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Reinforcement Learning and the Brain:

Three-factor learning rules and  ‘brain-style’ computing

Objectives for today:

- three-factor learning rules can be implemented by the brain

- three-factor rules are consistent with RL 

- eligibility traces link correlations with delayed reward

- the dopamine signal has signature of the TD error

- local learning rules: 2-factor and three-factor



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:
Chapter: 15

(1) Fremaux, Sprekeler, Gerstner (2013) Reinforcement learning 

using a continuous-time actor-critic framework with spiking neurons

PLOS Computational Biol. doi:10.1371/journal.pcbi.1003024
(2) Gerstner et al. (2018) Eligibility traces and plasticiy on behavioral time scales: 

experimental support for neoHebbian three-factor learning rules, Frontiers in neural circuits 
https://doi.org/10.3389/fncir.2018.00053

(3) Wolfram Schultz et al., (1997) A neural substrate of prediction and reward, SCIENCE,

https://www.science.org/doi/full/10.1126/science.275.5306.1593

https://doi.org/10.3389/fncir.2018.00053
https://www.science.org/doi/full/10.1126/science.275.5306.1593


Reinforcement Learning (RL)

→ Learning by reward

Field has two roots:

→ Optimization/Markov

Decision Process (MDP)

→ Biology

Review: Biological Motivation of RL

Questions for today: 

- What elements of RL are ‘bio-plausible’?

- Can the brain implement RL?



Previous slide. 

animals and humans are able to learn from rewards. This observation has been

one of the major drives of RL.

(the other major drive is the theory of Markov Decision Models)

The question then is: 

1. can we make the relation to biology more precise?

2. Can we exploit biological insights for unconvential computer hardware?

To answer these questions let us focus on the ‘Learning Rule’.



Review: Advantage Actor-Critic =  ‘REINFORCE’ with TD signal 

advance push 

left

actions

value

TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ] = 

𝑉 𝑠

- Estimate V(s)
- learn via TD error

The update of parameters depends on the TD error!

The algo for the update is called a ‘learning rule’. 



Previous slide. 

Let us focus on the ‘Learning Rule’ or ‘update algorithm’ in the actor-critic setup.

There are weights  w leading to the actor and  other parameters  leading to the 

critic.

Learning rule means that we analyze how these parameters change. Thus 

‘learning rule’ in biology is a term that refers to the ‘parameter update algorithm’ in 

the corresponding mathematical learning model.



Review: Advantage Actor-Critic  with Eligibility traces   

Adapted from

Sutton and Barto

r
r + 

The algo for the update 

is the  ‘learning rule’. 



Previous slide.  Review from DeepRL1

Red box:

Parameters in the advantage actor critic change proportional to

- The TD error delta

- The derivative of the value function for the critic

- The derivative of the log policy for the actor

In this version of the algo we also have eligibility traces. Set =0 to get a version 

without eligibility traces.

In the example on the next page eligibility traces are important.



Quiz: Relation of Advantage-Actor-Critic to other Policy Gradient Algos

‘learning rule’

of Advantage

Actor-Critic

with eligibility trace

[ ] We get the Advantage Actor-Critic without eligibility trace if we set 𝜆𝑤 = 𝜆𝜃 = 0.

[ ] We get REINFORCE without baseline (with eligibility trace)  if set 𝛿 ← 𝑟t+1

[ ] We get REINFORCE without baseline and without eligibility trace

if set 𝛿 ← 𝑅 = 𝑟t+1 + 𝛾𝑟t+2 +
[ ] REINFORCE without baseline and without eligibility trace has many terms 

propto 𝛻𝜃ln(𝜋𝜃(𝑎
t, 𝑥t)), 𝛻𝜃ln(𝜋𝜃(𝑎

t+1, 𝑥t+1)), …   and is therefore not an online algorithm

𝜃 ← 𝜃 + 𝛼𝜃𝛻𝜃ln[𝜋(𝑎𝑡|𝑠𝑡 , θ)]

[x]

[x]

[ ]

[x] 

ln[𝜋(𝑎𝑡|𝑠𝑡, θ)]



Previous slide.  Your notes. All these algorithms have been covered in the lecture 

on policy gradient methods.

R denotes the return (sum of discounted rewards, starting from state t)



Relation of Advantage-Actor-Critic to other Policy Gradient Algos

‘learning rule’

of Advantage

Actor-Critic

with eligibility trace

→ Learning rules of other ONLINE RL policy gradient models 

are special cases of (1).

→We take (1) as a starting point to discuss the relation 

with the brain 

(1)

Can such a learning rule be implemented in the brain?

ln[𝜋(𝑎𝑡|𝑠𝑡, θ)]



Previous slide.  Review from DeepRL1

In the following we take the Advantage Actor Critic as our Reference Model. 

Other Algorithms in the Family of Policy Gradients can be identified as special 

cases. 

The  first big question of this lecture is:

Can such a learning rule (update algorithm) be implemented in the brain?

The second big question of this lecture is (next slide):

Can the elements of an actor-critic architecture be implemented in the brain?



brain algorithms

non-von-Neumann

computing &hardware

‘brain-style computing’

Learning Rules 



Previous slide. 

Our aim is to connect formal RL algorithms (right-hand side) with elements and 

structures in the brain (left-hand side).

This comparison will lead us to a non-von-Neumann computing paradigm that is 

fully distributed without central control, central memory, or central processing 

units.

This computing paradigm has sometimes been called ‘brain-style computing’.

Aside: similar ‘non-von-Neumann’ computing architectures are also seriously 

considered today in the hardware community for next-generation chip design or 

next generation materials! (→ separate lecture)



- Does the brain implement reinforcement learning algorithms?

- Can the brain implement an actor-critic structure?

- What can we learn without Backprop? 

- Applications of ‘brain-style computing’? 

→ Properties of learning rules: ‘local’, ‘Hebbian’, ‘Three-factor’

There are big research fields interested in these questions:

→Computational neuroscience

→Cognitive neuroscience

→Neuro-economics

→Clinical Neuralscience of Addiction

Questions for this Lecture



Previous slide. 

Program for this week.

In this introduction, we have reviewed some aspects of RL in an actor-critic 

structure, in particular the online ‘learning rule’, i.e., the algorithm for the 

parameter update after each step of the agent. In the following we focus on the 

learning rule and go back and forth between algorithms and the brain.

Having identified the basic aspects of the learning rule in RL, we now turn to the 

biology.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning and the Brain:

Three-factor learning rules and  ‘brain-style’ computing



Previous slide. 

Many of the slides contain material that we have already seen.

The aim of this lecture is to connect many different aspects together with a focus 

on the framework of three-factor rules. 



Policy gradient rule  – can we interpret this as local rule?

North: 𝒂𝟏=1 ; 𝑎2=𝑎3 =𝑎4 = 0

𝑥𝑘𝑥1

𝑎1 𝑎4

𝑤11
𝑤35

s1 → s2

East:

Discrete actions with

1 hot coding

If at time t, the action

𝑎𝑖
𝑡 = 1 is chosen then

𝑎𝑗
𝑡 = 0 for all other 

output neurons 𝑗 ≠ 𝑖

Action choice:

Softmax

𝑎1 =𝑎2=𝑎3 =0; 𝒂𝟒 = 𝟏



(previous slide)

1. The policy is softmax: 

this implies that output neurons interact interact such that the policy                   

is normalized to

= 1

2. The coding is 1-hot:

This implies that if at time t, the action 𝑎𝑖
𝑡 = 1 is chosen then neuron i sends 

immediately an output signal to all other neurons to inhibit their activity so that

𝑎𝑗
𝑡 = 0 for all other output neurons 𝑗 ≠ 𝑖.

𝜋 𝑎𝑖
𝑡 = 1| Ԧ𝑥

෍

𝑖

𝜋 𝑎𝑖
𝑡 = 1| Ԧ𝑥



Exercise:  Continuous input representation

actor-critic update rule

and  exploit 1-hot coding of actions.

Ex 1 NOW! 
log ln[𝜋(𝑎𝑡|𝑠𝑡 , θ)]



(previous slide)

Your notes.



Discussion of Exercise:  Comparison with Biology

(no eligibility trace)
Stimulus

parameter = weight wij

Change depends on pre and post

Three factors: success  post pre

postsynaptic factor is

‘activity – expected activity’

pre

post
ij

success

𝑆 𝑎𝑖
𝑡 , Ԧ𝑥 [ 𝑎𝑖

𝑡 − 𝑎𝑖( Ԧ𝑥) ]𝑥𝑗𝑤𝑖𝑗 = 



Previous slide.

Reinforcement Learning includes a set of very powerful algorithm – as we have 

seen in previous lectures. Here S denotes the success, which is reward  (in 

REINFORCE) or reward minus baseline (in REINFORCE with baseline),

or TD error (in the advantage actor-critic) 

For today the big question is: 

Is the structure of the brain suited to implement reinforcement learning 

algorithms?

If so which one?  Q-learning or SARSA? How about Policy gradient?

Is the brain architecture compatible with an actor-critic structure?

These are the questions we will address  in the following sections.

A key element is the algorithmic structure of a ‘Three-factor Rule’.

The specific rule here is instantaneous (no eligibility trace).

The exercise discusses a version with eligibility trace.  If you have calculated the 

solution with eligibility trace, you can set = to remove the eligibility trace. 



Three-factor rule (no eligibility trace)

Stimulus
Change depends 

- Local factor pre

- Local factor post

- Global broadcast factor success

- Success could be reward or TD error

pre

post
ij

success

Three factors: success  post pre

postsynaptic factor is

‘activity – expected activity’

𝑆 𝑎𝑖
𝑡 , Ԧ𝑥 [ 𝑎𝑖

𝑡 − 𝑎𝑖( Ԧ𝑥) ]𝑥𝑗𝑤𝑖𝑗 = 



Previous slide.

The result of Reinforcement Learning with an actor-critic leads to a three-

factor rule:

- A presynaptic factor, activity of the sending neuron, such as spike arrival at 

the synapse.

- A postsynaptic factor: its activity (output spikes, a=1 or inactive a=0) minus 

the ‘mean drive’ for this state 𝑦𝑖( Ԧ𝑥) = 𝜋(𝑎𝑖| Ԧ𝑥 )
- In addition to the above two local factor (similar to a Hebb rule) there is 

one global broadcasting factor. The success.

- The success could be the reward itself (REINFORCE algorithm), or the TD 

signal (advantage actor critic).

- The specific version here is the one without eligibility traces. We will come 

back to eligibility traces later.
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Previous slide. 

I now want to show that reinforcement learning with policy gradient gives rise to 

three-factor learning rules. 



brain algorithms

Learning Rules 

Advantage

Actor-Critic with

eligibility traces

3-factor

learning

rules



Previous slide. 

We will now compare the learning rule of the advantage actor critic with eligibility 

traces to the three-factor rules of the brain. 

We bring together the actor-critic with eligibility traces and the results of exercise 

1 today.



4. Eligibility traces from Policy Gradient  (Exercise today)

1)  Update eligibility trace 

increase of all traces

𝑧𝑘 ← 𝑧𝑘  decay of all traces

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎𝑡|𝑠𝑡, 𝑤𝑘)]

2) update  parameters: Two variants

𝑤𝑘= 𝑟𝑡 𝑧𝑘

Run episode. 

At each time step, observe state 𝑠𝑡, action 𝑎𝑡, reward 𝑟𝑡

Variant A                        → REINFORCE (w. elig. trace)

Variant B                        → Actor-Critic  (w. elig. trace)𝑤𝑘= 𝛿𝑡 𝑧𝑘



Previous slide.  repetition of the exercises from week 10 and Exercise of Today 

Leads to the algo on slide 7

Adapted from

Sutton and Barto

r
r + 



4. Example: Linear activation model with softmax policy

x

𝜋 𝑎𝑗 = 1 Ԧ𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[෍

𝑘

𝑤𝑗𝑘 𝑦𝑘]

𝑦𝑘 = 𝑓(𝑥 − 𝑥𝑘)

𝑥𝑘𝑥1

f =basis function

parameters  

reward

𝑎1 𝑎3

left:

𝑎1=1

right:

𝑎3=1

𝑤11

stay:

𝑎2=1



Previous slide. 

Suppose the agent moves on a linear track.

There are three possible actions: left, right, or stay.

The policy is given by the softmax function. The total drive of the action neurons 

is a linear function of the activity y of the  hidden neurons  which in turn depends 

on the input x. The activity of hidden neuron k is f(x-x_k). The basis function f 

could for example be a Gaussian function with center at x_k.



4. Review Exercise: Linear activation model with softmax policy

Ԧ𝑥

𝑎1 𝑎3

left:

𝑎1=1

right:

𝑎3=1

𝑥𝑘𝑥1

𝑤𝑙𝑘=  𝛿𝑡 𝑧𝑙𝑘

2) update  weights

1)  Update eligibility trace 

stay:

𝑎2=1
𝑎𝑖 ∈ {0,1}0) Choose action

reward

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎𝑖

𝑡 = 1| Ԧ𝑥)]

Already done in Exercise 

→ Three-factor rule with 

eligibility traces

[ 𝑎𝑖
𝑡 − 𝑎𝑖( Ԧ𝑥) ]𝑥𝑗𝑧𝑖𝑗 = 



Previous slide. 

This is the result of the in-class exercise (Exercise 1 of this week).

Importantly, the update of the eligibility trace is a local learning rule that depends 

on a presynaptic factor and a postsynaptic factor.

The reward is the third factor and has no indices (since it acts as a global factor, 

broadcasted to all neurons and synapses).

[ 𝑎𝑖
𝑡 − 𝑎𝑖( Ԧ𝑥) ]𝑥𝑗𝑧𝑖𝑗 = 



4. Summary:  3-factor rules derived from Policy Gradient

- Policy gradient with one hidden layer and linear 

softmax readout yields a 3-factor rule

- Eligibility trace is set by joint activity of presynaptic

and postsynaptic neuron 

- Update happens proportional to the eligibility trace and to  

either reward r  (REINFORCE) or TD error (Adv. Actor-Critic)

- The presynaptic neuron represents the state

- The postsynaptic neuron the action

- True online rule

→ could be implemented in biology

→ can also be implemented in parallel asynchr. Hardware

→ non-von-Neumann compute paradigm



Previous slide. 

Summary: A policy gradient algorithm in a network where the output layer has a  

linear drive with softmax output  leads to a three-factor learning rule for the 

connections between neurons in the hidden layer and the output. 

These three factor learning rules are important because they are completely 

asynchronous, local, and online and could therefore be implemented in biology or 

parallel hardware.

The global modulator could present either the reward r directly (in the style of the 

REINFORCE algorithm); or it could present the TD error (which yields an 

interpretation as advantage actor-critic.

Which one of the two possibilities would fit the dopamine signal?

This is the next question



brain algorithms

Learning Rules 

The learning rule of the (advantage) actor-critic or

REINFORCE with eligibility traces are both compatible

with three-factor rules 

Updates proportional to the reward r or TD error 𝛿𝑡

𝑤𝑙𝑘=  𝑟𝑡 𝑧𝑙𝑘
𝑤𝑙𝑘=  𝛿𝑡 𝑧𝑙𝑘



Review: Advantage Actor-Critic  with Eligibility traces   

Adapted from

Sutton and Barto

r
r +  TD signal



5. Combine Eligibility Traces with TD in Advantage Actor-Critic

Idea: 

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

increase of all traces

𝑧𝑘 ← 𝑧𝑘  decay of all traces

- update all parameters:

𝑤𝑘= [r-( V(s)- V(s’))] 𝑧𝑘

→ policy gradient with eligibility trace and TD error

TD-delta

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑘)]



Previous slides. 

As a reminder (not shown in class). Review of algorithm with actor-critic 

architecture and policy gradient with eligibility traces and TD. 



brain algorithms

Learning Rule for Advantage Actor Critic 

The learning rule of the advantage actor-critic with eligibility 

traces is consistent with a brain-like three-factor rule

Conditions: 1) the brain can broad-cast a TD signal!

2) state representation is good in

the layer before action selection

𝑤𝑙𝑘=  𝛿𝑡 𝑧𝑙𝑘

TD signal

[r+ V(s’)-V(s)]



Previous slide. 

The main difference between standard REINFORCE with eligibility traces and the 

Advantage Actor Critic is that

in the advantage actor-critic the global modulator represents the TD error 

whereas it represents the immediate reward for REINFORCE.

Both would be compatible with brain-like learning rules.

We now show that the TD signal is consistent with the dopamine signal!
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Previous slide. 

So far the third factor remained rather abstract. We mentioned that a 

neuromodulator such as dopamine could be involved. Let us make this idea more 

precise and show experimental data.



5. Neuromodulators as Third factor

Three factors are needed for synaptic changes:

- Presynaptic factor   = spikes of presynaptic neuron

- Postsynaptic factor =  spikes of postsynaptic neuron

or increased voltage

- Third factor              = Neuromodulator such as dopamine

Presynaptic and postsynaptic factor ‘select’ the synapse.

→ a small subset of synapses becomes ‘eligible’ for change.

The ‘Third factor’ is a nearly global signal

→ broadcast signal, potentially received by all synapses.

Synapses need all three factors for change



Previous slide. 

Before we start let us review the basics of a three-factor learning rule. We said 

that the third factor could be a neuromodulator such as dopamine. 



Review: Reward information 

Neuromodulator dopamine: - is nearly globally broadcasted

- signals reward minus

expected reward

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. Dopamine neurons send dopamine signals to many neurons and 

synapses in parallel in a broadcast like fashion.  



5. Dopamine as Third factor

Conditioning: 

red light →touch lever →1s→reward

CS:

Conditioning

Stimulus

Sutton book, reprinted from W. Schultz

(1997, Science)

DA(t) = [r(t) + V(s’) - V(s)]

TD-delta

action r(t)



5. Dopamine as Third factor
This is now the famous experiment of W. Schultz.

In reality the CS was not a red light, but that does not matter



5. Summary: Dopamine as Third factor

- Dopamine signals ‘reward minus expected reward’

- Dopamine signals an ‘event that predicts a reward’

- Dopamine signals approximately the TD-error

DA(t) = [r(t) + V(s’) - V(s)]

TD-delta



Previous slide. 

The paper of W. Schultz has related the dopamine signal to some basic aspects 

of Temporal difference Learning. The Dopamine signal is similar to the TD error. 



5. Application: Advantage Actor-Critic =  update with TD signal 

advance push 

left

actions

value

Dopamine = TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ] =

𝑉 𝑠

- Estimate V(s)
- learn via TD error



Previous slide. 

Review of actor-critic architecture 



5. Summary:  Eligibility Traces with TD in Actor-Critic

Three-factor rules:

Presynaptic and postsynaptic factor ‘select’ the synapse.

→ a small subset of synapses becomes ‘eligible’ for change.

The ‘Third factor’ is a nearly global broadcast signal

→ potentially received by all synapses.

Synapses need all three factors for change

The ‘Third factor’ can be the  Dopamine-like TD signal

→Need actor-critic architecture to calculate 𝛾𝑉 𝑠′ − 𝑉 𝑠
→Dopamine signals [𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ]



Previous slide. 

The three factor rule, dopamine, TD signals, value functions now all fit together.



Action of dopamine 

(from paper by W. Schultz et al. 1997)
- drugs like amphetamine and cocaine exert their addictive

actions in part by prolonging the influence of dopamine on 

target neurons.  Heroin and Cannabis increase dopamine 

concentration in nucleus accumbens. 

- rats press bars to excite dopamine neurons via an 

implanted electrode. The rats often choose these 

‘apparently rewarding’ stimuli over food and sex. 

- animals treated with dopamine receptor blockers learn less 

rapidly to press a bar for a reward pellet.



Previous slide. 

Dopamine is an important molecule, one of the neuromodulators. It is related to 

reward-based learning and closely linked to addiction.

Tanda, Pontieri, DiChiara

https://www.science.org/doi/full/10.1126/science.276.5321.2048

Dichiara et al, 2003

https://www.sciencedirect.com/science/article/pii/S0028390804002199

Self-stimulation:

Phillips and Fiebiger,

https://psycnet.apa.org/record/1980-00546-001

Dopamine and Motor learning

R.J. Beninger (1983)

https://www.sciencedirect.com/science/article/pii/0165017

383900383

https://www.science.org/doi/full/10.1126/science.276.5321.2048
https://psycnet.apa.org/record/1980-00546-001


5. Summary:  Dopamine as a Reinforcement Signal
Dopamine is a brain-internal broadcast signal

sometimes called ‘intrinsic reward system’, triggered by

→ (extrinsic) reward: chocolate, sweet food, drugs,

…. for humans also: ‘praise’, money

→ not just reward: also ‘surprise’, ‘novelty’

→ more than reward: ‘reward minus expected reward’

→ involved in drug addiction

Games and social networks try to make participants/users 

addicted by stimulating the ‘intrinsic reward system’.

Example: - decrease the expected reward for some time, and              

return then back to ‘normal’ reward back.

- add a stochastic component 

- bonus points / reach next level
[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ] =



Previous slide. 

The three factor rule, dopamine, TD signals, value functions now all fit together.



Learning outcome: RL learning rules and the brain

- three-factor learning rules can be implemented by the brain
→ synaptic changes need presynaptic factor,

postsynaptic factor and a neuromodulator (3rd factor)

→ actor-critic and other policy gradient methods

give rise to very similar three-factor rules

- eligibility traces as ‘candidate parameter updates’

→ set by joint activation of pre- and postsynaptic factor

→ decay over time

→ transformed in weight update if dopamine signal comes 

- the dopamine signal has signature of the TD error

→ responds to reward minus expected reward

→ responds to unexpected events that predict reward

- addiction hijacks the  dopamine reward system

5. Summary



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:
Chapter: 15

(1) Fremaux, Sprekeler, Gerstner (2013) Reinforcement learning 

using a continuous-time actor-critic framework with spiking neurons

PLOS Computational Biol. doi:10.1371/journal.pcbi.1003024

(2) Gerstner et al. (2018) Eligibility traces and plasticiy on behavioral time scales: 

experimental support for neoHebbian three-factor learning rules, Frontiers in neural circuits 
https://doi.org/10.3389/fncir.2018.00053

(3) Wolfram Schultz et al., (1997) A neural substrate of prediction and reward, SCIENCE,

https://www.science.org/doi/full/10.1126/science.275.5306.1593

(4) Wolfram Schultz (2002) Getting formal with dopamine and reward Neuron 36 (2), 241-263

https://www.sciencedirect.com/science/article/pii/S0896627302009674

https://doi.org/10.3389/fncir.2018.00053
https://www.science.org/doi/full/10.1126/science.275.5306.1593


[ ] At least 60 percent of the material was new to me

[ ] I have the feeling that I understood 80 percent or 

more

[ ] ‘Even though’ I study CS/Math/Physics/EE, I found the 

links to learning in biology interesting

THE END



Previous slide. 



5. Application: Advantage Actor-Critic =  update with TD signal 

advance push 

left

actions

value

Dopamine = TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ] =

𝑉 𝑠

- Estimate V(s)
- learn via TD error

∇ln[𝜋(𝑎𝑡|𝑠𝑡 , θ)]

Deep RL: parameters of AAC optimized with BackProp

Biology: ‘need good representation of state in final layer

→ no BackProp please!

∇ V st



Previous slide. 

Review of actor-critic architecture 



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks: 

Three-factor rules for navigation

Navigation in a Maze  (Model Study)

- What is the task?

- How are ‘states’ represented?

- How are ‘actions’ represented?

- How is the ‘learning rule’ represented?

- How are ‘eligibility traces’ implemented?

→Use three-factor rule  as a framework for learning



Previous slide. 

We said that the three factor rule, dopamine, TD signals, value functions now all 

fit together. Let’s apply this to the problem of navigation in a maze.

The navigation task is relevant for animals: find a place with food (or shelter) and 

later return to it.

For biological plausibility we have to consider:

- Representation of states

- Representation of actions

- Representation of TD signal and learning rule



Review: TASK = conditioning in the Morris Water Maze

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. 

Behvioral experiment in the Morris Water Maze.

The water is milky so that the platform is visible.

After a few trials the rat swims directly to the platform



rat brain

CA1

CA3

DG

pyramidal cells

soma

axon

dendrites

synapses
electrodePlace fields

Recall: Representation of states: Place cells  in rat hippocampus 



Previous slide. 

the hippocampus of rodents (rats or mice) looks somewhat different to that of 

humans. Importantly, cells in hippocampus of rodents respond only in a small 

region of the environment. For this reason they are called place cells. The small 

region is called the place field of the cell.



Main property: encoding the animal’s  location

place 

field 

Recall:  Representation of states: Hippocampal place cells  



Previous slide. 

Left: experimentally measured place field of a single cell in hippocampus.

Right: computer animation of place field



Recall: Striatum
- Striatum sits below cortex

- Part of the ‘basal ganglia’

- Dorsal striatum involved in 

action selection, decisions

striatum
thalamus

Striatum consists of

- Caudate (dorsal striatum)

- Putamen (dorsal striatum)

Nucleus Accumbens is

part of ventral striatum fig: Wikipedia

https://en.wikipedia.org/wiki/Striatum



Previous slide.

Left: Sketch of the Anatomical location of striatum and thalamus. 

Right: the striatum lies also below the cortex. Since the striatum is involved in 

action selection it will play an important role in this lecture.

From Wikipedia:
The striatum is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the 

forebrain. The striatum is a critical component of the motor and reward systems; receives 

glutamatergic and dopaminergic inputs from different sources; and serves as the primary 

input to the rest of the basal ganglia.

Functionally, the striatum coordinates multiple aspects of cognition, including both motor 

and action planning, decision-making, motivation, reinforcement, and reward

perception.The striatum is made up of the caudate nucleus and the lentiform nucleus. The 

lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus.

In primates, the striatum is divided into a ventral striatum, and a dorsal striatum, 

subdivisions that are based upon function and connections. The ventral striatum consists 

of the nucleus accumbens and the olfactory tubercle. The dorsal striatum consists of the 

caudate nucleus and the putamen. A white matter, nerve tract (the internal capsule) in the 

dorsal striatum separates the caudate nucleus and the putamen.[4] Anatomically, the term 

striatum describes its striped (striated) appearance of grey-and-white matter

https://en.wikipedia.org/wiki/Nucleus_(neuroanatomy)
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Basal_ganglia
https://en.wikipedia.org/wiki/Forebrain
https://en.wikipedia.org/wiki/Motor_system
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Glutamate_(neurotransmitter)
https://en.wikipedia.org/wiki/Dopaminergic
https://en.wikipedia.org/wiki/Cognition
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Decision-making
https://en.wikipedia.org/wiki/Motivation
https://en.wikipedia.org/wiki/Reinforcement
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Lentiform_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Globus_pallidus
https://en.wikipedia.org/wiki/Primate
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Nucleus_accumbens
https://en.wikipedia.org/wiki/Olfactory_tubercle
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/White_matter
https://en.wikipedia.org/wiki/Nerve_tract
https://en.wikipedia.org/wiki/Internal_capsule
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Striatum#cite_note-FERRE2010-4


Review: Coarse Brain Anatomy and R

Reinforcement learning needs:

- representation of states / sensory input / ‘where’

→ hippocampus? / sensory cortex?

- action selection → striatum?, motor cortex?

- reward signals  → dopamine?

→ Candidate brain areas and brain signals!  



Previous slide.

In reinforcement learning, the essential variables are the  states (defined by 

sensory representation), a policy for action selection, the actions themselves, and 

the rewards given by the environment.

If we want to link reinforcement learning to the brain, we will have to search for 

corresponding substrates and functions in the brain. 

The potential relations show candidate brain region for a mapping to state, 

actions, and reward.  The above rough ideas need to be defined during the rest of 

this lecture. 



Example: Linear activation model with softmax policy

x

𝜋 𝑎𝑗 = 1 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[𝑄1, 𝑄2, 𝑄3]

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[σ𝑘𝑤𝑗𝑘 𝑦𝑘]

𝑦𝑘 = 𝑓(𝑥 − 𝑥𝑘)

𝑥𝑘𝑥1

reward

left:

𝑎1

right:

𝑎3=1

𝑤11

stay:

𝑎2=1

𝑤35

𝑄(𝑎1, 𝑥)
𝑄(𝑎3, 𝑥)



Previous slide. 

I now want to show that reinforcement learning with SARSA gives rise to three-

factor learning rules. 

Suppose the agent moves on a linear track.

There are three possible actions: left, right, or stay.

We interpret the action neurons as the Q-values!

The policy is given by the softmax function. The total drive of the action neurons 

is a linear function of the activity y of the  hidden neurons  which in turn depends 

on the input x. The activity of hidden neuron k is f(x-x_k). The basis function f 

could for example be a Gaussian function with center at x_k.



Review: Three-factor rules for SARSA()

x
𝑥𝑘𝑥1

𝑤𝑙𝑘= TD ⋅ 𝑧𝑙𝑘

3) update  weights

2) Update eligibility trace (for each weight) 

𝑤11

stay

𝑧35

𝑧𝑖𝑘 ← 𝜆 𝑧𝑖𝑘

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 + 𝑝𝑟𝑒 ⋅ 𝑝𝑜𝑠𝑡

chosen action=1

other action = 0

𝑄(𝑎1, 𝑥) 𝑎3 = 1
chosen action

1) Choose action

𝑤35

TD error is positive

if reward > expected reward



Previous slide. 

Now we apply the update rule resulting from SARSA with eligibility traces.

The calculation on the blackboard shows that the derivative of the loss function 

yields a term that can be interpreted as the multiplication of pre- and postsynaptic 

activity.

Without an eligibility trace, this multiplication would directly lead to a weight 

change. However, we want to use an eligibility trace. In this case, the term pre 

times post leads to an increase of the corresponding eligibility trace. The further 

multiplication with the TD error then causes the final weight update.

It is important to make the distinction between the Q-value (represented by the 

output neurons) and the binary action value (zero or one) that is actually chosen.

The postsynaptic activity is the binary action value.

This requires some lateral competition between output neurons.



x

𝑎1 𝑎3

𝑥𝑘

𝑥1

reward

Review: Three-factor rules for SARSA()   - illustration

- place fields provide a compact      

encoding of the environment

- With a good encoding goal-

oriented navigation is possible 

with a SINGLE layer.

- Hence three-factor rules can be 

used:

1)  pre = representation of state

2)  post = action

eligibility trace to bridge time scale of 1s

3) third factor =  TD error



Previous slide. 

Importantly, the update of the eligibility trace is a local learning rule that depends 

on a presynaptic factor and a postsynaptic factor. The update of the weight then 

depends on the eligibility trace and the TD error. The eligibility trace can be 

envisaged as a marker attached to the synapse (‘flag’). The TD error can be 

envisaged as being provided by a dopamine signal.

Problems in a biological interpretation could potentially arise from the facts that

- The action neurons are also representing Q-values – but in the end a SINGLE 

binary action is chosen

- This choice is implemented by the softmax policy – which implicitly would 

require a lateral interaction between neurons

→A potential solution could be to implement winner-take-all dynamics but with a 

stochastic component at the moment of action choice.

An alternative solution can be by separating values (such as Q-values or V-

values) from the action. This is the choice that we follow in the next week.



Summary: Three-factor rules, SARSA and eligibility

- Three-factor rules with eligibility traces enable to learn 

rapidly (in a few trials) despite delayed rewards

- Three-factor rules work with a single hidden layer

(not compatible with BackProp)

- Three-factor rules therefore need a ‘good representation’

in the layer just before action choice

- Biological interpretation of SARSA with eligibility traces

as three-factor rule is possible

- lateral inhibitory interactions necessary to  impose a unique 

action choice

- Double role of action neurons as actors and Q-values

is potentially problematic



Previous slide. 

Summary



Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Review Policy gradient

2. Review Subtracting the mean via the value function

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Math: Elibility traces arise naturally 

6. Application of Actor-Critic to navigation task

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods



Previous slide. 

Previous section: SARSA applied to a navigation task

NEXT section: actor-critic applied to a navigation task.

We use the fact that place cells exist → good representation is available. Deep 

learning is not necessary!



Actor Critic with Eligibility Traces (continuing setting)

𝑟
𝑟

TD error (for =)

but set =

Adapted from

Sutton&Barton

2018 

Update eligibility traces

Update parameters



Notes:

1) Here Sutton and Barto have suppressed the factor . (by setting =). 

They do not identify =

2) The starting point of the derivation of Sutton and Barto is to optimize the 

average reward (I optimized average return with discount factor 

3) However, I would set = and add the  in the update for the TD error:

The reason is

(i) that the critic learns V-values with TD-learning and should use the same 

discounting = as the actor.

(ii) The baseline subtraction for an actor that uses discounted cumulative  

rewards for returns should match  the consistency condition of the  Bellman 

equation.

    𝑟𝑡 +𝜆 𝑉 𝑆′, 𝑤 − 𝑉(𝑆, 𝑤)]



Actor Critic with Eligibility Traces and three-factor rules

𝑟
𝑟 + 𝛾 TD error =

Adapted from

Sutton&Barton

2018 

Update eligibility traces

Update parameters

In a neural network that is NOT DEEP this algorithm is

- Online

- Causal

- 3-factor rule

→ biologically plausible

3-factor rule:
𝛿𝑇𝐷 𝑝𝑟𝑒 ⋅ 𝑝𝑜𝑠𝑡



Previous slide. 

Not deep means:

Not a deep network:

We have a good representation one layer away from the output, and the output 

(final layer) is the action layer (or value layer)

Application to a navigation task (see computer exercise)



6. Maze Navigation  with TD in Actor-Critic

Fremaux et al. (2013)

ra
radial basis

functions:

place cells 

3-factor rule:
𝛿𝑇𝐷 𝑝𝑟𝑒 ⋅ 𝑝𝑜𝑠𝑡



The environment contains an obstacle (red) and a invisible reward location (green).

The overall structure of the neural network is that of an actor-critic architecture. 

Both actor and critic are driven by radial basis functions that represent the 

environment.

The actor neurons are organized in a ring. Neighboring neurons share information 

(details not necessary to know at this stage, see next slide).

Critic neurons are drawn here as a population of neurons, but this could be just as 

well a SINGLE critic neuron.

Critic neurons learn to represent the value of the current state using TD learning 

derived from the representation of V-values. The same TD signal is also used the 

update the connections to the actor neurons.

We do not need a deep network to learn the task, since radial basis functions 

(place cells) provide a compact representation of the environment. The actor-critic 

learning is then equivalent to a three-factor  rule.



6. Ring of Actor neurons implements policy 
Note: no need to formally define a softmax function

Fremaux et al. (2013)

- Local excitation

- Long-range inhibition

- Not a formal softmax

‘soft competition’

of action neurons



Ring of actor neurons (similar to soft competitive learning)

Fremaux et al. (2013)

Actor neurons (previous slide). 

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory, 

red: inhibitory) embodies the agent’s policy (top). Each neuron represents 

one of the 360 possible directions.

B: Lateral connectivity. Each neuron codes for a distinct motion direction. 

Neurons form excitatory connections to similarly tuned neurons and

inhibitory synapses to other neurons. As a result, neighboring neurons learn 

from each other of how to represent actions.

C: Activity of actor neurons during an example trial. The activity of the 

neurons (vertical axis) is shown as a color map against time (horizontal 

axis). The lateral connectivity ensures that there is a single bump of activity 

at every moment in time. The black line shows the direction of motion (right 

axis; arrows in panel B) chosen as a result of the neural activity. 

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.

.



6. Maze Navigation  with TD in Actor-Critic 

R-max: (REINFORCE)

Policy gradient without

the critic. The goal was 

never found within 50s.

early trial

Late trial

value

map
TD: Actor-Critic

After 25 trials, the goal 

was found within 20s. 



Maze navigation learning task. 

A: The maze consists of a square enclosure, with a circular goal area 

(green) in the center. A U-shaped obstacle (red) makes the task harder by 

forcing turns on trajectories from three out of the four possible starting 

locations (crosses). 

B: Color-coded trajectories of an example TD agent during the first 75 

simulated trials. Early trials (blue) are spent exploring the maze and the 

obstacles, while later trials (green to red) exploit stereotypical behavior. 

C: Value map (color map) and policy (vector field) represented by the 

synaptic weights of the agent of panel B after 2000 simulated seconds. 

D: Goal reaching latency of agents using three slightly different learning 

rules for the actors . Latencies of N~100 simulated agents per learning rule. 

The solid lines shows the median shaded area represents the 25th to 75th 

percentiles. The R-max (REINFORCE without baseline) agent was simulated 

without a critic and enters times-out after 50 seconds.
Fremaux et al. (2013)

6. Maze Navigation  with TD in Actor-Critic with spiking neurons



6. TD in Actor-Critic for navigation task

- Learns in a few trials (assuming good representation)

- Works in continuous time (thanks to eligibility traces). 

- Works in continuous space and for continuous actions

- Critic implements value function

- TD signal calculated by critic

- Three-factor rules for learning both actor and critic

- TD signal used for both actor and critic weights

Fremaux et al. (2013)



Previous slide. 

Summary of findings.

An additional trick is that actor neurons interact with each other so that 

neighboring neurons share information and learn ‘similar’ policies.

This was not shown in class.

Actor-critic with TD is better than standard policy gradient, because over many 

trials information about state-values can diffuse back from the reward location into 

distant parts of the environment. Note that the discount factor  of the value 

function can have a different value than that of the eligibility trace of the actor.

Standard policy gradient cannot learn beyond the forgetting scale of the eligibility 

trace (here 1 second). 



6. Summary

Learning in a few trials (not millions!) possible, if the sensory 

presentation is well adapted to the task. Here radial basis 

functions.

Actor-Critic works much better than REINFORCE without 

baseline.

Actor-Critic with Eligibility Traces is a powerful and stable 

algorithm and highly recommended.

Probably the best model-free algorithm.



Previous slide.

In summary, we get fast reinforcement learning with biologically plausible components (3-

factor rule with TD learning/dopamine).

However, since we cannot do backprop in biology, these results rely on the fact that the 

network has a ‘good’ representation of states, just below the layer of actions selection.

Place cells are such a good representation.

But how do we get place cells from visual input?



Wulfram Gerstner

EPFL, Lausanne, Switzerland

Unsupervised learning of a ‘good’ state representation

Reinforcement Learning Lecture 3

Continuous input space: representation of ‘states’

Arleo and Gerstner (2000), Spatial cognition and neuro-mimetic navigation: A model of 

hippocampal place cell activity. Biol. Cybern.  83:287–299.

Strösslin et al. (2005), Robust self-localisation and navigation based on hippocampal place 

cells. Neural Networks 18:1125–1140 doi:10.1016/j.neunet.2005.08.012

Sheynikhovich et al. (2009), Is There a Geometric Module for Spatial Orientation? Insights

From a Rodent Navigation Model, Psychol. Review 116:540



Previous slide.

Using a specific example we want to illustrate why function approximation yields an 

inductive bias for generalization.



Inductive bias in Reinforcement Learning

Before you code an RL problem, try to answer the following questions:

1) Is the problem such that in similar (neighboring) input states

the best action is (likely to be) the same?

2) Is the problem such that if I find the reward with action a* 
from state s, then a* is probably good in other states as well? 

3) Do I expect rewards in many states or rather only in a few

‘goal states’?  

4) Moreover, are rewards given for states or state-action 

transitions?
5)  Is there a topology/neighborhood relation that would

enable us to talk about two actions as being ‘similar’? 



Previous slide.

If you know the answer to one of the questions you can use this knowledge to choose your 

coding scheme for inputs and for the action space.



Inductive bias in Reinforcement Learning (Example 2):

Self-localization and Navigation to Goal
- 2-dimensional arena 80cmx60cm 

- single goal location: reach goal from arbitrary start location

- 120 actions (=directions of movement) 

Agent: 

Khepera Robot

Camera:

view

>240 000 pixel

Preprocessing:
Gabor filter bank

2400

Strösslin et al. (2005), Robust self-localisation and navigation based on hippocampal place cells. 

Neural Networks 18:1125–1140; doi:10.1016/j.neunet.2005.08.012



Previous slide.

The camera of the Khepera robot makes snaptshots in 4 directions that are combined into 

a single ‘view’ covering a viewing field of  240 degree (total would be 360 degree). This 

corresponds to > 240 000 pixels per view.

The image serves as input that represents the present ‘state’.

The robot moves in a square (or circular) arena.

The task is to find an goal location (not marked!), from any possible start configuration.



Self-localization and Navigation to Goal

- 2-dimensional arena 80cmx60cm 

- Task: reach goal location (5cmx5cm) from arbitrary start

- 120 actions (=directions of movement)

- state = camera input = >240’000 pixels 

How many episodes do we need to train the 

agent to solve the task?

[ ] <20

[ ] 20 – 200

[ ] 200 – 1000

[ ] > 1000 



Self-localization and Navigation to Goal, starting from visual 

input

1) The real surface of the environment is 2d 

2) Neighboring states (in same view direction) create 

similar images

3) Gabor filters are a good pre-processing  tools

4) In action space, similar actions (nearly identical 

direction of motion) have similar effects.

We start with images of > 240’000 pixels, but we may consider

5) Sparse reward: good to use eligibility traces



Inductive bias in Reinforcement Learning (Example 2)

- Preprocessing Gabor filter bank:

Filters of several spatial frequency and orientation

at 45 different locations,

200 filters per location. 

- Snap-shot of environment =
store the vector 𝐹𝑗
of 9000 filter responses

- ‘Basis-function’                       

similarity of current view 𝐹(𝑡) with stored view vector 𝐹𝑗
after rotation to optimal matching angle

𝜙 𝐹(𝑡) − 𝐹𝑗  

sample

basis function
Strösslin et al. (2005), Neural Networks 18:1125–1140; doi:10.1016/j.neunet.2005.08.012



Previous slide.

The camera of the Khepera robot makes snaptshots in 4 directions that are combined into 

a single ‘view’ covering a viewing field of  240 degree (total would be 360 degree). This 

corresponds to > 240 000 pixels per view.

The sample image (caption below) shows the mean orientation of all Gabor filters with the 

lowest spatial frequency at the 45 sampling locations.

The Gabor filters come as pairs of sine and cosine filters (or complex filters) and only the 

total amplitude, but not the phase of the response of the filter pair is recorded. 

The set of filter responses at time t of all 9000 filters is denoted by  𝐹(𝑡)

Details of the processing steps are explained in the next few slides



115

Real robot: view field 4X60

Simulated robot: view field 280

o

o

Self-localization and Navigation to Goal: 

Details of visual processing and Extraction of Basis Function 

Strösslin et al. (2005), Neural Networks 18:1125–1140; doi:10.1016/j.neunet.2005.08.012



Previous slide.

The robot takes a sample image.

With a real robot: we let the robot rotate around its own axis to take views in 4 directions, 

each view over 60 degree angle; the four views are considered as a single image of view 

angle 240 degrees.

In simulated robots one case use directly 280 or 300 or even 360 degree as a viewing 

angle. 



Model: stores views of visited places

}F{),( k=pL


Local view : activation of set 

of 9000 Gabor wavelets
Visual input at each 

time step

Single View Cell stores a 

local view
Environment exploration

All local views are 

stored in an 

incrementally growing

view cell population

Population of view cells

Robot in an environment

Fk



Previous slide.

During exploration the robot takes a new sample image whenever it does not recognize 

the view. Recognition is defined that 10 or more cells strongly respond to the new image.

If not, the image is classified as novel. Novelty triggers learning (as a third factor!).

The novel sample image is memorized by storing the set of responses of the 9000 Gabor 

filters.



Model ‘stores’ views of visited places:  3-factor rule

synapses from Gabor filter k (Receptive Fields) to ‘view cell’  j 

Δ𝑤𝑖𝑘 = 𝜂𝑟𝑖
𝑉𝐶 𝑟𝑘 𝑖𝑓 𝑟𝑘 > θ1 (else =0)

Fk

𝑟𝑘= |න𝐹𝑘 𝑥′ 𝐼𝑚𝑎𝑔𝑒 𝑥′ 𝑑𝑥′ ቚ
2

𝑟𝑘

𝑟𝑖
𝑉𝐶 𝑟𝑖

𝑉𝐶 = 1 𝑓𝑜𝑟 𝑛𝑒𝑤𝑙𝑦 𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑒𝑑 𝑐𝑒𝑙𝑙

𝜂 = 1 𝑖𝑓 ′𝑛𝑜𝑣𝑒𝑙 𝑣𝑖𝑒𝑤′

Strösslin et al. (2005), Neural Networks 18:1125–1140; doi:10.1016/j.neunet.2005.08.012



Previous slide.

What does it mean to ‘store the present view’?

The model uses a three-factor rule that yields ‘1-shot’ Hebbian learning.

1. The image is applied to the set of thousands of filters. We think of filters as receptive 

fields. For each filter a presynaptic  neuron is active proportional to the response of its 

filter.

2. We compare the total response of summed over all presynaptic neurons with a 

threshold. If the total sum is smaller than a novelty threshold, then the present view is 

novel.

3. If novelty is discovered all postsynaptic cells are turned off, except a single cell j whose 

activity  is set to 𝑟𝑗 = 1.

4. We apply Hebbian learning (Eq. 1) to this cell with learning rate 𝜂 = 1

The result yields learning in a single trial (one-shot), controlled by novelty (third factor).



Model: extracting gaze orientation

View 

cell i

Population of view cells

New 

local

view



Stored local view i New local view



iC

Alignment of views → current gaze direction

position at new 

local view

iVC



i



Previous slide.

The filter responses at time t are compared to the stored filter responses.

To find the best match the new image is rotated.

The angle of rotation (necessary to yield the best match) tells us about the direction of 

gaze compared to the gaze direction at the moment when the original image was stored.



Model: extracting position via basis functions

Stored local view i New local view

population of view cells

responding at red position 
Δ𝐿𝑖 = 𝐹𝑖 − 𝐹(𝑡)Difference:

Similarity 

measure:

stored/current filter responses

Small difference between 

local views – spatially 

close positions

𝜙 𝐹(𝑡) − 𝐹𝑖 = 𝑟𝑖
𝑉𝐶 

Basis 

Function

𝑟𝑖
𝑉𝐶 = exp(−

Δ𝐿𝑖
2

𝜎𝑉𝐶
2 )



Previous slide.

After the rotation to best-match position. the filter responses at time t are compared to the 

stored filter responses. This yields the basis function.

The image on the right shows which basis functions respond when the robot is at a 

specific location. Red indicates strong response.

Note that basis functions do not know where they are located in space (i.e. they have no 

spatial position label, but just their response profile and an index for each basis function). 

For this image we have plotted a dot at a place that corresponds to the location of the  

maximal response of a given basis function. But this is for visualization purpose only.



𝑄 𝑠, 𝑎′ 𝒘 = ෍

𝑗

𝑤𝑗 𝑎′ 𝜙 𝐹(𝑡) − 𝐹𝑗

𝜙 𝐹(𝑡) − 𝐹𝑗

s(t)state

𝑤𝑗 𝑎′

𝑎′

𝑓𝑗
preprocesing: Gabor filters

+ rotation/alignment

Summary: From Pixel input to Basis function to Q-values



Previous slide.

Action neurons represent the Q-values. In total there are 120 neurons. We may consider 

them to lie on a circle with a position on the circlue corresponding to the direction of 

movement triggered by the action.

The center fj  of each basis function j corresponds to the (stored) response of thousands of 

Gabor filters recorded at some time tj during exploration. The output of the basis function  j 

measures the similarity with the current view, represent by the current response of the 

Gaborfilters, The vector of all Gabor filter responses at time t is f(t).

The figure on the left shows rather schematically the net result of the  processing steps.  

The functions  are visualized as local basis functions in the environment. Weights 

connect to actions that code for the different movement directions. The activiation of each 

action unit indicates its Q-value.



Self-localization and Navigation to Goal: 

- While exploring: take new snapshot whenever less than 

10 basis functions are active  → creates new basis function

- Reinforcement Learning by Q-learning/SARSA

- Final action directions after 20 episodes (goal-findings)

goal

goal



Previous slide.

The left image shows the time it takes to find the goal, as a function of successful trials 

(episodes).

The right image shows needles that indicate the learned direction of movement after 20 

trials. 



Navigation Results: Office environment

- Learning = relate present view (location) to movement direction

- Needs alignment of the views to known orientation

Sheynikhovich et al.

Psychological Review,

2009

- Map after 10 trials

Strösslin et al. (2005), Neural Networks 18:1125–1140; doi:10.1016/j.neunet.2005.08.012



Previous slides.

- Coding of input space: we sample vectors of feature responses in the high-dimensional 

space, but we know that in the end they encode only two dimensions, so that sampling 

is indeed possible. 

- The space is further reduced from 3 to 2 dimensions by algorithmic rotation of images 

(= shift of feature vectors) to get rid of difference due to orientation.

- We can work with relatively long eligibility traces, since there is a single goal state.

- We generalize across actions: we imagine actions forming a ring of possible directions. 

Neighboring actions should learn (in most states) similar behavior, hence if action a* is 

chosen with SARSA and learns (at rate eta), then all its neighbors learn as well (but 

with slightly reduced rate).



Reinforcement learning can be fast!

- input: 240 000 pixels (or  values of 9 000 Gabor filters)

→ high-dimensional!

- output: 120 actions

→ high-dimensional!

Why does it work?
What is the ‘real’ input dimension? (states)

What is the ‘real’ output-dimension? (actions)

2+1 = surface of movement + gaze-orientation 

2 = left motor + right motor = 

orientation of movement + speed



Inductive bias in Reinforcement Learning

Before you code an RL problem, try to answer the following questions:

1) Is the problem such that in similar (neighboring) input states

the best action is (likely to be) the same? 

2) Is the problem such that if I find the reward with action a* 
from state s, then a* is probably good in all states? 

Yes → broad overlapping representation of states is possible.

low intrinsic dimensionality of state space → sampling possible

No, not in presence of obstacles or objects in the middle

→ global representation of states is not useful. 



Inductive bias in Reinforcement Learning

3) Do I expect rewards in many states or rather only in a few

‘goal states’?  

4) Moreover, are rewards given for states or state-action 

transitions?

5)  Is there a topology/neighborhood relation that would

enable us to talk about two actions being ‘similar’? 

Single goal state → long eligibility traces possible. 

Rewards only in states → exploration easier: stop exploration

if each state well represented



Inductive bias in Reinforcement Learning

5)  Is there a topology/neighborhood relation that would

enable us to talk about two actions being ‘similar’? 

Yes → Generalization across actions space possible. 

Enforce activity profile

= spread Q-value activity

from ‘winning action’

to neighbors

= learn neighbors at the same

time 

= learn as if all similar actions

had been taken as well 



Inductive bias in Reinforcement Learning

The EFFECTIVE number of parameters is much lower

than the number of weights, since neighboring state neurons 

and  neighboring action neurons learn similar things.

Additional inductive bias is also used in this example:

- Odometry (wheel turns) allows to give a noisy prediction of 

current location. 

- This prediction can be combined with the filter response to 

give more localized filters

- The odometry in turn can be calibrated by the recognized filter 

responses. 

- No stable compass, GPS, or knowledge of ‘where’ necessary



Previous slides.

- Coding of input space: we sample vectors of feature responses in the high-dimensional 

space, but we know that in the end they encode only two dimensions, so that sampling 

is indeed possible. 

- The space is further reduced from 3 to 2 dimensions by algorithmic rotation of images 

(= shift of feature vectors) to get rid of difference due to orientation.

- We can work with relatively long eligibility traces, since there is a single goal state.

- We generalize across actions: we imagine actions forming a ring of possible directions. 

Neighboring actions should learn (in most states) similar behavior, hence if action a* is 

chosen with SARSA and learns (at rate eta), then all its neighbors learn as well (but 

with slightly reduced rate).



Inductive bias in Reinforcement Learning

Use all prior knowledge you have, before you start coding:

- No Free Lunch

- a generic neural network is rarely the best

- choose encoding and preprocessing so that generalization  

across ‘similar things’ becomes possible.

Reinforcement Learning can be extremely fast!!!

Reinforcement Learning needs a good

representation of states! 

Representation of states can be learned with three-

factor rules: biologically plausible, no BackProp



Previous slide. Summary

.
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