
Wulfram Gerstner

EPFL, Lausanne, Switzerland
Learning in Neural Networks

Actor-Critic Methods (RL 5)

Objectives:

Reinforcement Learning in Deep Artificial Neural Networks

REINFORCE with BASELINE algorithm

Actor-Critic algorithm

Eligibility traces for policy gradient

Model-based versus Model-free RL

Part 1: Introduction

Objectif: get ready to apply RL or read research papers in RL

→ final lecture on ‘Foundations of RL’

Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Chapter: 13.5-13.8.

8.1 + 8.2

Chess Artificial neural network

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats Lee Sedol

Go

Deep reinforcement learning

(previous slide)

The success of deep artificial neural networks in Chess and Go has spurred a

renewed interest in Reinforcement Learning.

action Move piece

input

output

Neural network parameterizes

actions in the output as a

function of continuous state s.
One output per action.

Learn weights by playing against itself.

Artificial Neural Networks for Reinforcement Learning

(Backprop = gradient descent rule in multilayer networks)

Two Methods:

- TD-learning

- Policy Gradient

can also be combined:

→ actor-critic networks

(previous slide)

Deep Reinforcement Learning (DeepRL) is reinforcement learning in a deep

network. Suppose that each output unit of the network corresponds to one action

(e.g. one type of move in chess). Parameters are the weights of the artificial

neural network.

Actions are chosen, for example, by softmax on the output-values.

Weights are learned by playing against itself – doing gradient descent on an error

function E (Loss function)

Two important classes of RL algorithms are TD-learning and Policy Gradient.

An actor-critic architecture combines the advantages of both.

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄(𝑠, 𝑎1)

Review: Q-values and V-Values

expected total discounted reward

starting in s with action 𝑎1:

𝑄(𝑠′, 𝑎3)

𝑄(𝑠, 𝑎1)

expected total discounted reward

starting in s : V(𝑠)

V(𝑠)

V(𝑠′)𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradientignoretarget

optimize by semigradient on Loss function

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑉 𝑠′|𝒘 - V 𝑠|𝒘]2

take gradientignoretarget

optimize by semigradient on Loss function

(previous slide)

The consistency condition of TD learning, can be formulated by an error function:

Either for Q-values

or for V-values

This error function will depend on the weights w.

We can change the weights by semi-gradient descent on the error function. This

leads to the Backpropagation algorithm of ‘Deep learning’

E = 0.5 [r +  Q(s’,a’)- Q(s,a)]2

E = 0.5 [r +  V(s’,a’)- V(s,a)]2

Aims for today:

- Understand the principles of Deep Reinforcement-learning

in Artificial Neural Networks.

- Understand how the Actor-Critic combines

Policy Gradient methods and TD methods

- Understand why eligibility traces arise in policy gradient

- Understand Difference between Model-based

and Model-free RL

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Introduction

2. From Policy gradient to Deep REINFORCE with

baseline

Part 2: From policy gradient to Deep Reinforcement Learning

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Review Policy Gradient

Aim:

update the parameters 

of the policy (a|s,)

Implementation:

- play episode from start to end;

- record rewards in each step;

- update the parameters 

(previous slide and next slide)

Policy gradient methods are and alternative to TD methods.

We consider a single episode that started in state 𝑠𝑡 with action 𝑎𝑡 and ends after

several steps in the terminal state 𝑠𝑒𝑛𝑑

The result of the calculation gives an update rule for each of the parameters.

The update of the parameter 𝜃𝑗 contains several terms.

(i) the first term is proportional to the total accumulated (discounted) reward, also

called return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡

(ii) the second term is proportional to gamma times the total accumulated

(discounted) reward but starting in state 𝑠𝑡+1

(iii) the third term is proportional to gamma-squared times the total accumulated

(discounted) reward but starting in state 𝑠𝑡+2

(iv) …

We can think of this update as one update step for one episode. Analogous to the

terminology used by Sutton and Barto, we call this the Monte-Carlo update for one

episode.

The log-likelihood trick was explained earlier. Since this is a sampling based

approach (1 episode=1 sample) each of the terms is proportional to ln 

Review Policy Gradient: REINFORCE (episodic)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡] 𝑑
𝑑𝜃𝑗

ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑

𝑎𝑡+1] 𝑑
𝑑𝜃𝑗

ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

action

state

state

action

action

end of trial

EPISODIC: fixed start state 𝑠𝑡 , fixed terminal state 𝑠𝑒𝑛𝑑

(next slide)

The policy gradient algorithm is also called REINFORCE. It if formulated here for

fixed starting state and assumes the existence of a terminal state. Note that

updates are only implemented at the end of the trial (i.e., once the agent has

arrived in the terminal state).

As discussed in a previous lecture and in the exercise session, subtracting the

mean of a variable helps to stabilize the algorithm.

There are two different ways to do this.

(i) Subtract the mean return (=value V) in a multistep-horizon algorithm. This is

what we consider here in this section. NOW!

(ii) Subtract mean expected reward PER TIME STEP (related to the delta-error of

TD learning) in a multi-step horizon algorithm.

This is what we will consider in section 3 under the term Actor-Critic.

Subtract a baseline

we derived this online gradient rule for multi-step horizon

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 + 𝜃𝑗 ∝

But then this rule is also an online gradient rule

with the same solution (in expectation)
because a baseline shift drops out if we take the gradient

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝒃(𝒔𝒕)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃] +𝜃𝑗 ∝

+ 𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑

𝑎𝑡 − 𝒃(𝒔𝒕+𝟏)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃] + …

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑

𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃 + …

(previous slide)

Please remember that the full update rule for the parameter 𝜃𝑗

in a multi-step episode contains several terms of this form; here only the first two

of these terms are shown.

Similar to the case of the one-step horizon, we can subtract a bias b from the

return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 without changing the location of the maximum of the total expected

return.

Moreover, this bias 𝑏(𝑠𝑡) can itself depend on the state 𝑠𝑡.

Thus the update rule now has terms

𝜃𝑗 ∝ [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑏(𝑠𝑡)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]

+[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑

𝑎𝑡+1 − 𝑏(𝑠𝑡+1)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃]

+2[𝑅𝑠𝑡+2→𝑠𝑒𝑛𝑑

𝑎𝑡+2 − 𝑏(𝑠𝑡+2)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+2 𝑠𝑡+2, 𝜃]

+ …

Subtract a reward baseline

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑏(𝑠𝑡)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]+…𝜃𝑗 ∝

- The bias b can depend on state s

- Good choice is b =‘mean of [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡]’

→ take 𝑏 𝑠𝑡 = 𝑉 𝑠𝑡

→ learn value function V(s)

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

(previous slide

Is there a choice of the bias 𝑏 𝑠𝑡 that is particularly good?

One attractive choice is to take the bias equal to the expectation (or empirical

mean). The logic is that if you take an action that gives more accumulated

discounted reward than your empirical mean in the past, then this action was good

and should be reinforced.

If you take an action that gives less accumulated discounted reward than your

empirical mean in the past, then this action was not good and should be

weakened.

But what is the expected discounted accumulated reward? This is, by definition,

exactly the value of the state. Hence a good choice is to subtract the V-value.

And here is where finally the idea of Bellman equation and TD learning comes in

through the backdoor: we can learn the V-value, and then use it as a bias in policy

gradient.

Actions:

-Learned by

Policy gradient

- Uses V(𝒙) as baseline

Value function:

- Estimated by Monte-Carlo

-provides baseline b=V(𝒙)
for action learning

V(𝒙)

𝒙 𝒙

Learning two Neural Networks: actor and value

𝒙 = states from

episode:

𝑠𝑡, 𝑠𝑡+1, 𝑠𝑡+2,

action

state

state

action

action

end of trial

(previous slide)

In the latter case we have two networks:

The actor network learns a first set of parameters, called 𝜃 in the algorithm of

Sutton and Barto.

The value network learns a second set of parameters, with the label w .

The value b(𝑥 = 𝑠𝑡+𝑛) =V(𝒙) is the estimated total accumulated discounted

reward of an episode starting at 𝑥 = 𝑠𝑡+𝑛

The weights of the network implementing V(x) can be learned by Monte-Carlo

sampling the return: you go from state s until the end, accumulate rewards, and

calculate the average over all episodes that have started from (or transited

through) the same state s. (See Backup-diagrams and Monte-Carlo of earlier

lecture).

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑

𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)]

action

state

state

action

action

end of trial

REVIEW: Monte-Carlo Estimation of V-values (tabular)
𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3Return(s)=

single episode starting in state s0 also allows to

update V(s) of children states

(previous slide, Review). We can use Monte-Carlo estimates for V-values

In this (version of the) algorithm you first open V-estimators for all states.

For each state s that you encounter, you observe the sum of (discounted) rewards

that you accumulate until the end of the episode. The total accumulated

discounted reward starting from s is the ‘Return(s)’

After many episode you estimate the V-values V(s) as the average over the

Returns(s).

Note that the above estimations are done in parallel for all states s that you

encounter on your path. This includes ‘children states’.

Also note that the Backup diagram is much deeper than that of TD-learning, since

you always continue until the end of the episode before you can update V-values

of states that have been encountered many steps before.

Actions:

-Learned by

Policy gradient

- Uses V(𝒙) as baseline

Value function:

- Estimated by Monte-Carlo

-provides baseline b=V(𝒙)
for action learning

V(𝒙)

𝒙 𝒙

Learning two Neural Networks: actor and value

𝒙 = states from

episode:

𝑠𝑡, 𝑠𝑡+1, 𝑠𝑡+2,

Parameters

are the network

weights 

Parameters

are the weights w

(previous slide)

In the latter case we have two networks:

The actor network learns a first set of parameters, called 𝜃 in the algorithm of

Sutton and Barto.

The value network learns a second set of parameters, with the label w .

The value b(𝑥 = 𝑠𝑡+𝑛) =V(𝒙) is the estimated total accumulated discounted reward

of an episode starting at 𝑥 = 𝑠𝑡+𝑛

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑

𝑎𝑡+𝑛

‘REINFORCE’ with baseline From book:

Sutton and Barto, 2018

𝑟1 𝑟𝑇

𝑟𝑘

(previous slide)

Algorithm in pseudocode taken from the book of Sutton and Barto.

For the actor, the algorithm evaluates terms of the form

Where the return is 𝐺 = 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑

𝑎𝑡+𝑛

And the bias estimate is v(𝑠𝑡+𝑛) = 𝑏(𝑠𝑡+𝑛)

The terminal state in their notation occurs at time T and

the initial state has index 0.

For the value function, they use Monte-Carlo estimation of the total accumulated

reward in one episode (see previous slide).

[𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑

𝑎𝑡+𝑛 −𝑏(𝑠𝑡+𝑛)] 𝑑
𝑑𝜃𝑗

ln[𝜋 𝑎𝑡+𝑛 𝑠𝑡+𝑛, 𝜃]

Why subtract the mean?

Subtracting the expectation provides estimates

that have (normally) smaller variance (look less noisy)

Note: in multi-step RL, the minimal variance is not exactly at

bias=expection.

Reason: correlations

(previous slide)

Why is it useful to subtract the mean?

Whatever the choice of baseline, the algorithm should eventually converge to the

same set of parameters. However, since the algorithm is based on stochastic gradient

descent or ascent (i.e., the online rule instead of the full batch rule), the algorithm

makes noisy steps that only go on average in the right direction.

Subtracting a baseline that is close to the mean generally reduces the noise.

The example with a product of independent variables shows that by subtracting the

mean of x, the noise is considerable reduced in each of the samples! (Last week)

Unfortunately, in a multi-step reinforcement learning scenario, the minimal noise is not

exactly the situation where one subtracts the mean because of correlations, but (at

least we can assume that) it is close to it.

Deep reinforcement learning: exploit state representation

Network for choosing action:
Optimized by policy gradient

2nd output for value of state:

input

output

action: Advance king

learning:

→ change connections

aims:

- learn value V(s) of position

- learn action policy to win

Learning signal:

- [actual Return - V(s)]

𝑉 𝑠

basic idea of

of alpha-zero

(previous slide)

The value unit can either take directly the input (and hence forms a separate

network) or it can also share a large fraction of the network with the policy

gradient network (actor network).

The actor network learns a first set of parameters, called 𝜃 in the algorithm of

Sutton and Barto. The value unit learns a second set of parameters, with the label

wj for a connection from unit j to the value output.

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑

𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)]

Summary: Deep REINFORCE with baseline substraction

Network for choosing action:
Optimized by policy gradient

2nd output for value of state:

input

output

action

෍

𝑗

𝑤𝑗𝑥𝑗(𝑡)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]+…𝜃𝑗 ∝

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)]𝑥𝑗(𝑡) +𝑤𝑗 ∝

𝑤𝑗

𝑥𝑗

𝑉 𝑠𝑡 =

(previous slide)

Here the value unit receives input from the second-last layer. Units there have an

activity xj (j is the index of the unit) which represent the current input state in a

compressed, recoded form (The network could for example be a convolutional

network if the input consists of pixel images of outdoor scenes.

The actor network learns a first set of parameters, called 𝜃 in the algorithm of

Sutton and Barto. The value unit learns a second set of parameters, with the label

wj for a connection from unit j to the value output.

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑

𝑎𝑡+𝑛

What matters is the difference [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)]

Updates are: [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]+…𝜃𝑗 ∝

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)]𝑥𝑗𝑤𝑗 ∝

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Introduction

2. From Policy gradient to Deep REINFORCE

3. Actor-Critic network (‘Advantage Actor Critic’)

Part 3: Actor-Critic network

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods

(previous slide)

We continue with the idea of two different types of outputs:

A set of actions ak , and a value V.

However, for the estimation of the V-value we now use the ‘bootstrapping’

provided by TD algorithm (see previous weeks) rather than the simple Monte-

Carlo estimation of the (discounted) accumulated rewards in a single episode.

The networks structure remains the same as before:

An actor (action network) and a critic (value function).

Sutton and Barto reserve the term ‘actor-critic’ to the network where V-values are

learned with a TD algorithm.

However, other people would also call the network that we saw previously in

section 2 as an actor-critic network and the one that we study now is then called

‘advantage actor critic’ or AAC.

Actor-Critic = ‘REINFORCE’ with TD bootstrapping

advance push

left

actions

value

TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡] = 

𝑉 𝑠

- Estimate V(s)
- learn via TD error

(previous slide)

Bottom right: Recall from the TD algorithms that the updates of the weights are

proportional to the TD error 

In the actor-critic algorithm the TD error is now also used as the learning signal

for the policy gradient:

TD error: The current reward 𝑟𝑡 at time step t
is compared with the expected reward for this time step [𝑉 𝑠𝑡 − 𝛾𝑉 𝑠𝑡]

[Note the difference to the algorithm in section 6:

There the total accumulated discounted reward 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡

was compared with V(𝑠𝑡)]

Actor-Critic = ‘REINFORCE’ with TD bootstrapping

𝑟
𝑟

TD error
action

state

state

‘online’

Previous slide.

Pseudocode of Algo in the notation of Sutton and Barto (2018)

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Comparison: ACTOR-CRITIC (versus REINFORCE with baseline]

Aim of actor:

update the parameters 

of the policy (a|s,)

𝑉 𝑠𝑡

𝑉 𝑠𝑡+1

𝑟𝑡

update proportional toTD-error

 = 

𝑉 𝑠

[𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡]

Aim of critic: estimate V using TD learning

action

state

state

(previous slide)

For a comparison of ‘actor-critic’ with ‘REINFORCE with baseline’

In both algorithms (actor critic and REINFORCE with baseline), the actor learns

actions via policy gradient.

In the actor-critic algorithm the critic learns the V-value via bootstrap TD-learning

(see week 9).

In the actor-critic algorithm the TD error is also used as the learning signal for the

policy gradient.

The backup diagram of actor-critic is short:

action

state

state

𝑠

𝑠′

a1 a2 a3

𝑠"

a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Comparsion: REINFORCE with baseline (vs actor-critic)

1. Aim of actor in REINFORCE

update the parameters 

of the policy (a|s,)

𝑉 𝑠𝑡

𝑉 𝑠𝑡+1

𝑟𝑡

2. update proportional to

RETURN-error:

𝑉 𝑠

3. Aim of critic: estimate V (using Monte-Carlo)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 −𝑉(𝑠𝑡)]

action

state

state

action

action

state

state

action

action

end of trial

(previous slide)

We continue the comparison with REINFORCE with baseline.

In both algorithms (actor critic and REINFORCE with baseline), the actor learns

actions via policy gradient.

In the REINFORCE algorithm the baseline estimator learns the

V-value via Monte-Carlo sampling of full episodes.

In the REINFOCE algorithm the mismatch between actual return

and estimated V-value (‘RETURN error’) is used as

the learning signal for the policy gradient.

The Backup diagram is long:

action

state

state

action

action

end of trial

Quiz: Policy Gradient and Deep RL

Your friend claims the following. Is he right?

[] Even some policy gradient algorithms use V-values

[] V-values for policy gradient can be calculated in a separate

deep network (but some parameters can be shared with the actor network)

[] The actor-critic network has basically the same

architecture as deep REINFORCE with baseline: in both

architectures one of the units represents the V-values

[] While actor-critic uses ideas from TD learning,

REINFORCE WITH BASELINE does not.

[x]

[x]

[x]

[x]

Previous slide.

This is a repetition of an earlier slide.

Teaching monitoring – monitoring of understanding

[] today, up to here, at least 60% of material was new to me.

[] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture.

Terminology for Actor-Critic

Sutton and Barto

and this class:

Some others

REINFORCE WITH BASELINE → Actor-Critic Architecture

(in general sense)

Actor-Critic Algorithm → Advantage Actor-Critic Algorithm

(in narrow sense)

V(𝒙
)

𝒙 𝒙
𝒙 = states

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Introduction

2. From Policy gradient to Deep RL

3. Actor-Critic

4. Eligibility traces for policy gradient

Part 4: Eligibility traces for policy gradient

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods

(previous slide)

Two weeks ago we discussed eligibility traces.

It turns out that policy gradient algorithm have an intimate link with eligibility

traces. In fact, eligibility traces arise naturally for policy gradient algorithms.

In standard policy gradient (e.g., REINFORCE with baseline) we need to run each

time until the end of the episode before we have the information necessary to

update the weights.

The advantage of eligibility traces is that updates can be done truly online (similar

to the actor critic with bootstrapping).

Actor-critic with eligibility traces

- Online algorithm

- Actor learns by policy gradient

- Critic learns by TD-learning

- For each parameter, one eligibility trace

- Update eligibility traces while moving

- Update weights proportional to TD-delta and eligibility trace

(previous slide)

The idea of policy gradient is combined with the notion of eligibility traces that we

had seen two weeks ago.

The result is an algorithm that is truly online: you do not have to wait until the end

of an episode to start with the updates.

Review: Eligibility Traces

Idea:

- keep memory of previous state-action pairs

- memory decays over time

- Update an eligibility trace for state-action pair

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 + 1 if action a chosen in state s

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 decay of all traces

- update all Q-values:

Q(s,a)= [r-(Q(s,a)-  Q(s’,a’))] e(s,a)
Here: tabular SARSA

with eligibility trace
TD-delta

Tabular: parameters Q(s,a)
eligibility trace e(s,a)

One eligibility trace per parameter

(previous slide)

This the SARSA algorithm with eligibility traces that we had seen two weeks ago.

We had derived this algo for a tabular Q-learning model as well as for a network

with basis functions and linear read-out units for the Q-values Q(s,a).

In the latter case it was not the Q value itself that had an eligibility trace, but the

weights (parameters) that contributed to that Q-value.

We now use the same idea.

Eligibility Traces for actor-critic

Idea:

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

increase of all traces

𝑧𝑘 ← 𝑧𝑘  decay of all traces

- update all parameters of ‘actor’ network:

𝜃𝑘= [r-(V(𝑠𝑡)- V(𝑠𝑡+1))] 𝑧𝑘 Here: policy gradient

with eligibility trace

(actor network)
TD-delta

𝑧𝑘 ← 𝑧𝑘 + 𝑑

𝑑𝜃𝑘
ln[𝜋(𝑎|𝑠, 𝜃𝑘)]

(previous slide)

Eligibility traces can be generalized to deep networks.

Here we focus on the actor network.

For each parameter 𝜃𝑘 of the network we have a shadow parameter 𝑧𝑘 : the

eligibility trace.

Eligibility traces decay at each time step ( ) and are updated proportional to the

derivative of the log-policy. Interpretation:

The update of the eligibility trace can be seen as a ‘candidate parameter update’ –

but it is not yet the ‘real’ update of the actual parameters.

The update of the actual parameters 𝑤𝑘 of the actor network are proportional to

the eligibility trace 𝑧𝑘 and the TD-error

Parameters are updated at each time step of the episode (as opposed to Monte-

Carlo where one has to wait for the end of the episode). Hence ‘true online’.

𝛿 = [𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡]

= [𝑟𝑡 − [𝑉 𝑠𝑡 − 𝛾𝑉 𝑠𝑡+1]]

NETWORK for Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters 

Eligibility traces of actor have parameters z.

The critic network has parameters w.

Eligibility traces of critic have parameters z.

Actor chooses actions with policy 

V(𝒙)

𝑆 𝑆

actor output



TD

w, z 𝑧
w

w



(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters 

While the critic network has parameters w.

The actor network is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Candidate updates are implemented as eligibility traces z.

Actor-Critic with Eligibility traces (bootstrapping/TD trick)

𝑟
𝑟

TD error
action

state

state

I suggest to cut this: use continuous and

not episodic setting (see next section)

(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters 

While the critic network has parameters w

The actor network is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Note that Sutton and Barto include a discount factor  (in the update of the eligibility
trace) but in the exercises we will see that the discount factor can (to an excellent
approximation) be absorbed into  This algo is for ‘episodic’, i.e. problem with
terminal states (which causes the step ‘I   I ‘; we drop this step later)

V(𝒙)

𝑆 𝑆

actor output



TD

w

Quiz: Policy Gradient and Reinforcement learning

[] While actor-critic uses ideas from TD learning,

REINFORCE with baseline uses Monte-Carlo

estimates of V-values

[] Eligibility traces are ‘shadow’ variables for each parameter

[] Eligibility traces appear naturally in policy gradient algos.

[x]

[x]

[x]

(your comments)

The proof of the last item is what we will sketch now – proof in the exercises.

Introduction to Reinforcement Learning

Two types of algo with different philosophy

TD learning Policy Gradient

tabular

continuous/

function approx

Bellman eq.,

Q/V values, Bootstrap

Direct action modeling

Not Bootstrap

temporal smoothing eligibility traces /n-step eligibility traces (natural)

SARSA(), Q() REINFORCE () w. baseline

yes, ad hoc, heuristic

semi-gradient

yes, natural, but slow

Actor-critic with eligibility traces

and TD-updates

Previous page

Summary: Reinforcement Learning has two major types of algorithms, i.e. TD-learning

and Policy Gradient.

The advantage of TD learning is the bootstrapping effect. Combined with ad-hoc

eligibility traces it yields powerful algorithms for the tabular setting. Excellent example are

The advantage of policy gradient are two-fold:

(i) since we optimize directly the action outcomes, effects of function approximation

(such as smoothing, imprecise representations of different cases) are automatically

taken into account

(ii) In the continuing setting, eligibility traces arise naturally.

By default (without baseline subtraction) the algorithm is slow.

The best way to add baseline subtraction is the actor-critic architecture.

It combines the best of both worlds, since the V-value for the base line uses TD learning.

SARSA() and Q()

Introduction to Reinforcement Learning

Two types of algo with different philosophy

TD learning Policy Gradient

tabular

continuous/

function approx

Bellman eq.,

Q/V values, Bootstrap

Direct action modeling

Not Bootstrap

temporal smoothing eligibility traces /n-step eligibility traces (natural)

SARSA(), Q() REINFORCE () w. baseline

yes, ad hoc, heuristic

semi-gradient

yes, natural, but slow

Actor-critic with eligibility traces

and TD-updates

Lecture RL1+2

Lecture RL 3

Lecture RL4

Lecture RL5,

today

Previous page

Summary:

During the first 7 weeks we covered in 5 lectures all the major types of algorithms.

Today is the end of the ‘Introduction’ part.

We are now ready to apply the algorithms in various applications –

or study specific topics such as the relation to biology and distributed hardware.

This will be done in the coming weeks.

At the end of the lecture today, you should be able to read current literature on

Reinforcement Learning.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Introduction

2. From Policy gradient to Deep RL

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Eligibility traces arise naturally in policy gradient

Part 5: Eligibility traces (Math)

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods

Summary: Eligibility traces from Policy Gradient

‘Policy Gradient Theorem’:

An algorithm with eligibility traces arises naturally

in the frame work of policy gradient.

Proof: assumes setting of ‘continuing’ environment

(as opposed to episodic).

Aim: optimize returns from ALL states

Review: episodic setting versus infinite horizon continuing setting

action

state

state

action

action

end of

episode

action

state

state

action

action

terminal state

episode never ends:

continuing setting

Previous slide.

Episodic setting means that we have a fixed start state and a terminal state.

Once we have arrived at the terminal state we put the agent back to the start

state.

Continuing setting means that every state is a possible start state. The

environment allows loops. There is no strict terminal state since we can always

imagine that the agent is from the nominal ‘terminal state’ automatically moved

on to a (probabilistically selected) state inside the environment.

In both cases rewards can be collected at any state in the environment.

Review: Policy Gradient over multiple time steps (episodic)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡] 𝑑
𝑑𝜃𝑗

ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑

𝑎𝑡+1] 𝑑
𝑑𝜃𝑗

ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

Optimize RETURN from starting state 𝑠𝑡:

action

state

state

action

action

end of

episode

Previous slide.

This is a repetition of an earlier slide.

NOW: Policy Gradient over multiple time steps (infinite horizon)

Optimize EXPECTED average RETURN from ALL STATES:

Return from starting state 𝑠𝑡

+ Return from next state 𝑠𝑡+1

+ Return from next state 𝑠𝑡+2

+ Return from next state 𝑠𝑡+3

E[

… Return from 𝑠𝑡+𝐾]

1

𝐾

(and take limit)𝐾 → ∞

Previous slide.

The Return from the first state is the sum over all future (discounted) rewards

starting at 𝑠𝑡

The Return from the next state is the sum over all future (discounted) reward

starting at 𝑠𝑡+1

… and so forth.

But the aim is to optimize the Expected Returns from ALL STATES.

This will give many terms

5. Policy Gradient over multiple time steps (Preparation for Exercise)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡] 𝑑
𝑑𝜃𝑗

ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]() 𝜃𝑗 ∝

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑

𝑎𝑡+1] 𝑑
𝑑𝜃𝑗

ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

Step 1: Rewrite 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑎𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2+𝛾3𝑟𝑡+3

Step 2a: use log-policy update formula (*) for state 𝑠𝑡

Step 3: Sum results from step 2 and

reorder terms according to 𝑟𝑡+𝑛

Blackboard

Step 2b: Use same update formula, but for states 𝑠𝑡+1, 𝑠𝑡+2

Previous slide.

This is the start of the calculations for the blackboard part.

It will also appear in the exercise.

5. Policy Gradient for eligibility traces (Exercise)

Step 4: Introduce ‘shadow variables’ for eligibility trace

update of all traces

𝑧𝑘 ← 𝑧𝑘  decay of all traces

𝑧𝑘 ← 𝑧𝑘 + 𝑑

𝑑𝜃𝑘
ln[𝜋(𝑎|𝑠, 𝜃𝑘)]

Step 5: Rewrite update rule for parameters with eligibility trace

𝜃𝑘= 𝑟𝑡 𝑧𝑘

Previous slide.

This is a repetition of the exercise

5. Algo of Policy Gradient with eligbility traces (Exercise)

1) Update eligibility trace for all parameters k

increase of all traces

𝑧𝑘 ← 𝑧𝑘  decay of all traces

𝑧𝑘 ← 𝑧𝑘 + 𝑑

𝑑𝜃𝑘
ln[𝜋(𝑎|𝑠, 𝜃𝑘)]

2) update all parameters k

𝜃𝑘= 𝑟𝑡 𝑧𝑘

Run trial. At each time step, observe state, action, reward

= Note: I have set as a result of the calculation

Previous slide.

And these two updates can now be mapped to the algorithm of Sutton and Barto

that we saw a few slides before.

Conclusion:

(i) eligibility traces are a compact form for rewriting a policy gradient algorithm.

(ii) The derivations show that the decay factor of policy gradient must be equal to

the discount factor of the Return, hence =

For an episodic setting boundary effects would appear – but since we are here in

the infinite-horizon continuing setting, we have nor boundary effects. Indeed,

there are minor differences at the ‘bounderies’ that is, the beginning and end of

each episode – but these do not matter if we think of the environment as being

very large – potentially infinitely large because of loops.

Summary: Eligibility traces from Policy Gradient

‘Policy Gradient Theorem’:

An algorithm with eligibility traces arises naturally

in the framework of policy gradient.

Decay rate of eligibility traces = Discount Factor 

Proof: - assumes setting of ‘continuing’ environment

(as opposed to episodic)

- we optimize the expected average

return from ALL states

Note: Algorithm for ‘continuing’ setting is the better one

(better than the one for episodic setting)

Previous slide. Your notes

Actor Critic with Eligibility Traces (continuing setting)

𝑟
𝑟

TD error (for =)

but set =

Adapted from

Sutton&Barton

2018

Update eligibility traces

Update parameters

Notes:

1) Here Sutton and Barto have suppressed the factor . (by setting =).

They do not identify =

2) The starting point of the derivation of Sutton and Barto is to optimize the

average reward (I optimized average return with discount factor 

3) However, I would set = and add the  in the update for the TD error:

The reason is

(i) that the critic learns V-values with TD-learning and should use the same

discounting = as the actor.

(ii) The baseline subtraction for an actor that uses discounted cumulative

rewards for returns should match the consistency condition of the Bellman

equation.

    𝑟𝑡 +𝜆 𝑉 𝑆′, 𝑤 − 𝑉(𝑆, 𝑤)]

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Review Policy gradient

2. From Policy Gradient to Deep Reinforce

3. Actor-Critic

4. Eligibility traces for policy gradient

5. Eligibility traces arise naturally (math)

6. Application: Navigation task

7. Model-based versus Model-free

Reinforcement Learning Lecture 5

Policy Gradient and Actor-Critic Methods

Previous slide.

Final point: Model-based versus Model-free

7. Model-based versus Model-free

What happens in RL when

you shift the goal after

learning?

Previous slide.

Final point: are we looking at the right type of RL algorithm?

Imagine that the target location is shifted in the SAME environment.

What happens in RL when

you shift the goal after

learning?

→ The value function has to

be re-learned from scratch.

agent learns ‘arrows’, but not

the lay-out of the environment:

Standard RL is ‘model-free’

7. Model-based versus Model-free Reinforcement Learning

Previous slide.

After a shift, the value function has to be relearned from scratch, because the RL

algorithm does not build a model of the world. We just learn ‘arrows’: what is the

next step (optimal next action), given the current state?

7. Model-based versus Model-free Reinforcement Learning

Definition:

Reinforcement learning is model-free, if the agent does

not learn a model of the environment.

Note: of course, the learned actions are always

implemented by some model, e.g., actor-critic.

Nevertheless, the term model-free is standard in the field.

Previous slide.

All standard RL algorithms that we have seen so far are ‘model free’.

7. Model-based versus Model-free Reinforcement Learning

Definition:

Reinforcement learning is model-based, if the agent does

also learn a model of the environment.

Examples: Model of the environment

- state s1 is a neighbor of state s17.

- if I take action a5 in state s7, I will go to s8.

- The distance from s5 to s15 is 10m.

- etc

Previous slide.

Examples of knowledge of the environment, that would be typical for model based

algorithm

7. Model-based versus Model-free Q-learning
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

Model-free:

the agent learns directly and only

the Q-values/V-values/policy

Model-based:

the agent learns the Q-values/policy

and also the transition probabilities

𝑃𝑠→𝑠′
𝑎1

Previous slide.

Let us go back to our ‘tree’. If the algorithm knows the transition probabilities, or

builds up an estimation of the transition probabilities, then this means that it is a

model-based algorithm.

If the algo does not contain elements that explicitly enable an estimation of

transition probabilities, then the algorithm is model-free.

Note that knowledge of the physics of a robot (e.g., the laws of physics that

govern the dynamics of movement) or knowledge of the rules of a game (e.g.,

allowed moves in chess) is an example of explicit knowledge of transition

probabilities, and hence, if this knowledge is available to the algo, then the algo is

called ‘model-based’.

7. Model-based versus Model-free Reinforcement Learning

Advantages of Model-based RL:

- the agent can readapt if the reward-scheme changes

- the agent can explore potential future paths in its ‘mind’

→ agent can plan an action path

- the agent can update Q-values in the background

→ dream about action sequences

(run them in the model, not in reality)

Note: Implementations of Chess and Go are ‘model-based’,

because the agent knows the rules of the game and can

therefore plan an action path. It does not even have to learn

the ‘model’ (since the rules are given/known).

next slide.

Many modern applications of RL have a model-based component, because you

need to play a smaller number of ‘real’ action sequences …

And computer power necessary for running things in the background is cheaper

than acting ‘in real’.

Model based:

You know what state to

expect given current

state and action choice.

‘state prediction’.

Experiment with

human participants

7. Model-based learning

Gläscher et al. 2010

State and Reward Prediction Task (previous slide)

(A)A specific experimental task for human participants was a sequential two-

choice Markov decision task in which all decision states are represented by

fractal images. The task is to move through a binary decision tree. Each trial

begins in the same state. Subjects can choose between a left (L) or right (R)

button press. With a certain probability (0.7/0.3) they reach one of two

subsequent states in which they can choose again between a left or right

action. Finally, they reach one of three outcome states associated with different

monetary rewards (0, 10cent, and 25cent).

(B) Importantly, to encourage model-based behavior human participants first

watched artificially generated sequences that enabled them to learn which

actions caused which transition, so that they could estimate the transition

probabilities.

Gläscher et al. 2010

7. Model-based Reinforcement learning

  







+=



→→

'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 

𝑠

𝑠′

a3𝑃𝑠→𝑠′
𝑎1

𝑠"
𝑃𝑠′→𝑠"

𝑎3

Q(s,a1)

Gläscher et al. 2010

Model based RL allows to think about consequences of actions:

Where will I get a reward?

You just need to play the probabilities forward over the model graph: you simulate

an experience (in your mind!) before taking the real actions.

Gläscher et al. 2010

Summary: Model-based versus Model-free

- learns model of environment

‘transition matrix’

- knows ‘rules’ of game

- planning ahead is possible

- can update Bellman equation

in ‘background’ without action

- can simulate action sequences

(without taking actions)

- does not

- does not

- cannot plan ahead

- cannot

- cannot

- Eligibility traces and V-values

keep memory of past

- completely online, causal,

forward in time.
- is not online/causal

- no need to use elgibility traces

Model-based RL is more powerful than Model-free RL.

The overhead for memory/algorithmic complexity is often acceptable so that in

computer-applications model-based is today preferred.

Updating knowledge in the background (without playing the actions) is also

called ‘off-line’ update.

Learning outcomes and Conclusions:

- policy gradient algorithms

→ updates of parameter propto

- why subtract the mean reward/mean Return?

→ reduces noise of the online stochastic gradient

- actor-critic framework (‘advantage actor critic’)

→ combines TD with policy gradient

- eligibility traces as ‘candidate parameter updates’

→ true online algorithm, no need to wait for end of episode

- Differences of model-based vs model-free RL

→ play out consequences in your mind by running the

state transition model wait

[𝑅𝑒𝑡𝑢𝑟𝑛] 𝑑
𝑑𝜃𝑗

ln[𝜋]

Thanks!

The END

The end of today’s Lecture!

… and also the end of 8 weeks of

‘Foundations of Learning in Neural Networks’

→ We are now ready to look at specific applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Subtract a baseline
	Slide 16
	Slide 17: Subtract a reward baseline
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Quiz: Policy Gradient and Deep RL
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Quiz: Policy Gradient and Reinforcement learning
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

