Wulfram Gerstner

Learning in Neural Networks [week 9] SPEL Lousanne. Sitzerant
Reinforcement Learning and the Brain:
Three-factor learning rules and ‘brain-style’ computing

ODbjectives for today:

- three-factor learning rules can be implemented by the brain
- three-factor rules are consistent with RL

- eligibility traces link correlations with delayed reward

- the dopamine signal has signature of the TD error

- local learning rules: 2-factor and three-factor



Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2"d edition 2018, also online)

Chapter: 15
Background reading:
(1) Fremaux, Sprekeler, Gerstner (2013) Reinforcement learning
using a continuous-time actor-critic framework with spiking neurons

PLOS Computational Biol. doi:10.1371/journal.pcbi.1003024
(2) Gerstner et al. (2018) Eligibility traces and plasticly on behavioral time scales:

experimental support for neoHebbian three-factor learning rules, Frontiers in neural circuits
https://dol.org/10.3389/fncir.2018.00053

(3) Wolfram Schultz et al., (1997) A neural substrate of prediction and reward, SCIENCE,
https://www.science.org/doi/full/10.1126/science.275.5306.1593



https://doi.org/10.3389/fncir.2018.00053
https://www.science.org/doi/full/10.1126/science.275.5306.1593

Reinforcement Learning (RL)
- Learning by reward

.~ ./  Field has two roots:
S - Optimization/Markov
Decision Process (MDP)
- Biology

Questions for today:
- What elements of RL are ‘bio-plausible’?
- Can the brain implement RL?




Previous slide.
animals and humans are able to learn from rewards. This observation has been
one of the major drives of RL.

(the other major drive Is the theory of Markov Decision Models)

The question then Is:
1. can we make the relation to biology more precise?

2. Can we exploit biological insights for unconvential computer hardware?

To answer these questions let us focus on the ‘Learning Rule’.



Review: Advantage Actor-Critic = ‘REINFORGE’ with TD signal

actions - Estimate V(S]

Sush - learn via TD error
advance

TD-error
O =m[r +yV(s") —V(s)]

1’»‘% :

Q.

The update of parameters depends on the TD error!
The algo for the update is called a ‘learning rule’.



Previous slide.
Let us focus on the ‘Learning Rule’ or ‘update algorithm’ in the actor-critic setup.

There are weights w leading to the actor and other parameters 0 leading to the
Critic.

Learning rule means that we analyze how these parameters change. Thus
‘learning rule’ in biology is a term that refers to the ‘parameter update algorithm’ in

the corresponding mathematical learning model.



Review: Advantage Actor-Gritic with Eligibility traces

Actor—Critic with Eligibility Traces (continuing), for estimating mg ~ 7,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: AV € [0,1], A? € [0,1], a%¥ > 0, a® > 0

Initialize state-value weights w € R? and policy parameter 6 € RY (e.g., to 0)
Initialize S € 8 (e.g., to sp)

z% < 0 (d-component eligibility trace vector)
z® « 0 (d’-component eligibility trace vector)
Loop forever (for each time step):

A~ 7(-|5,0)

Take action A. observe S’. I'

0+ I+ yo(S'w)—0o(Sw

The algo for the update
20« 2% + Vinr(A|S, 6) Is the ‘learning rule’.

w<—w+aVozW

0 «— 0+ a6z° Adapted frOm
Sutton and Barto

z% < \"z% +Vo(S,w)




Previous slide. Review from DeepRL1

Red box:
Parameters Iin the advantage actor critic change proportional to

- The TD error delta
- The derivative of the value function for the critic

- The derivative of the log policy for the actor

In this version of the algo we also have eligibility traces. Set A=0 to get a version
without eligibility traces.

In the example on the next page eligibility traces are important.



Quiz: Relation of Advantage-Actor-Ciritic to other Policy Gradient Algos

E | ]| We get REINFORCE without baseline (with eligibility trace) If set § « pttl

Assume the transition to state T with a reward of ™! after taking action a® at state z*. The learning rule
for the Advantage Actor-Critic with Eligibility traces is

6 — Pt 4 v, (2t — *i}m(mt)
Efm Y szm + vwﬂw (.‘L‘t)

‘learning rule’
of Advan_t_age 29« 2929 1+ v, In[m(as|sg, 0)]
Actor-Critic 0wt oS

with eligibility trace \| 0« 6 +a?2%

[ ] We get the Advantage Actor-Critic without eligibility trace if we set ¥ = 2% = 0.

[ ] We get REINFORCE without baseline and without eligibility trace

ifsets « R=rtt1 4 yrt+2 +
| | REINFORCE without baseline and without eligibility trace has many terms

propto Vgln(mg (at, xt)), Voln(mg (at+1, xt+1)), ... and is therefore not an online algorithm




Previous slide. Your notes. All these algorithms have been covered In the lecture
on policy gradient methods.

R denotes the return (sum of discounted rewards, starting from state t)



Relation of Advantage-Actor-Critic to other Policy Gradient Algos

Assume the transition to state T with a reward of ™! after taking action a® at state z*. The learning rule
for the Advantage Actor-Critic with Eligibility traces is

0 — T by, (2P — *i}n;,(mt)
2V — A2 + V., 00 (.’L‘t)

‘learning rule’

Of Advantage ;5"5' V- )\H;_fﬁ 1 VE ln[ﬂ(atlst,e)] (1)
Actor-Critic 0wt oS

with eligibility trace \ 6+« 0+a%2%

- Learning rules of other ONLINE RL policy gradient models
are special cases of (1).

- We take (1) as a starting point to discuss the relation
with the brain

Can such a learning rule be implemented in the brain?



Previous slide. Review from DeepRL1
In the following we take the Advantage Actor Critic as our Reference Model.

Other Algorithms in the Family of Policy Gradients can be identified as special
cases.

The first big question of this lecture Is:
Can such a learning rule (update algorithm) be implemented in the brain?

The second big question of this lecture is (next slide):
Can the elements of an actor-critic architecture be implemented in the brain?



N

brain algorithms

_/

non-von-Neumann
computing &hardware
‘brain-style computing




Previous slide.

Our aim Is to connect formal RL algorithms (right-hand side) with elements and
structures in the brain (left-hand side).

This comparison will lead us to a non-von-Neumann computing paradigm that Is
fully distributed without central control, central memory, or central processing
units.

This computing paradigm has sometimes been called ‘brain-style computing'.
Aside: similar ‘'non-von-Neumann’ computing architectures are also seriously

considered today in the hardware community for next-generation chip design or
next generation materials! (= separate lecture)



- Does the brain implement reinforcement learning algorithms?
- Can the brain implement an actor-critic structure?

- What can we learn without Backprop?
- Applications of ‘brain-style computing?
- Properties of learning rules: ‘local’, ‘Hebbian’, "Three-factor’

There are big research fields interested in these questions:
- Computational neuroscience

- Cognitive neuroscience
- Neuro-economics
— Clinical Neuralscience of Addiction




Previous slide.

Program for this week.

In this introduction, we have reviewed some aspects of RL in an actor-critic
structure, in particular the online ‘learning rule’, i.e., the algorithm for the

parameter update after each step of the agent. In the following we focus on the
learning rule and go back and forth between algorithms and the brain.

Having identified the basic aspects of the learning rule in RL, we now turn to the
biology.



Wulfram Gerstner

Reinforcement Learning and the Brain: EPFL. Lausanne, Switzerland

(Three-factor Iearning rules and ‘brain-style’ computing




Previous slide.

Many of the slides contain material that we have already seen.
The aim of this lecture Is to connect many different aspects together with a focus
on the framework of three-factor rules.



Policy gradient rule — can we interpret this as local rule?

North: a1=1; Ar=Uq —Uy = 0
East: a; =a,=a; =0;a4 =1

4%

Discrete actions with
1 hot coding

If at time t, the action
a; =1 is chosen then

a]’? — 0 for all other
output neurons j # i

Action choice:
Softmax



(previous slide)
1. The policy Is softmax:

this implies that output neurons interact interact such that the policy =n(a! = 1|%)
IS normalized to

En(af =1|%) =1

2. The coding Is 1-hot:

This implies that if at time t, the action a; = 1 is chosen then neuron i sends
Immediately an output signal to all other neurons to inhibit their activity so that
af = (0 for all other output neurons j # i.



In this exercise you will show how applying Advantage Actor-Critic with eligibity traces to a softmax policy in
combination with a linear read-out function leads to a biologically plausible learning rule.

Consider a policy and a value network as in Figure 1 with K input neurons {yx = f(x — :Irk)}le. The policy
network is parameterized by # and has three output neurons corresponding to actions a;, a2 and a3 with 1-hot
coding. If ar = 1, action a; is taken. The output neurons are sampled from a softmax policy: The probability

of taking action a; is given by
exp|> . OikYk]

225 exXPD g Ojky]

In addition, consider the exponential value network o,,(x) = exp [Z i u,v;gy;g].
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Assume the transition to state z'*! with a reward of r*T! after taking action a’ at state z!. The learning rule
for the Advantage Actor-Critic with Eligibility traces is

Ex 1 NOW!

2 — ANY2Y + VU (.‘L‘t)
2% « 290 +V ln[n(at|St, 6)]

w+— w4+ a®¥z"d

Figure 1: The network structure.
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actor-critic update rule

Your goal is to show that this learning rule applied to the network of Figure 1 has a biological interpretation.

a. Show that p
mﬁw ('Tt) — y;}ﬂw(mt) .

b. Interpret the update of the eligibity trace 2%’ in terms of a ‘presynaptic factor’ and a ‘postsynaptic factor’.

Can the rule be implemented in biology?

c. Show that
d

35
Hint: simply insert the softmax and then take the derivative and exploit 1-hot coding of actions.

(3)

In[rg(al = 1|z*)] = [a — 7e(az = 1|z")]yk .

d. Interpret the update of the eligibity trace 2§ in terms of a ‘presynaptic factor’ and a ‘postsynaptic factor’.

Can the rule be implemented in biology?




(previous slide)
Your notes.



Discussion of Exercise: Gomparison with Biology
[(no eligibility trace]

Stimulus success
parameter = weight Wij pre%‘

| . post

Change depends on pre and post

Three factors: success post pre

Aw;; =n S(af,f)’[ a; — <ai(7?)\>]xj

postsynaptic factor IS
activity — expected activity’



Previous slide.

Reinforcement Learning includes a set of very powerful algorithm — as we have
seen In previous lectures. Here S denotes the success, which is reward (In
REINFORCE) or reward minus baseline (in REINFORCE with baseline),

or TD error (in the advantage actor-critic)

For today the big question Is:

Is the structure of the brain suited to implement reinforcement learning
algorithms?

If so which one? Q-learning or SARSA? How about Policy gradient?

Is the brain architecture compatible with an actor-critic structure?

These are the questions we will address In the following sections.

A key element is the algorithmic structure of a ‘“Three-factor Rule’.

The specific rule here Is instantaneous (no eligibility trace).

The exercise discusses a version with eligibility trace. If you have calculated the
solution with eligibility trace, you can set A=0 to remove the eligibility trace.



Three-factor rule (no eligibility trace)

Change depends Stimulus SUCCEeSS
- Local factor pre pre
- Local factor post _ . post

|

- Global broadcast factor success J
- Success could be reward or TD error

Three factors: success post pre

Awg; =0 S(af, D) af —(a; ()],

postsynaptic factor IS
activity — expected activity’



Previous slide.

The result of Reinforcement Learning with an actor-critic leads to a three-

factor rule:

- A presynaptic factor, activity of the sending neuron, such as spike arrival at

the synapse.

- A postsynaptic factor: Iits activity (output spikes, a=1 or inactive a=0) minus

the ‘mean drive’ for this state (y;(x)) = n(q;

- In addition to the above two local factor (sim

X )
Ilar to a Hebb rule) there is

one global broadcasting factor. The success.
- The success could be the reward itself (REINFORCE algorithm), or the TD

signal (advantage actor critic).

- The specific version here Is the one without eligibility traces. We will come

back to eligibility traces later.



Wulfram Gerstner
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Coarse Brain Anatomy

Synaptic Plasticity

Three-factor Learning Rules

Policy Gradient with Eligibility Traces Revisited

> Wk



Previous slide.

| now want to show that reinforcement learning with policy gradient gives rise to
three-factor learning rules.



N

3-factor | Advantage
learning brain algorithms  Actor-Critic with

rules v eligibility traces




Previous slide.
We will now compare the learning rule of the advantage actor critic with eligibility
traces to the three-factor rules of the brain.

We bring together the actor-critic with eligibility traces and the results of exercise
1 today:.



4. Eligibility traces from Policy Gradient (Exercise today)

Run episode.
At each time step, observe state s, action a;, reward r;

1) Update eligibility trace

Zy < Zg A decay of all traces

L d :
z <z + g nln(adse wi)l - increase of all traces

2) update parameters: Two variants
Variant A Aw,=n 1z, > REINFORCE (w. elig. trace)

Variant B Awx=n 0 zx = Actor-Critic (w. elig. trace)



Previous slide. repetition of the exercises from week 10 and Exercise of Today
Leads to the algo on slide 7

Actor—Critic with Eligibility Traces (continuing), for estimating mg ~ 7,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: AV € [0,1], A? € [0,1], a%¥ > 0, a® > 0

Initialize state-value weights w € R? and policy parameter 6 € RY (e.g., to 0)
Initialize S € 8 (e.g., to sp)

z% < 0 (d-component eligibility trace vector)
z% «— 0 (d’-component eligibility trace vector)
Loop forever (for each time step):

A~ 7(-|5,0)

Take action A. observe S’. I'

0+ I+ yo(S'w)—0o(Sw

z% < \"z% +Vo(S,w)
z% « \°z% + VIn7(A|S,6)
W< w+avoz%

0 «— 0+ a6z° Adapted frOm
Sutton and Barto




4. Example: Linear activation model with softmax policy
left: stay:  right: parameters
a,=1 a,=1 asz=1 / \
— n(aj = 1|%,0) = Softmax[z: Wik V]
k

a1 T a3

J’k=f(9_5—xk)

f=Dbasis function

BRI

X1 X X



Previous slide.
Suppose the agent moves on a linear track.

There are three possible actions: left, right, or stay.

The policy Is given by the softmax function. The total drive of the action neurons
IS a linear function of the activity y of the hidden neurons which in turn depends
on the input x. The activity of hidden neuron k is f(x-x_k). The basis function f
could for example be a Gaussian function with center at x_K.



4. Review Exercise: Linear activation model with softmax policy

left:  stay-  right: gy choose action a; € {0,1}

a1:1 a2:1 a3:1

1) Update eligibility trace

reward

\

X X

Zik < Zik A

Zik < Zig T d%kln[n(af = 1]x)]

Azij =n[ a; — (a;(¥))]x;
2) update weights

AW, =1 0 Zik

Already done In Exercise
-> Three-factor rule with
eligibility traces



Previous slide.
This Is the result of the in-class exercise (Exercise 1 of this week).

Importantly, the update of the eligibility trace is a local learning rule that depends

on a presynaptic factor and a postsynaptic factor.
The reward Is the third factor and has no indices (since It acts as a global factor,

broadcasted to all neurons and synapses).

Azij =n[ a; — (a;(¥))]x;



4. Summary: 3-factor rules derived from Policy Gradient

- Policy gradient with one hidden layer and linear
softmax readout yields a 3-factor rule
- Eligibility trace Is set by joint activity of presynaptic
and postsynaptic neuron
- Update happens proportional to the eligibility trace and to
either reward r (REINFORCE) or TD error (Adv. Actor-Critic)
-  The presynaptic neuron represents the state
- The postsynaptic neuron the action
- True online rule
- could be implemented in biology
- can also be implemented in parallel asynchr. Hardware
- non-von-Neumann compute paradigm



Previous slide.
Summary: A policy gradient algorithm in a network where the output layer has a

linear drive with softmax output leads to a three-factor learning rule for the
connections between neurons in the hidden layer and the output.

These three factor learning rules are important because they are completely
asynchronous, local, and online and could therefore be implemented in biology or

parallel hardware.

The global modulator could present either the reward r directly (in the style of the
REINFORCE algorithm); or it could present the TD error (which yields an
Interpretation as advantage actor-critic.

Which one of the two possiblilities would fit the dopamine signal?
This Is the next question



N

brain algorithms

v AW ,=1M 0 Zi

The learning rule of the (advantage) actor-critic or
REINFORCE with eligibility traces are both compatible
with three-factor rules

AWy =M ¢ Zik

Updates proportional to the reward » or TD error 9,




Review: Advantage Actor-Gritic with Eligibility traces

Actor—Critic with Eligibility Traces (continuing), for estimating mg ~ 7,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: AV € [0,1], A? € [0,1], a%¥ > 0, a® > 0

Initialize state-value weights w € R? and policy parameter 6 € RY (e.g., to 0)
Initialize S € 8 (e.g., to sg)

z% < 0 (d-component eligibility trace vector)
z® « 0 (d’-component eligibility trace vector)
Loop forever (for each time step):

A~ m(-]S,0)

Take action A, observe §’, I

0« I+ yo(S'.w)—o(Sw) «— D Signal

z% < \"z% +Vo(S,w)
z% « \°z% + VIn7(A|S,6)
W< w+avoz%

0« 0+ a6z° Adapted frOm
Sutton and Barto




9. Combine Eligibility Traces with TD in Advantage Actor-Critic

ldea:

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

Zy < Zg A decay of all traces

d i
zk < zx + g In[m(als, wi)] increase of all traces

- update all parameters:
Awi=n {r-( V(s)-y V(S’]]]} Z

T[S-delta
-> policy gradient with eligibility trace and TD error




Previous slides.

As a reminder (not shown In class). Review of algorithm with actor-critic
architecture and policy gradient with eligibility traces and TD.



Learning Rule for Advantage Actor Gritic

N

brain algorithms

[r+y V(s)-V(s)]
TD signal

The learning rule of the advantage actor-critic with eligibility
traces Is consistent with a brain-like three-factor rule

Conditions: 1) the brain can broad-cast a TD signal!
2) state representation Is good In
the layer before action selection




Previous slide.
The main difference between standard REINFORCE with eligibility traces and the

Advantage Actor Critic Is that
In the advantage actor-critic the global modulator represents the TD error

whereas it represents the immediate reward for REINFORCE.

Both would be compatible with brain-like learning rules.

We now show that the TD signal Is consistent with the dopamine signal!



Wulfram Gerstner

Reinforcement Learning and the Brain: -PFL, Lausarne, Suizerand
Three-factor learning rules and ‘brain-style’ computing
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Synaptic Plasticity

Three-factor Learning Rules

Policy Gradient with Eligibility Traces Revisited
Dopamine as a Third Factor is a TD-like signal

OB W



Previous slide.
So far the third factor remained rather abstract. We mentioned that a

neuromodulator such as dopamine could be involved. Let us make this idea more
precise and show experimental data.



J. Neuromodulators as Third factor

Three factors are needed for synaptic changes:
- Presynaptic factor = spikes of presynaptic neuron
- Postsynaptic factor = spikes of postsynaptic neuron
or Increased voltage
- Third factor = Neuromodulator such as dopamine

Presynaptic and postsynaptic factor ‘select’ the synapse.

- a small subset of synapses becomes ‘eligible’ for change.
The "Third factor’ is a nearly global signal

-> broadcast signal, potentially received by all synapses.
Synapses need all three factors for change



Previous slide.
Before we start let us review the basics of a three-factor learning rule. We said
that the third factor could be a neuromodulator such as dopamine.



Neuromodulator dopamine: - i1s nearly globally broadcasted
- signhals reward minus
expected reward

Dopamine

'success signal’

Schultz et al., 1997,
Waeltl et al., 2001
Schultz, 2002




Previous slide. Dopamine neurons send dopamine signals to many neurons and
synapses In parallel in a broadcast like fashion.



J. Jopamine as Third factor

Conditioning:
red light ->touch lever 2> 1s—->reward

| |

action r(t)

CS.
Conditioning

Stimulus
DA(t) = \[r[t] +y V(s') - V[S]}]

TDY-deIta

Sutton book, reprinted from W. Schultz
(1997, Science)

No prediction
Reward occurs

‘mocs) R

Reward predicted

Reward occurs |

CS R

Reward predicted

No reward occurs I

CS (no R)



No prediction
Reward occurs

Mmm

J. Jopamine as Third factor

This Is now the famous experiment of W. Schultz.
In reality the CS was not a red light, but that does not matter

Figure 15.3: The response of dopamine neurons drops
below baseline shortly after the time when an expected
reward fails to occur. Top: dopamine neurons are
activated by the unpredicted delivery of a drop of
apple juice. Middle: dopamine neurons respond to a
conditioned stimulus (CS) that predicts reward and
do not respond to the reward itself. Bottom: when
the reward predicted by the CS fails to occur, the
activity of dopamine neurons drops below baseline
shortly after the time the reward is expected to occur.
At the top of each of these panels is shown the average
number of action potentials produced by monitored
dopamine neurons within small time intervals around
the indicated times. The raster plots below show the
activity patterns of the individual dopamine neurons
that were monitored; each dot represents an action
potential. From Schultz, Dayan, and Montague, A
Neural Substrate of Prediction and Reward., Science.
vol. 275, issue 5306, pages 1593-1598, March 14, 1997.
Reprinted with permission from AAAS.

‘mocs) R

Reward predicted

Reward occurs |

CS

D

Reward predicted

No reward occurs |




9. Summary: Dopamine as Third factor

- Dopamine signals ‘reward minus expected reward’
- Dopamine signals an ‘event that predicts a reward’

- Dopamine signals approximately the TD-error

DA(t) = \[r[t] +y V(s’) - V(S];]
TD-delta




Previous slide.

The paper of W. Schultz has related the dopamine signal to some basic aspects
of Temporal difference Learning. The Dopamine signal is similar to the TD error.



9. Application: Advantage Actor-Gritic = update with TD signal
- Estimate V/(s)

aetons - learn via TD error
advance F?fh
e
* ﬁ P B value
® Q V(s)
’h,‘ ‘ Dopamine = TD-error
/& J@F 0= [ry+yV(s) =V(s)]

Rge



Previous slide.

Review of actor-critic architecture



9. Summary: Eligibility Traces with TD in Actor-Gritic

Three-factor rules:

Presynaptic and postsynaptic factor ‘select’ the synapse.

- a small subset of synapses becomes ‘eligible’ for change
The "Third factor’ is a nearly global broadcast signal

- potentially received by all synapses.
Synapses need all three factors for change

The ‘Third factor’ can be the Dopamine-like TD signal

- Need actor-critic architecture to calculate yV(s') — V(s)
- Dopamine signals [ +yV(s') =V (s) ]




Previous slide.

The three factor rule, dopamine, TD signals, value functions now all fit together.



Action of dopamine
(from paper by W. Schultz et al. 1997)

drugs like amphetamine and cocaine exert their addlctlve
actions In part by prolonging the influence of dopamine on
target neurons. Heroin and Cannabis Increase dopaaane
concentration in nucleus accumbens. AT

rats press bars to excite dopamine neurons via an
Implanted electrode. The rats often choose these
‘apparently rewarding’ stimuli over food and sex.

animals treated with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet.



Previous slide.
Dopamine is an important molecule, one of the neuromodulators. It Is related to
reward-based learning and closely linked to addiction.

Tanda, Pontieri, DiChiara
https://www.science.org/doi/full/10.1126/science.276.5321.2048
Dichiara et al, 2003
https://www.sciencedirect.com/science/article/pii/S0028390804002199

Self-stimulation:
Phillips and Fiebiger,
https://psycnet.apa.org/record/1980-00546-001

Dopamine and Motor learning

R.J. Beninger (1983)
https://www.sclencedirect.com/science/article/pii/0165017
383900383


https://www.science.org/doi/full/10.1126/science.276.5321.2048
https://psycnet.apa.org/record/1980-00546-001

J. Summary: Dopamine as a Reinforcement Signal

Dopamine Is a brain-internal broadcast signal
sometimes called ‘intrinsic reward system’, triggered by
-> (extrinsic) reward: chocolate, sweet food, drugs,
.... for humans also: ‘praise’, money
-> not just reward: also ‘surprise’, ‘novelty’
- more than reward: ‘reward minus expected reward
-> Involved Iin drug addiction

Games and social networks try to make participants/users
addicted by stimulating the ‘intrinsic reward system’.

Example: - decrease the expected reward for some time, and
return then back to ‘'normal’ reward back.
- add a stochastic component ,
- bonus points / reach next level [re +yV(s) = V(s)]




Previous slide.

The three factor rule, dopamine, TD signals, value functions now all fit together.



J. Summary
Learning outcome: RL learning rules and the brain

- three-factor learning rules can be implemented by the brain

-> synaptic changes need presynaptic factor,
postsynaptic factor and a neuromodulator (3" factor)
—> actor-critic and other policy gradient methods
give rise to very similar three-factor rules

- eligibility traces as ‘candidate parameter updates’

-> set by joint activation of pre- and postsynaptic factor

-> decay over time
-> transformed In weight update if dopamine signal comes

- the dopamine signal has signature of the TD error
-> responds to reward minus expected reward
-> responds to unexpected events that predict reward

- addiction hijacks the dopamine reward system



Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2"d edition 2018, also online)

Chapter: 15
Background reading:
(1) Fremaux, Sprekeler, Gerstner (2013) Reinforcement learning

using a continuous-time actor-critic framework with spiking neurons
PLOS Computational Biol. doi:10.1371/journal.pcbi.1003024

(2) Gerstner et al. (2018) Eligibility traces and plasticly on behavioral time scales:
experimental support for neoHebbian three-factor learning rules, Frontiers in neural circuits
https://dol.org/10.3389/fncir.2018.00053

(3) Wolfram Schultz et al., (1997) A neural substrate of prediction and reward, SCIENCE,
https://www.science.org/doi/full/10.1126/science.275.5306.1593

(4) Wolfram Schultz (2002) Getting formal with dopamine and reward Neuron 36 (2), 241-263
https://www.sciencedirect.com/science/article/pii/S0896627302009674


https://doi.org/10.3389/fncir.2018.00053
https://www.science.org/doi/full/10.1126/science.275.5306.1593

| ] At least 60 percent of the material was new to me

[ 11 have the feeling that | understood 80 percent or
more

[ ] 'Even though' | study CS/Math/Physics/EE, | found the
links to learning In biology Interesting

THE END



Previous slide.



9. Anplication: Advantage Actor-Critic = update with TD signal

actions - Estimate V/(s)
advance push - learn via TD error
left
e Teotoe value _
sl o o o e i V(s) | Dopamine = TD-error
‘?;“i‘“}‘L | — ~ 0= [ri +yV(s) —V(s)]
ANVAVA A%
KNPt
VYV

Deep RL: parameters of AAC optimized with BackProp
Biology: ‘'need good representation of state in final layer
- no BackProp please!



Previous slide.

Review of actor-critic architecture



Wulfram Gerstner

learning in Ne“ral Nﬂtwnrks: EPFL, Lausanne, SW|tzerland
Three-factor rules for navigation

Navigation in a Maze (Model Study)

- What Is the task?

- How are ‘states’ represented?

- How are ‘actions’ represented?

- How is the ‘learning rule’ represented?

- How are ‘eligibility traces’ implemented?

->Use three-factor rule as a framework for learning



Previous slide.

We said that the three factor rule, dopamine, TD signals, value functions now all
fit together. Let's apply this to the problem of navigation in a maze.

The navigation task Is relevant for animals: find a place with food (or shelter) and
later return to It.

For biological plausibility we have to consider:

- Representation of states

- Representation of actions

- Representation of TD signal and learning rule




Review: TASK = conditioning in the Morris Water Maze

Morris Water Maze

1201

N\N R‘ime to find platform

%%L%g

trlals

—

.

)
T

oL
<

Rats learn to find
the hidden platform

ESCAPE LATENCY (s)

. £
Q =
1 [

0

(Because they like to
get out of the cold water) Foster, Morris, Dayan 2000



Previous slide.
Behvioral experiment in the Morris Water Maze.
The water I1s milky so that the platform is visible.

After a few trials the rat swims directly to the platform



rat brain T T DG TS

Place fields

C I e C t r O d e 7 o
synapses.._ J ,

axon

.

SOMma

dendrites

yramidal cells



Previous slide.

the hippocampus of rodents (rats or mice) looks somewhat different to that of

humans. Importantly, cells in hippocampus of rodents respond only in a small

region of the environment. For this reason they are called place cells. The small
region iIs called the place field of the cell.



Main property: encoding the animal’s location




Previous slide.
Left: experimentally measured place field of a single cell in hippocampus.
Right: computer animation of place field



Recall: Striatum | |
- Striatum sits below cortex Striatum consists of

- Part of the ‘basal gang”a’ - Caudate (dOrsaI Striatum)

- Dorsal striatum involved in | - Putamen (dorsal striatum)
action selection. decisions https://en.wikipedia.org/wiki/Striatum

Nucleus Accumbens IS

striatum -
thalamus part of ventral striatum fig: Wikipedia



Previous slide.

Left: Sketch of the Anatomical location of striatum and thalamus.

Right: the striatum lies also below the cortex. Since the striatum is involved In
action selection it will play an important role in this lecture.

From Wikipedia:

The striatum Is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the
forebrain. The striatum Is a critical component of the motor and reward systems; receives
glutamatergic and dopaminergic inputs from different sources; and serves as the primary
iInput to the rest of the basal ganglia.

Functionally, the striatum coordinates multiple aspects of cognition, including both motor
and action planning, decision-making, motivation, reinforcement, and reward
perception.The striatum Is made up of the caudate nucleus and the lentiform nucleus. The
lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus.

In primates, the striatum is divided into a ventral striatum, and a dorsal striatum,
subdivisions that are based upon function and connections. The ventral striatum consists
of the nucleus accumbens and the olfactory tubercle. The dorsal striatum consists of the
caudate nucleus and the putamen. A white matter, nerve tract (the internal capsule) in the
dorsal striatum separates the caudate nucleus and the putamen.!4! Anatomically, the term
striatum describes its striped (striated) appearance of grey-and-white matter



https://en.wikipedia.org/wiki/Nucleus_(neuroanatomy)
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Basal_ganglia
https://en.wikipedia.org/wiki/Forebrain
https://en.wikipedia.org/wiki/Motor_system
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Glutamate_(neurotransmitter)
https://en.wikipedia.org/wiki/Dopaminergic
https://en.wikipedia.org/wiki/Cognition
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Decision-making
https://en.wikipedia.org/wiki/Motivation
https://en.wikipedia.org/wiki/Reinforcement
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Lentiform_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Globus_pallidus
https://en.wikipedia.org/wiki/Primate
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Nucleus_accumbens
https://en.wikipedia.org/wiki/Olfactory_tubercle
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/White_matter
https://en.wikipedia.org/wiki/Nerve_tract
https://en.wikipedia.org/wiki/Internal_capsule
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Striatum#cite_note-FERRE2010-4

Review: Goarse Brain Anatomy and R

Reinforcement learning needs:

- representation of states / sensory input / ‘where’
- hippocampus? / sensory cortex?

- action selection - striatum?, motor cortex?

- reward signals -> dopamine?

- Candidate brain areas and brain signals!



Previous slide.

In reinforcement learning, the essential variables are the states (defined by
sensory representation), a policy for action selection, the actions themselves, and

the rewards given by the environment.

If we want to link reinforcement learning to the brain, we will have to search for
corresponding substrates and functions in the brain.

The potential relations show candidate brain region for a mapping to state,
actions, and reward. The above rough ideas need to be defined during the rest of

this lecture.



Example: Linear activation model with softmax policy

|eft: stay: right:
a1 a2:1 a3:1 T[(a] — 1|x; 0) — SOftmax[Ql, QZ) Q3]
B = softmax| Xy Wjk Yk]
Q(aq,x) g (a3,%)
W11
35
Vi = f(x — x)

/: “ \liward




Previous slide.

| now want to show that reinforcement learning with SARSA gives rise to three-
factor learning rules.

Suppose the agent moves on a linear track.
There are three possible actions: left, right, or stay.
We Interpret the action neurons as the Q-values!

The policy Is given by the softmax function. The total drive of the action neurons
IS a linear function of the activity y of the hidden neurons which in turn depends
on the input x. The activity of hidden neuron k Is f(x-x_k). The basis function f
could for example be a Gaussian function with center at x_Kk.



Review: Three-factor rules for SARSA().)

1) Choose action 2) Update eligibility trace (for each weight)

chosen action _ _
— stay __ — 1 Zik < A Zik
Q(aq,x) A3 =
Zik €< Zj T pre-post

W11 \

chosen action=1

3) update weights other action = 0

AWlk:T] TD - Zi1

\

TD error Is positive
If reward > expected reward




Previous slide.
Now we apply the update rule resulting from SARSA with eligibility traces.

The calculation on the blackboard shows that the derivative of the loss function
yields a term that can be interpreted as the multiplication of pre- and postsynaptic
activity.

Without an eligibility trace, this multiplication would directly lead to a weight
change. However, we want to use an eligibility trace. In this case, the term pre
times post leads to an increase of the corresponding eligibility trace. The further
multiplication with the TD error then causes the final weight update.

It IS Important to make the distinction between the Q-value (represented by the
output neurons) and the binary action value (zero or one) that is actually chosen.
The postsynaptic activity is the binary action value.

This requires some lateral competition between output neurons.



Review: Three-factor rules for SARSA().) - illustration

- place fields provide a compact
encoding of the environment

- With a good encoding goal-
oriented navigation Is possible
with a SINGLE layer.

- Hence three-factor rules can be
used:

@d 1) pre = representation of state

2) post = action
eligibility trace to bridge time scale of 1s
3) third factor = TD error




Previous slide.

Importantly, the update of the eligibility trace iIs a local learning rule that depends
on a presynaptic factor and a postsynaptic factor. The update of the weight then
depends on the eligibility trace and the TD error. The eligibility trace can be
envisaged as a marker attached to the synapse (‘flag’). The TD error can be
envisaged as being provided by a dopamine signal.

Problems in a biological interpretation could potentially arise from the facts that
- The action neurons are also representing Q-values — but in the end a SINGLE

binary action Is chosen
- This choice Is implemented by the softmax policy — which implicitly would
require a lateral interaction between neurons

- A potential solution could be to implement winner-take-all dynamics but with a
stochastic component at the moment of action choice.

An alternative solution can be by separating values (such as Q-values or V-
values) from the action. This Is the choice that we follow In the next week.



Summary: Three-factor rules, SARSA and eligibility

- Three-factor rules with eligibility traces enable to learn
rapidly (in a few trials) despite delayed rewards

- Three-factor rules work with a single hidden layer
(not compatible with BackProp)

- Three-factor rules therefore need a ‘good representation’
In the layer just before action choice

- Biological interpretation of SARSA with eligibility traces
as three-factor rule Is possible

- lateral Inhibitory Interactions necessary to Impose a unique
action choice

- Double role of action neurons as actors and Q-values
IS potentially problematic



Previous slide.
Summary



Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reinforcement Learning Lecture
Policy Gradient and Actor-Critic Methods

Review Policy gradient

Review Subtracting the mean via the value function
Actor-Critic

Eligibility traces for policy gradient

Math: Elibility traces arise naturally

Application of Actor-Critic to navigation task

OO~ WhE



Previous slide.
Previous section: SARSA applied to a navigation task
NEXT section: actor-critic applied to a navigation task.

We use the fact that place cells exist = good representation Is available. Deep
learning is not necessary!



Actor Critic with Ehgibility Traces (continuing setting)

Actor—Critic with Eligibility Traces (continuing)

Input: a differentiable policy parameterization 7(als, 8)
Input: a differentiable state-value parameterization v(s,w)

e

Parameters: trace-decay rates \? € [0,1], \Y € [0, 1]; step sizes o® >0, a™% > 0, n > 0

6

z% <+ 0 (d’-component eligibility trace vector)

z% + 0 (d-component eligibility trace vector)

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Initialize S € S (e.g., to sp) TD error (fOr ,y:l)

BEPEEII forever: /
A~ m(:]9,0) —
Take action A. observe S’. 1 bUt Set y_}\' o

b+ 1r +o(S5'w)—o(Sw (if S’ is terminal, then o(S",w) = 0)

— H+no
zV — \VzV + V0 (S,w)

e o e o Update eligibility traces
W WHavoz” o 1 Adapted from

0 0+ af52° - Update parameters Sutton&Barton
S+ 5 . 2018




Notes:

1) Here Sutton and Barto have suppressed the factor y. (by setting y=1).
They do not identify y=A.

2) The starting point of the derivation of Sutton and Barto is to optimize the
average reward (I optimized average return with discount factor v.

3) However, | would set y=A and add the A in the update for the TD error:
o&n[r FAV(S,w) = V(S,w)]

The reason Is

(1) that the critic learns V-values with TD-learning and should use the same
discounting y=A as the actor.

(1) The baseline subtraction for an actor that uses discounted cumulative

rewards for returns should match the consistency condition of the Bellman
eguation.



Actor Critic with Eligibility Traces and three-factor rules

In a neural network that Is NOT DEEP this algorithm Is

- Online
- Causal 3-factor rule:
- 3-factor rule Srp pre - post

-> biologically plausible

_—— Eg

Repeat forever:

A~ 7(-|S. 8)

TD error y=A!

zV +— \Vz%V + Vi 0(S,w)

oo wmaase [ Jpdate eligibility traces
W W+ avVoz%W 1 Adapted from

0 0+ af52° - Update parameters Sutton&Barton
S5 - 2018




Previous slide.

Not deep means:

Not a deep network:

We have a good representation one layer away from the output, and the output
(final layer) Is the action layer (or value layer)

Application to a navigation task (see computer exercise)



6. Maze Navigation with TD in Actor-Critic

policy =343 “value

- ll 4
map R T R s map
actor o= S s } 56 critic
@« b < £ 0%
neurons o neurons

3-factor rule:
Orp pre - post

radial basis
functions:
place cells

environment -°

Fremaux et al. (2013)



The environment contains an obstacle (red) and a invisible reward location (green).
The overall structure of the neural network Is that of an actor-critic architecture.

Both actor and critic are driven by radial basis functions that represent the
environment.

The actor neurons are organized In a ring. Neighboring neurons share information
(details not necessary to know at this stage, see next slide).

Critic neurons are drawn here as a population of neurons, but this could be just as
well a SINGLE critic neuron.

Critic neurons learn to represent the value of the current state using TD learning
derived from the representation of V-values. The same TD signal Is also used the
update the connections to the actor neurons.

We do not need a deep network to learn the task, since radial basis functions
(place cells) provide a compact representation of the environment. The actor-critic
learning Is then equivalent to a three-factor rule.



6. Ring of Actor neurons imnle_ments policy
Note: no need to formally define a softmax function

- Local excitation
A S - Long-range inhibition
g - Not a formal softmax

'soft competition’
of action neurons

O rate [Hz] 75
B - C
‘g w=- 180
>| O
2 219
> 2| 5
9 Sloe ¥
c v -
: S- 8 +
O }"" =3
G .3/|s|§N 2
ot unt
N RS
N o |57
O 1 2 3 4 5 6 7 8

time [s]

Fremaux et al. (2013)



Actor neurons (previous slide).

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory,
red: inhibitory) embodies the agent’'s policy (top). Each neuron represents
one of the 360 possible directions.

B: Lateral connectivity. Each neuron codes for a distinct motion direction.
Neurons form excitatory connections to similarly tuned neurons and
Inhibitory synapses to other neurons. As a result, neighboring neurons learn
from each other of how to represent actions.

C: Activity of actor neurons during an example trial. The activity of the
neurons (vertical axis) iIs shown as a color map against time (horizontal
axis). The lateral connectivity ensures that there Is a single bump of activity
at every moment in time. The black line shows the direction of motion (right
axis; arrows in panel B) chosen as a result of the neural activity.

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.
Fremaux et al. (2013)



6. Maze Navigation with TD in Actor-Gritic

A

+
I
g? ( reﬁrd ) i

starting positions

value [a.u.]

latency [s]

w
o
|

early trial
Late trial

R-max: (REINFORCE)

— Policy gradient without

O 10 20 30 40 50 60 70 80 90100
trial

the critic. The goal was
never found within 50s.

/TD: Actor-Critic

After 25 trials, the goal
was found within 20s.




6. Maze Navigation with TD in Actor-Gritic with spiking neurons

Maze navigation learning task.

A: The maze consists of a square enclosure, with a circular goal area
(green) In the center. A U-shaped obstacle (red) makes the task harder by
forcing turns on trajectories from three out of the four possible starting
locations (crosses).

B: Color-coded trajectories of an example TD agent during the first 75
simulated trials. Early trials (blue) are spent exploring the maze and the
obstacles, while later trials (green to red) exploit stereotypical behavior.

C: Value map (color map) and policy (vector field) represented by the
synaptic weights of the agent of panel B after 2000 simulated seconds.

D: Goal reaching latency of agents using three slightly different learning
rules for the actors . Latencies of N~100 simulated agents per learning rule.
The solid lines shows the median shaded area represents the 25th to 75th
percentiles. The R-max (REINFORCE without baseline) agent was simulated

without a critic and enters times-out after 50 seconds. Fremaux et al. (2013)



6. TD in Actor-Gritic for navigation task

- Learns in a few trials (assuming good representation)
- Works In continuous time (thanks to eligibility traces).
- Works In continuous space and for continuous actions
- Critic implements value function

- TD signal calculated by critic

- Three-factor rules for learning both actor and critic

- TD signal used for both actor and critic weights

Fremaux et al. (2013)



Previous slide.
Summary of findings.

An additional trick Is that actor neurons interact with each other so that
neighboring neurons share information and learn ‘similar’ policies.
This was not shown In class.

Actor-critic with TD Is better than standard policy gradient, because over many
trials information about state-values can diffuse back from the reward location into

distant parts of the environment. Note that the discount factor y of the value
function can have a different value than that of the eligibility trace of the actor.

Standard policy gradient cannot learn beyond the forgetting scale of the eligibility
trace (here 1 second).



6. Summary

Learning in a few trials (not millions!) possible, if the sensory
presentation Is well adapted to the task. Here radial basis
functions.

Actor-Critic works much better than REINFORCE without
baseline.

Actor-Critic with Eligibility Traces Is a powerful and stable
algorithm and highly recommended.

Probably the best model-free algorithm.



Previous slide.

In summary, we get fast reinforcement learning with biologically plausible components (3-
factor rule with TD learning/dopamine).

However, since we cannot do backprop in biology, these results rely on the fact that the
network has a ‘good’ representation of states, just below the layer of actions selection.

Place cells are such a good representation.

But how do we get place cells from visual input?



Wulfram Gerstner

Hﬂillfﬂl'ﬂﬂmﬂlll lﬂﬂl‘llill!l lﬂﬂtlll'ﬂ 3 EPFL, Lausanne, Switzerland
GContinuous input space: representation of ‘states

Unsupervised learning of a ‘good’ state representation

Arleo and Gerstner (2000), Spatial cognition and neuro-mimetic navigation: A model of
hippocampal place cell activity. Biol. Cybern. 83:287-299.

Strosslin et al. (2005), Robust self-localisation and navigation based on hippocampal place
cells. Neural Networks 18:1125-1140 doi:10.1016/j.neunet.2005.08.012

Sheynikhovich et al. (2009), Is There a Geometric Module for Spatial Orientation? Insights
From a Rodent Navigation Model, Psychol. Review 116:540



Previous slide.

Using a specific example we want to illustrate why function approximation yields an
inductive bias for generalization.



Inductive hias in Reinforcement Learning
Before you code an RL problem, try to answer the following questions:

1) Is the problem such that in similar (neighboring) input states
the best action is (likely to be) the same?

2) Is the problem such that if | find the reward with action a*
from state s, then a*Is probably good In other states as well?

3) Do | expect rewards In many states or rather only in a few
‘goal states’?

4) Moreover, are rewards given for states or state-action

transitions?
5) Is there a topology/neighborhood relation that would

enable us to talk about two actions as being ‘similar’?



Previous slide.

If you know the answer to one of the questions you can use this knowledge to choose your
coding scheme for inputs and for the action space.



Inductive bias in Reinforcement Learning (Example 2):
Jeli-localization and Navigation to Goal

- 2-dimensional arena 80cmx60cm
- single goal location: reach goal from arbitrary start location
- 120 actions (=directions of movement)

Agent: ZT
Khepera Robot S & e e/
Camera: P
240°view -

>240 000 pixel
PreproceSSing : Kb B Odometer !
Gabor filter bank i k

Strosslin et al. (2005), Robust self-localisation and navigation based on hippocampal place cells.

Neural Networks 18:1125-1140; doi:10.1016/j.neune t.2005.08.012



Previous slide.

The camera of the Khepera robot makes snaptshots in 4 directions that are combined into
a single ‘view’ covering a viewing field of 240 degree (total would be 360 degree). This

corresponds to > 240 000 pixels per view.
The image serves as input that represents the present ‘state’.

The robot moves Iin a square (or circular) arena.

The task Is to find an goal location (not marked!), from any possible start configuration.



- 2-dimensional arena 80cmx60cm

- Task: reach goal location (5¢cmx5cm) from arbitrary start
- 120 actions (=directions of movement)

- state = camera input = >240°000 pixels

How many episodes do we need to train the
agent to solve the task?

[1<20

120 - 200

[ ] 200 — 1000

1> 1000




We start with images of > 240°000 pixels, but we may consider




Inductive bias in Reinforcement Learning (Example 2)

- Preprocessing Gabor filter bank:

Filters of several spatial frequency and orlentatlon
at 45 different locations, -

200 filters per location.

- Snap-shot of environment

store the vector F;
of 9000 filter responses

- ‘Basis-function’ ¢(F(t) — F;)
similarity of current view F(t) with stored view vector F;
after rotation to optimal matching angle sample
basis function

Strosslin et al. (2005), Neural Networks 18:1125-1140; doi:10.1016/j.neune t.2005.08.012




Previous slide.

The camera of the Khepera robot makes snaptshots in 4 directions that are combined into
a single ‘view’ covering a viewing field of 240 degree (total would be 360 degree). This
corresponds to > 240 000 pixels per view.

The sample image (caption below) shows the mean orientation of all Gabor filters with the
lowest spatial frequency at the 45 sampling locations.

The Gabor filters come as pairs of sine and cosine filters (or complex filters) and only the
total amplitude, but not the phase of the response of the filter pair Is recorded.

The set of filter responses at time t of all 9000 filters Is denoted by F(t)

Detalls of the processing steps are explained in the next few slides

Fig. 3. Response of the artificial retina applied to a view from the *Bjuildings’ environment. The black lines represent the weighted sum of the gabor filter responses
for all orientations. They indicate the direction and ‘strength’ (line length) of edges near each retinal point.



Real robot: view field 4X60
Simulated robot: view field 280

Strosslin et al. (2005), Neural Networks 18:1125-1140; doi:10.1016/j.neunet.2005.08.012



Previous slide.
The robot takes a sample image.

With a real robot: we let the robot rotate around its own axis to take views in 4 directions,
each view over 60 degree angle; the four views are considered as a single image of view
angle 240 degrees.

In simulated robots one case use directly 280 or 300 or even 360 degree as a viewing
angle.



Local view : activation of set
of 9000 Gabor wavelets

Robot in an environment Visual input at each
time step

f = B
‘ DLW L . \ Ex &P
Wi AN ol N
5 f RERLRIEEES
8 i N << <>
NEREE L F ) 'w % \:H L0 | |
w il ; | e
s 3.";& %1l + +
. &

N I
Single View Cell stores a
local view

Environment exploration  Population of view cells

— D All local views are
RN J stored in an
__________ ,0‘"0“',‘{———-0--_' ______ o " 1 I
S AP incrementally growing
T | view cell population




Previous slide.

During exploration the robot takes a new sample image whenever it does not recognize
the view. Recognition is defined that 10 or more cells strongly respond to the new image.

If not, the image Is classified as novel. Novelty triggers learning (as a third factor!).

The novel sample image is memorized by storing the set of responses of the 9000 Gabor
filters.



synapses from Gabor filter k (Receptive Fields) to ‘view cell’ |

Awik — nTiVC 8% lf (8% > 61 (else :O)

n=1if 'novel view'

Ve r’“ =1 for newly recruited cell

2
15 = \JFk(x’)Image(x’)dx’

1 Tk

Fy

Strdsslin et al. (2005), Neural Networks 18:1125-1140; doi:10.1016/j.neune t.2005.08.012



Previous slide.
What does it mean to ‘store the present view'?
The model uses a three-factor rule that yields "1-shot’ Hebbian learning.

1. The image is applied to the set of thousands of filters. We think of filters as receptive

flelds. For each filter a presynaptic neuron is active proportional to the response of its
filter.

2. We compare the total response of summed over all presynaptic neurons with a

threshold. If the total sum Is smaller than a novelty threshold, then the present view Is
novel.

3. If novelty is discovered all postsynaptic cells are turned off, except a single cell | whose
activity Issettor; = 1.

4. We apply Hebbian learning (Eqg. 1) to this cell with learning rate n = 1

The result yields learning in a single trial (one-shot), controlled by novelty (third factor).



Stored local view i New local view

Population of view cells

e, O
.". @

position at new
local view

Alignment of views - current gaze direction




Previous slide.

The filter responses at time t are compared to the stored filter responses.
To find the best match the new image is rotated.

The angle of rotation (necessary to yield the best match) tells us about the direction of
gaze compared to the gaze direction at the moment when the original image was stored.



Stored local view | New local view Small difference between
local views — spatially
close positions

stored/current filter responses ~ population of view cells

| : i responding at red position
Difference: AL; = |F; — F(t)]

Similarity - [AL;| GRS
measure: T =exp(———) RN SO Y
Oyc . AN
- .: 2 ‘ E:--
. :1" L.;.':-'."' - .'1- .'-I-
Basis ,

Function d(F(t) — F;) = rl_VC



Previous slide.

After the rotation to best-match position. the filter responses at time t are compared to the
stored filter responses. This yields the basis function.

The image on the right shows which basis functions respond when the robot is at a
specific location. Red indicates strong response.

Note that basis functions do not know where they are located In space (i.e. they have no
spatial position label, but just their response profile and an index for each basis function).
For this Image we have plotted a dot at a place that corresponds to the location of the
maximal response of a given basis function. But this is for visualization purpose only.



0 Q(s,a'lw) = 2 wi(a")p(F(t) — F;)
— N N O
N e o
e / \ N Activity = Q Value
o y

d(F(t) — F)

N N o

Jj | |
preprocesing: Gabor filters
state g(t) + rotation/alignment

O




Previous slide.

Action neurons represent the Q-values. In total there are 120 neurons. We may consider
them to lie on a circle with a position on the circlue corresponding to the direction of
movement triggered by the action.

The center fj of each basis function | corresponds to the (stored) response of thousands of
Gabor filters recorded at some time tj during exploration. The output of the basis function |
measures the similarity with the current view, represent by the current response of the
Gaborfilters, The vector of all Gabor filter responses at time t is f(t).

The figure on the left shows rather schematically the net result of the processing steps.
The functions ¢ are visualized as local basis functions in the environment. Weights
connect to actions that code for the different movement directions. The activiation of each
action unit indicates its Q-value.



- While exploring: take new snapshot whenever less than

10 basis functions are active —-> creates new basis function
- Reinforcement Learning by Q-learning/SARSA
- FInal action directions after 20 episodes (goal-findings)
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Previous slide.

The left image shows the time it takes to find the goal, as a function of successful trials
(episodes).

The right image shows needles that indicate the learned direction of movement after 20
trials.



Sheynikhovich et al.
Psychological Review,
2009
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- Learning = relate present view (location) to movement direction
- Needs alignment of the views to known orientation

Strosslin et al. (2005), Neural Networks 18:1125-1140; doi:10.1016/j.neunet.2005.08.012



Previous slides.

- Coding of input space: we sample vectors of feature responses in the high-dimensional
space, but we know that in the end they encode only two dimensions, so that sampling
IS Indeed possible.

- The space is further reduced from 3 to 2 dimensions by algorithmic rotation of images
(= shift of feature vectors) to get rid of difference due to orientation.

- We can work with relatively long eligibility traces, since there Is a single goal state.

- We generalize across actions: we imagine actions forming a ring of possible directions.
Neighboring actions should learn (in most states) similar behavior, hence If action a* Is
chosen with SARSA and learns (at rate eta), then all its neighbors learn as well (but
with slightly reduced rate).



- Input: 240 000 pixels (or values of 9 000 Gabor filters)
- high-dimensional!

- output: 120 actions
- high-dimensional!

Why does It work?

What is the ‘real’ input dimension? (states)

What is the ‘real’ output-dimension? (actions)

.




Inductive bias in Reinforcement Learning

Before you code an RL problem, try to answer the following questions:

1) Is the problem such that in similar (neighboring) input states
the best action Is (likely to be) the same?

Yes = broad overlapping representation of states Is possible.
low Intrinsic dimensionality of state space - sampling possible

2) Is the problem such that if | find the reward with action a*
from state s, then a*1s probably good In all states?

No, not In presence of obstacles or objects in the middle
- global representation of states is not useful.



Inductive bias in Reinforcement Learning

3) Do | expect rewards In many states or rather only in a few
‘goal states'?

Single goal state = long eligibility traces possible.

4) Moreover, are rewards given for states or state-action
transitions?

Rewards only In states = exploration easier: stop exploration
If each state well represented

5) Is there a topology/neighborhood relation that would
enable us to talk about two actions being ‘similar’?



Inductive bias in Reinforcement Learning

5) Is there a topology/neighborhood relation that would
enable us to talk about two actions being ‘similar?

Yes > Generalization across actions space possible.

Enforce activity profile
& % e ac = spread Q-value activity
> | from ‘winning action’
% /  Enforced activity profile to neighbors
No ™ = learn neighbors at the same
. time
0 = learn as If all similar actions
had been taken as well




Inductive bias in Reinforcement Learning

The EFFECTIVE number of parameters Is much lower
than the number of weights, since neighboring state neurons
and neighboring action neurons learn similar things.

Additional inductive bias Is also used In this example:

Odometry (wheel turns) allows to give a noisy prediction of
current location.

This prediction can be combined with the filter response to
give more localized filters

The odometry In turn can be calibrated by the recognized filter
responses.

No stable compass, GPS, or knowledge of ‘where’ necessary



Previous slides.

- Coding of input space: we sample vectors of feature responses in the high-dimensional
space, but we know that in the end they encode only two dimensions, so that sampling
IS Indeed possible.

- The space is further reduced from 3 to 2 dimensions by algorithmic rotation of images
(= shift of feature vectors) to get rid of difference due to orientation.

- We can work with relatively long eligibility traces, since there Is a single goal state.

- We generalize across actions: we imagine actions forming a ring of possible directions.
Neighboring actions should learn (in most states) similar behavior, hence If action a* Is
chosen with SARSA and learns (at rate eta), then all its neighbors learn as well (but
with slightly reduced rate).



Inductive bias in Reinforcement Learning

Use all prior knowledge you have, before you start coding:

- No Free Lunch

- a generic neural network Is rarely the best

- choose encoding and preprocessing so that generalization
across ‘similar things’ becomes possible.

Reinforcement Learning can be extremely fast!!!

Reinforcement Learning needs a good
representation of states!

Representation of states can be learned with three-
factor rules: biologically plausible, no BackProp



Previous slide. Summary



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Discussion of Exercise:  Comparison with Biology  (no eligibility trace)
	Slide 24
	Slide 25: Three-factor rule (no eligibility trace)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Model: stores views of visited places
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129: Navigation Results: Office environment
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138

