exploration of an environment

Focus on 1st episode, before any reward. 

Improve exploration! Solutions?

1.  Optimistic initialization? 

∆𝑄𝑅 𝑠, 𝑎 = 𝜂[𝑟𝑡 + 𝛾max𝑎′ 𝑄𝑅 𝑠′, 𝑎′ − 𝑄𝑅 𝑠, 𝑎 ]

Initialize 𝑄𝑅 𝑠, 𝑎 = 10 for all s,a

→ Possible but comparatively slow.

→Does not generalize well for episode 2. 



Previous slide.

Optimistic initialization is not sufficient to drive exploration.



Novelty encourages exploration of an environment

Focus on 1st episode, before any reward. 

Improve exploration! Solutions?

2. Novelty at time t is 𝑛𝑡

Novelty Prediction Error (NPE)

∆𝑄𝑁 𝑠, 𝑎 = 𝜂[𝑛𝑡 + 𝛾max𝑎′ 𝑄𝑁 𝑠′, 𝑎′ − 𝑄𝑁 𝑠, 𝑎 ]

→ Separate Q-value for novelty! 



Previous slide.

We now use the novelty-Q-values.

Note that every state has some level of novelty. So the novelty prediction error 

NPE gives non-zero values for most transitions.

Does this lead to good novelty values? To answer this let us look at the next slide.

RPE: Reward Prediction Error

NPE: Novelty Prediction Error



Novelty encourages exploration of an environment

Focus on 1st episode, before any reward; with some policy 

first encounter of  state 7
novelty of goal

novelty of state 7

→ use novelty values 𝑄𝑁
(𝑡)

𝑠, 𝑎 for action  policy! 



Previous slide.

The novelty of state 7 or of the goal state increases over time during 

episode 1.

The plot on the right shows novelty Q-values at the moment when state 

7 was found for the first time. There is a nice gradient of increasing 

novelty towards the goal.

This suggests that novelty Q-values are useful to guide exploration



Wulfram Gerstner
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The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise

4. Why is Novelty useful?

5. Hybrid Model with Novelty, Surprise, and Reward



Previous slide.

Now we study a specific model that combines many aspects.

Reminder:

RPE: Reward Prediction Error = TD error of reward-consistency

NPE: Novelty Prediction Error  = TD error of novelty consistency



→ use separate novelty values 𝑄𝑁
(𝑡)

𝑠, 𝑎 for action  policy!

→ exploration 

Combine Novelty and Reward: ideas

→ use separate reward values 𝑄𝑅
(𝑡)

𝑠, 𝑎 for action  policy! 

→ exploitation

→Combine the two and switch relative importance 

→ Switch from exploration to exploitation (and back)

Note: do not simply add exploration bonus!
෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 +
𝛽

𝑇𝑠,𝑎
𝑡

+ 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’



Previous slide.

Now we study a specific model that combines many aspects.

Reminder:

RPE: Reward Prediction Error = TD error of reward-consistency

NPE: Novelty Prediction Error  = TD error of novelty consistency



Hybrid model with separate paths for Novelty and Reward

(learning rate controlled by Surprise)

RPE =  [𝑟𝑡 + 𝛾max𝑎′ 𝑄𝑅 𝑠′, 𝑎′ − 𝑄𝑅 𝑠, 𝑎 ]

NPE =  [𝑛𝑡 + 𝛾max𝑎′ 𝑄𝑁 𝑠′, 𝑎′ − 𝑄𝑁 𝑠, 𝑎 ]

4 separate

sets of

Q-values!



Previous slide.

In total we have in this Hybrid model  4 sets of Q-values:

Reward-driven Q-values, in the versions model-free and model based.

Novelty-driven Q-values, in the versions model-free and model based.

All 4 Q-values are then combined in a softmax fashion to choose the best action.

The relative weighting factors can be changed. 

Before the first episode, it might be good to give more importance to novelty, 

and after the first episode more importance to rewards.



Hybrid model with separate paths for Novelty and Reward

(learning rate controlled by Surprise)

World model: estimated transition matrix ෠𝑃 𝑡 𝑠’|𝑠, 𝑎
→ used in model-based Q-learning for background updates

→ used to evaluate surprise (Bayes Factor Surprise)

→ surprise influences learning rate



Previous slide.

In total we have in this Hybrid model  4 sets of Q-values:

Note that the model-based version need a ‘world model’. 

- The world model can be used for background updates.

- The world model contains estimated transition probabilities

- The world model can then also used to evaluate ‘surprise’

- We use the Bayes Factor surprise

- Surprise will influence the learning rates of ALL four RL algorithms



Wulfram Gerstner
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The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise

4. Why is Novelty useful?

5. Hybrid Model with Novelty, Surprise, and Reward

6. Two Experiments (Markov Decision Problem for humans!)



Previous slide.

RL algorithms are inspired by human and animal behavior.

Thus, sometimes it is a good idea, how humans would perform in a given 

environment.

Markov Decision Processes are ideal testbeds for tabular RL algorithms.

So, let us test humans in such an environment!



Environment: Markov Decision Process

Finding 1)

Participants need about 150 actions in episode 1

Finding 2)

In episode 2, participants go straight to goal        



Previous slide.

Human participants are put into a Markov Decision Process.

They have four action buttons to navigate from one image to the next.

The have been told before the experiment that there are 10 states and one goal 

states, each identified by an image. The 11 images (including goal) have been 

shown once.

Until image onset, participants have to wait for a time of about 1s until four grey 

disks were present – these are the action buttons.

The goal image in this example is the thumb-up image.

Right: Structure of the environment for the first 5 episodes (block 1).

Finding1) humans are MUCH faster than the random exploration strategy to find 

the goal for the first time.

Finding 2) humans are extremely good in episodes 2-5 to return to the goal. The 

starting condition is not always state 1, but can also be a different state (varies 

across episodes, but the same starting state for all participants).



Volatile Environment: Switch after episode 5

Finding 3)

In episodes 5 and 6, participants rapidly relearn! 

Questions: 

- Is Surprise necessary to explain relearning?

- Are humans model-based or model-free?

- Is novelty a good explanation of results?



Previous slide.

After episode 5, states 3 and 7 have been swapped. Thus the environment is not 

stationary (volatile environment).

Humans rapidly readapt.

Would algorithms also re-adapt? 



Review: Hybrid model with separate paths

Surprise, Novelty, Reward (SurNoR)

RPE =  [𝑟𝑡 + 𝛾max𝑎′ 𝑄𝑅 𝑠′, 𝑎′ − 𝑄𝑅 𝑠, 𝑎 ]

NPE =  [𝑛𝑡 + 𝛾max𝑎′ 𝑄𝑁 𝑠′, 𝑎′ − 𝑄𝑁 𝑠, 𝑎 ]

4 separate

sets of

Q-values!



Previous slide.

Note that in the formal theory of exploration bonus, we simply added the bonus in 

the Bellman equation.

However, here we claim that it is useful to develop two separate Bellman 

equations, one for novelty and one for reward. Each one has separate Q-values.

Each one of these, can be implemented as model-free or model-based.



Comparison of Models: Surprise, Novelty, Reward

- Turn off novelty

- Turn off surprise

- Turn off model-based →MF

- Turn off model-free  →MB

- OI = Optimistic Initialization MB MF

Finding 4)

Rapid relearning needs surprise



Previous slide.

The best model is the combination of Surprise, Novelty and Reward (SuRNoR).

The second best model is model-free (MF) RL with surprise (S), novelty (N), and 

reward.

Turning off surprise lowers the performance (Hybrid model and surprise).

Model-based compares less well with human data than model-free. The

combination of model-based and model-free (Hybrid model/SuRNoR) explains the

data best.



Relative importance of model-based versus model-free

Finding 5)

Model-free dominates

Human behavior! 

Surprise

surprise-modulated learning rate



Previous slide.

One can separately analyze the relative importance of the model-free and the 

model-based pathway to the hybrid policy in the SuRNoR model.

One finds that model-based never dominates, so that we conclude that human 

participants are best described by model-free algorithms with surprise. 



Surprise is used modulate learning in RL

Finding 6)

Surprise is against expectations.

Hence surprise needs a world model.

However, world model is 

- Not used to do planning!

- Only used to extract surprise!

World-model not used for planning! 



Previous slide.

Surprise needs a world model, but we said that the model-free algorithm better 

explains the behavior.

The interpretation is that human participants develop a model of the world, but 

they only use it to detect surprise (change points) which allows them to re-adapt 

the model.

But they do not use it to plan ahead or do updates of the Bellman equation in the 

background.



Surprise, World models, and Planning

Finding 6)

World model is available to humans

- But not used to do planning!

- Only used to extract surprise!

For humans: 

- Planning is hard (not intuitive/natural)

- Exception: Planning in 2-dim or 3-dim environments

- Planning needs ‘paper and pencil’: “let’s work this out”

Humans are not ‘optimal’. Humans use heuristics. 

Heuristics is mostly good for natural tasks.

Markov Decision Problems are ‘not natural’



Previous slide.

Planning is simple for humans in 2-dim or 3-dim environments.

But not for Markov Decision Problems.

Abstract problems require (for most humans) a slow process of math-like solution 

process: whenever you feel, it would be easier to work something out  with paper 

or pencil, you try to use a ‘world model’ that is non-intuitive for humans.



Reward-based learning versus Surprise-based learning

Reward-Prediction Error  → Surprise 

defined as                       → defined as 

TD error                                       Bayes Factor Surprise

stimulated by

chocolate, money,            →

praise, …

stimulated by observations

not consistent with momentary

model of environment

modulates 

learning rate                     →
modulates 

learning rate



Previous slide.

Summary: Comparison of Reward Prediction Error and Surprise.



Second experiment:

Detect Brain Signals during 

Reinforcement Learning with Surprise Trials

V. Liakoni et al. (2022), Brain signals of 

a Surprise-Actor-Critic model.

NeuroImage 246 (2022) 118780

fMRI machine

(standard image from WEB)



Previous slide.

We now turn the the second experiment. It is similar in spirit to the first one, but 

simpler and can be used in a brain-imaging device for function Magnetic 

Resonance Imaging (fMRI).

In the fMRI  activated brain areas are visible by increased oxygen indicating 

increased blood circulation (called BOLD signal). 

Normally, the BOLD signal is compared across two conditions A and B and the 

difference in the BOLD signal is plotted projected onto a cut through the brain.



Behavioral Task used to detect Brain Signals

V. Liakoni et al. (2022), Brain signals of 

a Surprise-Actor-Critic model.

NeuroImage 246 (2022) 118780



Previous slide.  

The task is related to the one on the previous slides, but simplified to make it

usable in fMRI devices. The aim is to record brain signals correlated with an RL 

model.

The task consists of 7 states and one goal state. In each state two actions are 

possible. One of these (green) brings the participant closer to the goal.

Importantly, several states can be classified as ‘two steps from goal’ and others 

as ‘three steps from goal’.

This is important because if after N trials, the states in the same category (e.g.,

two steps from goal’ have been visited an equal number of times), then they are 

expected to have the same V-values.

Bottom: Occasionally an action that would normally lead closer to the goal leads 

to a completely different state (surprise trials). Note that the both  state S3 and S5 

have the same distance from goal (one step from goal), and therefore the same 

V-values. Hence a potential surprise signal is not influence by an additional 

difference in V-values.



Surprise Actor-Critic and other RL algoritms

Surprise Actor-Critic 

V. Liakoni et al. (2022),

NeuroImage 246 (2022) 118780



Previous slide.  

LEFT:

One specific algorithm is the Surprise-modulated Actor-Critic algorithm (top). The world 

model (right box) is only used in order to modulate the learning rate of the actor-critic, 

but not for planning. The actor-critic is model-free with eligibility traces.

Bottom: RL algorithms come in different flavors:

1) Model based (right) versus model-free (left) or hybrid therefore (orange, bottom)

2) TD-type algorithm versus policy gradient algorithm (actor, right with-in left box)

or actor-critic that combines TD (value estimation) with policy gradient (actor).

The Surprise Actor-Critic algorithm is one specific combination of these ingredients, but 

many other algorithms can be formulated in this framework.

RIGHT: Performance in terms of negative log-evidence of many algorithms in explaining 

the behavior data of human participants (lowest is best). The 7 best ones amongst 

these are indistinguishable in terms of log-evidence and also indistinguishable in  terms 

of ‘protected exceedance probability’.



Model Performance on explaining brain activity

Surprise Actor-Critic V. Liakoni et al. (2022),

NeuroImage 246 (2022) 118780



Previous slide. 

Left: Message of Fig. 5: Brain data is best explained by the Surprise Actor-Critic (model-

free) and equally well by the  hybrid actor-critic. For Fig. 6 we use the model-free 

Surprise Actor-Critic since it is simpler.

Right: Message of Fig. 6: Precise brain areas can be identified that have activity 

significantly correlated with the State-Prediction Error (SPE), the Reward-Prediction 

Error (RPE), or the Bayes-Factor Surprise (S_BF). The areas identified for RPE in this 

specific experiment are similar to those identified in many other studies. The state 

prediction error is the update signal for the transition matrix ෠𝑃 𝑡 𝑠’|𝑠, 𝑎 .



brain

behavior
algorithms

Current Research in Reinforcement Learning

and in Brain Sciences:  

- Exploration

- Novelty

- Surprise

→ not exploration bonus, but separate modules

→ Novelty supports exploration

→ Surprise detects changes/adapts learning rate



Previous slide.  Review from previous lectures. 

RL has two roots: optimization for Markov Decision Problems and Brain 

sciences/psychology

The interaction has not stopped. Modern RL still takes up influences from Brain 

Sciences. Examples are the role of novelty, surprise, and their roles for 

exploration and in volatile environments.

At the same time RL has strongly influence the brain sciences!



The END



Previous slide. 
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The role of exploration, novelty, and surprise in RL

Appendix: More on Formal Exploration Bonus

(Thanks to Dr. Alireza Modirshanechi)



Previous slide. 

We start with some results from the formal  theory of exploration.

a) For multi-armed bandits (1-step horizon)

b) For full Markov Decision Problem (multi-step horizon)



• Single state. We have 𝐾 possible actions:

1 2 3 𝐾…

• With true average reward:

𝜇1 𝜇2 𝜇3 𝜇𝐾… Optimal policy: 𝒂𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊

𝝁𝒊

Which action to choose at time 𝑡?

• Naïve estimates of averages:

Ƹ𝜇1
𝑡

Ƹ𝜇2
𝑡

Ƹ𝜇3
𝑡

Ƹ𝜇𝐾
𝑡

…

Not optimal: 𝒂𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊

ෝ𝝁𝒊
𝒕

𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖

Ƹ𝜇𝑖
𝑡
=

σ
𝜏∈𝑇𝑖

𝑡 𝑟𝜏

𝑇𝑖
𝑡

Solutions based on random exploration:

- Epsilon-greedy

- Softmax

𝑇𝑖
𝑡
= 𝜏 ≤ 𝑡: 𝑎𝜏 = 𝑖

Review:  Multi-armed Bandits: MAB  (1-step horizon)

s
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Comments for the previous slide:

• If we knew the exact average reward 𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖 of each arm, then the optimal solution 

would trivially be to choose the arm with highest average reward: 𝑎𝑡 = argmax
𝑖

𝜇𝑖

• A naïve approach is to estimate the average reward by the empirical averages and greedily 

choose the action with maximum estimated average reward: 𝑎𝑡 = argmax
𝑖

Ƹ𝜇𝑖
𝑡

• The naïve greedy policy is prone to fail in finding the best action.

• You have seen epsilon-greedy and the softmax policy as two approaches for dealing with this 

problem by adding randomness to the action-selection. 

• Our focus will be on “directed exploration” by using exploration bonuses.



How to evaluate an exploratory policy?
• MAB with 𝐾 possible actions:

• “Regret” of algorithm 𝑨
(e. g. , 𝜖-greedy):

Highest reward rate: 𝜇∗ = max
𝑖

𝜇𝑖𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖

𝑅𝐴 𝑇 = 𝐸𝐴 ෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑎𝑡

with best 

action you

can choose

with  your 

actual choices

• Consistent algorithms:

lim𝑇→∞
𝑅𝐴 𝑇

𝑇
= 0 ⟹ lim𝑇→∞

𝐸𝐴 σ𝑡=1
𝑇 𝜇𝑎𝑡
𝑇

= 𝜇∗

• Theorem 1 of Lai and Robbins 1985:

Under specific conditions, if algorithm 𝐴 is consistent, then, 

loosely speaking, 𝑅𝐴 𝑇 is at least proportional to log 𝑇.

a loose notion of optimality

Regret  in Multi-armed Bandits (1-step horizon)

1 2 3 𝐾…

s

Idea: you need to play other actions, even

if that means that  𝑅𝐴 𝑇 increases 
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Comments for the previous slide:

• Before discussing how to deal with exploration-exploitation dilemma, we discuss a common 

method for evaluating different algorithms in multi-armed bandits.

• A key notion to evaluate an algorithm 𝐴 is regret 𝑅𝐴 𝑇 measuring the expected difference 

between the choices of the algorithm and the best possible actions, summed over the first 𝑇
steps.

• An algorithm is called consistent, if its average regret 
𝑅𝐴 𝑇

𝑇
vanishes over time.

• It is proven (under certain conditions; see Lai and Robbins 1985 in Advances in Applied 

Mathematics) that the regret 𝑅𝐴 𝑇 of a consistent algorithm scales at least logarithmically 

with time 𝑇. 

• At the same time, consistency requires that the regret 𝑅𝐴 𝑇 increase slower than T. The 

statement therefore is logT is the best you can do.

• This framework introduces a loose notion of optimality: An optimal algorithm is a consistent 

algorithm whose regret scales logarithmically with time 𝑇. 



How to evaluate an exploratory policy?
• MAB with 4 possible actions  (Example):

𝜇1 = 1

Example: average rewards  in MAB (1-step horizon)

𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖

𝜇2 = 0.9

𝜇3 = 9.9

𝜇4 = 10.0

rewards are stochastic (binomial)

𝑃(𝑟𝑡 = 2𝜇𝑖 |𝑎 = 𝑖) = 0.5 = 𝑃(𝑟𝑡 = 0 |𝑎 = 𝑖)

1 10

Ƹ𝜇𝑖
𝑡
=

σ
𝜏∈𝑇𝑖

𝑡 𝑟𝜏

𝑇𝑖
𝑡

Ƹ𝜇𝑖
𝑡

after 40 trials

for each action

1 2 3 4

s

What is the probability that

Ƹ𝜇4
160

=2?

[ ] (
𝑁
𝑘
)2

−40

[ ] between 10
−7

and 10
−8



116

• Comments for the previous slide:

• We assume that each action is played 40 times (t=160 total time).

• How likely is it in the above example that the ‘best’ action with mean reward 10 would have 

after 40 trials a value of 2?



How to evaluate an exploratory policy?
• MAB with 4 possible actions  (Example):

Example: average rewards  in MAB (1-step horizon)

𝜇𝑖 = 𝐸 𝑟|𝑎 = 𝑖

rewards are stochastic (binomial)

𝑃(𝑟𝑡 = 2𝜇𝑖 |𝑎 = 𝑖) = 0.5 = 𝑃(𝑟𝑡 = 0 |𝑎 = 𝑖)

1 10

Ƹ𝜇𝑖
𝑡
=

σ
𝜏∈𝑇𝑖

𝑡 𝑟𝜏

𝑇𝑖
𝑡

Ƹ𝜇𝑖
𝑡

after 40 trials

for each action

after 200 trials each

distribution of outcomes,

after 𝑇𝑖
𝑡

= 40 trials

for each action

1 2 3 4

s

𝑅𝐴 𝑇 = 𝐸𝐴 ෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑎𝑡

𝜇1 = 1

𝜇2 = 0.9

𝜇3 = 9.9

𝜇4 = 10.0
Idea: play other 

actions if tails of 

distribution overlap
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• Comments for the previous slide:

• Example of MAB with 4 actions. Each action yields a reward with 50 percent probability.

• Two actions have low rewards (about 1); the two other have high rewards about 20.

• Imagine that at the beginning you played each action 40 times and evaluate the mean return.

• If you repeated the game many times, each time starting with playing each action 40 times, 

you would get a distribution (hand-drawn here).

• As long as the distributions overlap, we continue to play all actions. Hence, after t=160, we 

should continue to play actions 3 and 4, while actions 1 and 2 can be safely dropped as a 

possibility.



An example of optimal algorithms• MAB with 𝐾 possible actions:

• Upper Confidence Bound (UCB1 in Auer et al. 2002):

Ƹ𝜇𝑖
𝑡
=

σ
𝜏∈𝑇𝑖

𝑡 𝑟𝜏

𝑇𝑖
𝑡

𝑈1
𝑡

𝑈2
𝑡

𝑈3
𝑡

𝑈𝐾
𝑡

…

𝑎𝑡 = argmax
𝑖

𝑈𝑖
𝑡

𝑈𝑖
𝑡
= Ƹ𝜇𝑖

𝑡
+

2 log 𝑡

𝑇𝑖
𝑡

• Reminder: greedy algorithm
Ƹ𝜇1
𝑡

Ƹ𝜇2
𝑡

Ƹ𝜇3
𝑡

Ƹ𝜇𝐾
𝑡

…

𝑎𝑡 = argmax
𝑖

Ƹ𝜇𝑖
𝑡

The naïve estimate of 

average reward

Bonus for exploration

(compare:  Monte Carlo Tree Search)

Theorem 1 of Auer et al. 2002: 

𝑅UCB1 𝑇 ∝ log 𝑇 + const.

Exploration Bonus for  MAB (1-step horizon)

Play greedy, but with a modified ‘value’ Uk
→ Add exploration bonus to empirical average of reward

1 2 3 𝐾

s
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• Comments for the previous slide:

• A smart optimal algorithm is Upper Confidence Bound (UCB; proposed by Auer et al. 2002 in 

Machine Learning) that computes a confidence bound index 𝑈𝑖
𝑡

for each action and 

chooses the one with highest index.

• The index is equal to the naïve estimate average reward Ƹ𝜇𝑖
𝑡

plus an exploration bonus that 

is (i) a decreasing function of how many times an arm has been chosen 𝑇𝑖
𝑡

but (ii) an 

increasing function of how many actions have been taken in total (i.e. 𝑡).

• The regret for the UCB algorithm scales logarithmically with 𝑇, hence it is an “optimal” 

algorithm. The constants of the regret can be fine-tuned by some variations of the algorithm 

(see Auer et al. 2002).



✓

✗

✗

• A consistent learning algorithm eventually achieves a zero average regret

in Multi-Armed Bandits (MAB).
?

• A good exploration bonus is
𝛽

𝑇𝑖
𝑡 .?

• An optimal algorithm in MABs achieves a constant total regret.?

Quiz: exploration Bonus (1-step horizon) 

• A good exploration bonus is
l𝑜𝑔(𝑡)

𝑇𝑖
𝑡

.✓?



Teaching monitoring – monitoring of understanding 

[ ] up to here, at least 60% of material was new to me.

[ ] I have the feeling that I have been able to follow

(at least) 80% of the lecture up to here. 



Beyond MAB

• MAB with 𝐾 possible actions:

• 𝑃: transition probabilities, e.g. 𝑃 𝑠’|𝑠, 𝑎

• 𝑅: expected reward, e.g. 𝑅 𝑠, 𝑎

• Markov Decision Processes (MDP):

𝑎𝑡

𝑠𝑡+1𝑟𝑡𝑠𝑡𝑟𝑡−1

𝑎𝑡+1

𝑠𝑡+2𝑟𝑡+1… …

Exploration Bonus for  multi-step horizon 

1 2 3 𝐾

s
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• Comments for the previous slide:

• We now want to extend from 1-step horizon (MAB) to multi-step horizon. The 

Multistep horizon leads to the Markov Decision Problem (MDP).



• Dynamic programming with true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 :

Exploration bonus in MDPs

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾෍

𝑠’

𝑃 𝑠’|𝑠, 𝑎 max
𝑎’

𝑄∗ 𝑠’, 𝑎’

෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 + 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’

• Naïve model-based (MB) RL:

𝑎𝑡 = argmax
𝑎

𝑄∗ 𝑠𝑡 , 𝑎

෠𝑅 𝑡 𝑠, 𝑎 =

σ
𝜏∈𝑇𝑠,𝑎

𝑡 𝑟𝜏

𝑇𝑠,𝑎
𝑡

𝑇𝑠,𝑎
𝑡
= 𝜏 ≤ 𝑡: 𝑎𝜏 = 𝑎, 𝑠𝜏 = 𝑠

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 =
𝑇
𝑠,𝑎,𝑠′
𝑡

𝑇𝑠,𝑎
𝑡

𝑎𝑡 = argmax
𝑎

෠𝑄MB
𝑡

𝑠𝑡 , 𝑎

𝑇
𝑠,𝑎,𝑠′
𝑡

= 𝜏 ≤ 𝑡: 𝑎𝜏 = 𝑎, 𝑠𝜏 = 𝑠, 𝑠𝜏+1 = 𝑠′

Any trick similar to

UCB?

The exploration-exploitation 

trade-off is even more 

serious in MDPs than MABs.

Exploration Bonus for  multi-step horizon 

Bellman equation (optimal action choice)
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Comments for the previous slide:

• Similar to the bandit setting, if we have access to the true transition probabilities 

and reward functions, then the optimal policy would be to use Dynamic 

Programming, solve the optimal Bellman equations, and use a greedy policy on the 

resulting Q-values: 𝑎𝑡 = argmax
𝑎

𝑄∗ 𝑠𝑡 , 𝑎

• In the absence of the complete knowledge of the environment, a naïve model-

based approach is to approximate the transition probabilities and the reward 

values, solve the optimal Bellman equations by using these estimates, and use a 

greedy policy on the resulting Q-values: 𝑎𝑡 = argmax
𝑎

෠𝑄MB
𝑡

𝑠𝑡 , 𝑎

• The naïve model-based approach is prone to be stuck in some parts of the 

environment and never find the optimal policy. You have seen epsilon-greedy and 

the softmax policy as to approaches to deal with this issue by adding randomness 

to the action-selection. Here, we ask whether we can find a directed exploration 

approach like UCB for MDPs. What is a good exploration bonus?



MBIE+EB (Strehl and Littman 2008)

• Model-based interval estimation with exploration bonus (MBIE+EB in Strehl and

Littman 2008):

• Dynamic programming with true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 :

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾෍

𝑠’

𝑃 𝑠’|𝑠, 𝑎 max
𝑎’

𝑄∗ 𝑠’, 𝑎’

෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 + 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’

• Naïve model-based (MB) RL:

෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 +
𝛽

𝑇𝑠,𝑎
𝑡

+ 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’

The naïve estimate 

of average reward Bonus for exploration (different from UCB regarding log 𝑡)

Exploration Bonus for  multi-step horizon 
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• Comments for the previous slide:

• Model-based interval estimation with exploration bonus (MBIE+EB; proposed by 

Strehl and Littman 2008 in the Journal of Computer and System Sciences) uses 

the exact same procedure as the naïve model-based approach except that it adds 

an exploration bonus to the reward function.

• The exploration bonus is a decreasing function of how many times a specific action 

is taken in a specific state, so it encourages to take actions that have been taken 

less frequently in the past.



Adding the exploration bonus is “good”

• Model-based interval estimation with exploration bonus (MBIE+EB in Strehl and Littman 2008):

෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 +
𝛽

𝑇𝑠,𝑎
𝑡

+ 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’

• Theorem 2 in Strehl and Littman 2008:

MBIE+EB is Probably Approximately Correct for MDPs (= it is PAC-MDP).

= loosely speaking, its choices are good enough with high probability.

• Alternative: Bayesian Exploration Bonus (BEB) by Kolter and Ng 2009

Bonus = 
𝛽

1+𝑇𝑠,𝑎
𝑡

It is not PAC-MDP

but is near-Bayesian.

Theorem 2. Exploration based on a bonus proportional to

𝑇𝑠,𝑎
𝑡

−𝑝
is not PAC-MDP if 𝑝 > 0.5.

Exploration Bonus for  multi-step horizon 
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• Comments for the previous slide:

• MBIE+EB is proven to be PAC-MDP (see Strehl and Littman 2008): In short and 

loosely speaking, this means that, with high probability, most of the actions taken

by MBIE+EB are close to the actions that would have been taken by the optimal 

policy.

• Alternative exploration bonuses are possible, but they have different properties. 

For example, an exploration bonus proportional to one over 𝑇𝑠,𝑎
𝑡

is not PAC-MDP 

but is “near Bayesian” (i.e., another notion of optimality; see Kolter and Ng in ICML 

2009).



෠𝑄MB
𝑡

𝑠, 𝑎 = ෠𝑅 𝑡 𝑠, 𝑎 + 𝐵𝑜𝑛𝑢𝑠(𝑠, 𝑎) + 𝛾෍

𝑠’

෠𝑃 𝑡 𝑠’|𝑠, 𝑎 max
𝑎’

෠𝑄MB
𝑡

𝑠’, 𝑎’ ;

[ ] Assuming we know the true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 , the Bellman equation is

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 σ𝑠’𝑃 𝑠’|𝑠, 𝑎 max
𝑎’

𝑄∗ 𝑠’, 𝑎’ ; 𝑎𝑡 = argmax
𝑎

𝑄∗ 𝑠𝑡 , 𝑎

[ ] If we do not know the true 𝑃 𝑠’|𝑠, 𝑎 and 𝑅 𝑠, 𝑎 , the Bellman equation can be replaced by

𝑎𝑡 = argmax
𝑎

෠𝑄MB
𝑡

𝑠𝑡 , 𝑎

[ ] One of the choices is 𝐵𝑜𝑛𝑢𝑠 𝑠, 𝑎 =
𝛽

𝑇𝑠,𝑎
𝑡

[ ] A function
𝛽

𝑇𝑠,𝑎
𝑡

decreases more slowly than
𝛽

1+𝑇𝑠,𝑎
𝑡

Quiz: exploration Bonus (multi-step horizon) 



Summary
• Adding exploration bonus provably improves the performance of RL

algorithms.

• There is, however, not a single (unique) approach to

• define an exploration bonus

• evaluate its performance.

• Hence, to optimally seek a reward, best seek a ‘modified reward’ .

Summary: Exploration Bonus for  multi-step horizon 

• For MDP a possible exploration bonus:

Bonus = 
𝛽

1+𝑇𝑠,𝑎
𝑡

• These CS approaches assume: (i) stationary problem (ii) model-based

RL (update of Bellman equation in the background)



Teaching monitoring – monitoring of understanding 

[ ] up to here, at least 60% of material was new to me.

[ ] I have the feeling that I have been able to follow

(at least) 80% of the lecture up to here. 



• Comments for the previous slide:
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