Wulfram Gerstner

Learning in Neural Networks
Actor-Gritic Methods [RL 5) EPFL, Lausanne, Switzerland

Part 1: Introduction

Objectives:

Reinforcement Learning in Deep Artificial Neural Networks
REINFORCE with BASELINE algorithm

Actor-Critic algorithm

Eligibility traces for policy gradient

Model-based versus Model-free RL

Objectif: get ready to apply RL or read research papers in RL
- final lecture on ‘Foundations of RL’

Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2"d edition 2018, also online)

Chapter: 13.5-13.8.
8.1 + 8.2

Chess Artificial neural network
(AlphaZero) discovers different
strategies by playing against itself.

> iE

o ®

»)o
R :%

W
n
%
NN W e

- L3
o

a3 2 "“-.___"f:-

L e e
.
$R
2 |:;'::I"--.
ORI

T Ll

a0 B [

In GO, It beats Lee Sedol

ey,
O ; | — &)
i—.’ E . : iR 1";‘ ;
19 19 3] iIEDAL g

dRATHNEDY

. 0t AlphaGo Lee Sedol
™7

(previous slide)
The success of deep artificial neural networks in Chess and Go has spurred a
renewed Interest In Reinforcement Learning.

(Backprop = gradient descent rule in multilayer networks)

action Move piece Neural network parameterizes
actions In the output as a

outpute 1+ +« _ = function of continuous state s.
¥ YoX One output per action.

@
XXX X] Learn weights by playing against itself.
RSt

. XA Two Methods:
nput 1 1111 1 - TD-learning

ATawEEAR - Policy Gradient

7 AAA AAKR

AT AL | 1 .

Es T K T I b m b d -
.. L 8

JARAR AAR

Cogw® 5

—> actor-critic networks

(previous slide)
Deep Reinforcement Learning (DeepRL) Is reinforcement learning in a deep
network. Suppose that each output unit of the network corresponds to one action

(e.g. one type of move In chess). Parameters are the weights of the artificial
neural network.

Actions are chosen, for example, by softmax on the output-values.

Weights are learned by playing against itself — doing gradient descent on an error
function E (Loss function)

Two iImportant classes of RL algorithms are TD-learning and Policy Gradient.
An actor-critic architecture combines the advantages of both.

expected total discounted reward
starting in s with action a;: Q(s, a,)

optimize by semigradient on Loss function

Ew) =3 [re +yQ(s', &)~ Qls, alw)]?

target ignore take gradient

expected total discounted reward
starting in s . V(s)

optimize by semigradient on Loss function

EW) =2[1, +yV (s’ - Vislw)P

target ignore take gradient

(previous slide)
The consistency condition of TD learning, can be formulated by an error function:

Either for Q-values
E=05[r+yQ(s;a)-Q(s,a)]
or for V-values

E=05[r+vyV(s.a)-V(sa)]l?

This error function will depend on the weights w.
We can change the weights by semi-gradient descent on the error function. This

leads to the Backpropagation algorithm of ‘Deep learning’

Alms for today:

- Understand the principles of Deep Reinforcement-learning
In Artificial Neural Networks.

- Understand how the Actor-Critic combines
Policy Gradient methods and TD methods

- Understand why eligibility traces arise In policy gradient

- Understand Difference between Model-based
and Model-free RL

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reinforcement Learning Lecture 9
Policy Gradient and Actor-Critic Methods

Part 2: From policy gradient to Deep Reinforcement Learning

1. Introduction
2. From Policy gradient to Deep REINFORCE with
baseline

Review Policy Gradient

Alm:
update the parameters 0
of the policy =n(als,0)

Implementation:

- play episode from start to end,
- record rewards In each step;

- update the parameters 6

(previous slide and next slide)

Policy gradient methods are and alternative to TD methods.

We consider a single episode that started in state s; with action a; and ends after
several steps in the terminal state s,

The result of the calculation gives an update rule for each of the parameters.

The update of the parameter 6; contains several terms.

(1) the first term Is proportional to the total accumulated (discounted) reward, also
called return R.*

St—Send

(1) the second term Is proportional to gamma times the total accumulated
(discounted) reward but starting In state s;. ¢

(111) the third term Is proportional to gamma-squared times the total accumulated
(discounted) reward but starting In state s;. -

(Iv) ...

We can think of this update as one update step for one episode. Analogous to the
terminology used by Sutton and Barto, we call this the Monte-Carlo update for one
episode.

The log-likelihood trick was explained earlier. Since this Is a sampling based
approach (1 episode=1 sample) each of the terms is proportional to In =,

Review Policy Gradient: REINFORGE (episodic)

Calculation yields several terms of the form ? state
Total accumulated discounted reward action
collected In one episode starting at s, a; T

/ ﬁ) Sstate
At d ¢ action
AH] X [RSt_)Send]d_Qj ln[ﬂ(atlSt, 9)]
At+1 d action
+y[R5t+1_>Send]d9j In[m(asiqilss1,60)] I
+ ...
end of trial

EPISODIC: fixed start state s; , fixed terminal state s,,,4

(next slide)

The policy gradient algorithm Is also called REINFORCE. It if formulated here for
fixed starting state and assumes the existence of a terminal state. Note that
updates are only implemented at the end of the trial (I.e., once the agent has
arrived in the terminal state).

As discussed In a previous lecture and in the exercise session, subtracting the
mean of a variable helps to stabilize the algorithm.

There are two different ways to do this.

(1) Subtract the mean return (=value V) in a multistep-horizon algorithm. This Is
what we consider here In this section. NOW!

(1) Subtract mean expected reward PER TIME STEP (related to the delta-error of

TD learning) in a multi-step horizon algorithm.
This 1s what we will consider in section 3 under the term Actor-Critic.

we derived this online gradient rule for multi-step horizon

AHJ X [Rgtt—)send] dcgl] ln[ﬂ(atlst, 0)] T

+V[Rst+1—>send] dCHl] In[r(asiqilses1,0)]+

But then this rule Is also an online gradient rule

AH] X [R;ltt_)Send_b(St)] d] ln[n(atlst, 9)] T

T V[R5t+1—>5end b(s¢i1)] 75 ao; In[rw(ars1lSe41,60)] +

with the same solution (In expectation)
because a baseline shift drops out If we take the gradient

(previous slide)
Please remember that the full update rule for the parameter 6;

IN a multi-step episode contains several terms of this form; here only the first two
of these terms are shown.

Similar to the case of the one-step horizon, we can subtract a bias b from the
return Rt without changing the location of the maximum of the total expected

St—Send
return.

Moreover, this bias b(s;) can itself depend on the state s;.
Thus the update rule now has terms

AB; [Rat —b(s¢)] %_ In[r(a;|ss, 0)]

St—Send

+Y[Ri::1—>send — b(St+1)] % In[m(as11Se41,6)]

+y2 [Rgtt:zz—wend R b(st+2)] % ln[n(at+2 ‘St+2' 6)]

+ ...

Total accumulated discounted reward
collected In one episode starting at s, a;

|
78 e« [Rs s,y =D (s)] g5 In[m(aclse,)]+

|

- The bias b can depend on state s

- Good choice is b =‘mean of [R¢",; |’
- take b(s;) = V(s;)
-> learn value function V(s)

(previous slide
Is there a choice of the bias b(s;) that is particularly good?

One attractive choice Is to take the bias equal to the expectation (or empirical
mean). The logic Is that If you take an action that gives more accumulated
discounted reward than your empirical mean in the past, then this action was good

and should be reinforced.
If you take an action that gives less accumulated discounted reward than your
empirical mean in the past, then this action was not good and should be

weakened.

But what Is the expected discounted accumulated reward? This Is, by definition,
exactly the value of the state. Hence a good choice Is to subtract the V-value.

And here Is where finally the idea of Bellman equation and TD learning comes in
through the backdoor: we can learn the V-value, and then use it as a bias in policy

gradient.

Learning two Neural Networks: actor and value

Actions: Value function:
_Learned by - Estimated by Monte-Carlo ? state
Policy gradient -provides baseline b=V(x) action
- Uses V(x) as baseline for action learning T -
Slale
s Teete V[x] T action
ARARAXD ® .
XA v 3
QUPSPSAIA S A '
b /\%\/S “';«4. \ I action
d 6"; ' ﬁﬁ - "‘!‘f'ﬁ. x = states from

000 -~ oo oo episode: end of trial

|

X X Sty St+11 St+2>

(previous slide)
In the latter case we have two networks:

The actor network learns a first set of parameters, called 6 in the algorithm of

Sutton and Barto.
The value network learns a second set of parameters, with the label w .

The value b(x = s;,,,) =V(x) Is the estimated total accumulated discounted
reward of an episode starting at x = s;,,,

The weights of the network implementing V(x) can be learned by Monte-Carlo
sampling the return: you go from state s until the end, accumulate rewards, and
calculate the average over all episodes that have started from (or transited
through) the same state s. (See Backup-diagrams and Monte-Carlo of earlier
lecture).

The total accumulated discounted ACTUAL reward in ONE episode Is Rit:;%en .
What matters is the difference [R. " —V (s4)]

St—Send

REVIEW: Monte-Garlo Estimation of V-values (tabular]
Return(s)= r. +y rep1t YTt v3 1igs

state
First-visit MC prediction, for estimating V
Initialize: aCt| on

m +— policy to be evaluated
V' <« an arbitrary state-value function

Returns(s) + an empty list, for all s € & ? State

Repeat forever: :
(Generate an episode using o aCtIOn
For each state s appearing 1in the episode:]

(+ + the return that follows the first occurrence of s

Append G to Returns(s)
V(s) + average(Returns(s))

I action

4)
single episode starting In state sO also allows to| end of trial

_update V(s) of children states

J

(previous slide, Review). We can use Monte-Carlo estimates for V-values
In this (version of the) algorithm you first open V-estimators for all states.

For each state s that you encounter, you observe the sum of (discounted) rewards
that you accumulate until the end of the episode. The total accumulated

discounted reward starting from s is the ‘Return(s)’

After many episode you estimate the V-values V(s) as the average over the
Returns(s).

Note that the above estimations are done in parallel for all states s that you
encounter on your path. This includes ‘children states’.

Also note that the Backup diagram is much deeper than that of TD-learning, since
you always continue until the end of the episode before you can update V-values

of states that have been encountered many steps before.

Learning two Neural Networks: actor and value

Actions: Value function:
-Learned by - Estimated by Monte-Carlo
Policy gradient -provides baseline b=V(x)
- Uses V/(x) as baseline for action learning
parameters * H e« T+ V(x)
are the network GRS A S AT " arameters
weights © { (’ are the weights w
X
‘6{ ﬁi . ‘i’(} “ x = states from
OO0 ""“ episode:

x x Sty St+1r St+2;

(previous slide)
In the latter case we have two networks:

The actor network learns a first set of parameters, called 6 in the algorithm of
Sutton and Barto.
The value network learns a second set of parameters, with the label w .

The value b(x = s;.,,) =V(x) Is the estimated total accumulated discounted reward
of an episode starting at x = s;.,,

The total accumulated discounted ACTUAL reward in ONE episode is R.‘*"

St+n—Send

From book:
Sutton and Barto, 2018

REINFORCE with Baseline (episodic), for estimating mg ~ T,

Input: a differentiable policy parameterization m(al|s, 6)
Input: a differentiable state-value function parameterization v(s.w)
Algorithm parameters: step sizes a? >0, a% > 0

Initialize policy parameter 8 € R? and state-value weights w € R4 (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, M1 ..., 57_1, Ap_1, T'T following 7 (-|-,0)
Loop for each step of the episode t =0.1,...,1 — 1:

&

G+ Zgthrl RN o (Gt)
0 < G — v(S;.w)

w < w+ aVy' dVo(S;,w)

0« 0+ay'oVinm(AlS;,0)

(previous slide)
Algorithm in pseudocode taken from the book of Sutton and Barto.
For the actor, the algorithm evaluates terms of the form

[Rit::—mend —b(St+n)] dcéj In[mw(atsnlSten, 0)]

Where the return is ¢ = Rt

St+n—Send

And the bias estimate IS v(s;,,) = b(Stiq)

The terminal state In their notation occurs at time T and
the Initial state has index O.

For the value function, they use Monte-Carlo estimation of the total accumulated
reward In one episode (see previous slide).

Why subtract the mean?

Subtracting the expectation provides estimates
that have (normally) smaller variance (look less noisy)

Note: in multi-step RL, the minimal variance Is not exactly at
bilas=expection.
Reason: correlations

(previous slide)
Why Is It useful to subtract the mean?

Whatever the choice of baseline, the algorithm should eventually converge to the
same set of parameters. However, since the algorithm Is based on stochastic gradient
descent or ascent (I.e., the online rule instead of the full batch rule), the algorithm
makes noisy steps that only go on average in the right direction.

Subtracting a baseline that is close to the mean generally reduces the noise.
The example with a product of independent variables shows that by subtracting the
mean of X, the noise Is considerable reduced in each of the samples! (Last week)

Unfortunately, in a multi-step reinforcement learning scenario, the minimal noise Is not
exactly the situation where one subtracts the mean because of correlations, but (at
least we can assume that) it Is close to It.

Network for choosing action:
Optimized by policy gradient

2"d output for value of state:
V(s)

action: Advance king
outputs I &+ + 1 =

‘N" éé learning:

ALALAS .

A‘.’“"."“.‘"‘Q’ — change connections
A% aims:

‘0 . . "

‘ ‘N? - learn value V(s) of position
| ﬁ 91 - learn action policy to win
Input A . Learning signal:

*//jj pasic idea of - 'Y SIgTEL

=
m

e

‘ﬁ%&%\%

| =&

=

)¢

- nlactual Return - V(s)]

G Lelw»

| ﬁ‘%
Lo
0=

s of alpha-zero

(previous slide)
The value unit can either take directly the input (and hence forms a separate

network) or it can also share a large fraction of the network with the policy
gradient network (actor network).

The actor network learns a first set of parameters, called 6 in the algorithm of
Sutton and Barto. The value unit learns a second set of parameters, with the label

wij for a connection from unit j to the value output.

The total accumulated discounted ACTUAL reward in ONE episode Is Rgt:;ﬁsen .
What matters is the difference [R;".; =V (s;)]

Network for choosing action:
Optimized by policy gradient

action

outputs I &+ + 1 =

Xj

INnput

QAL 20

X o G

Wj

dbi{b

11t 11

summary: Deep REINFORCE with baseline substraction

2"d output for value of state:

V(s;) = ijxj(t)

[Rgttﬁsend—V(st)] % In[7(a;|s;, 0)]+
[Rgtt—wend V(St)]x] (t) T

(previous slide)
Here the value unit receives input from the second-last layer. Units there have an

activity xj (] Is the index of the unit) which represent the current input state in a
compressed, recoded form (The network could for example be a convolutional
network If the input consists of pixel Images of outdoor scenes.

The actor network learns a first set of parameters, called 6 in the algorithm of
Sutton and Barto. The value unit learns a second set of parameters, with the label

wj for a connection from unit j to the value output.
The total accumulated discounted ACTUAL reward in ONE episode is R, "

St+n"Send
What matters is the difference [R;",; =V (s,)]

Updates are: AO; < [Rs/ s,V ()] g In[m(aclse, 0)]+..

AW] X [Rgttesend _V(St)]x

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reinforcement Learning Lecture 9
Policy Gradient and Actor-Critic Methods

Part 3: Actor-Critic network

1. Introduction
2. From Policy gradient to Deep REINFORCE
3. Actor-Critic network (‘Advantage Actor Critic’)

(previous slide)
We continue with the idea of two different types of outputs:
A set of actions ak , and a value V.

However, for the estimation of the V-value we now use the ‘bootstrapping’
provided by TD algorithm (see previous weeks) rather than the simple Monte-
Carlo estimation of the (discounted) accumulated rewards In a single episode.

The networks structure remains the same as before:
An actor (action network) and a critic (value function).

Sutton and Barto reserve the term ‘actor-critic’ to the network where V-values are

learned with a TD algorithm.
However, other people would also call the network that we saw previously In
section 2 as an actor-critic network and the one that we study now Is then called

‘advantage actor critic’ or AAC.

Actor-Gritic = ‘REINFORGE’ with TD hootstrapping
- Estimate V/(s)

actions - learn via TD error
advance F?Sh
eft
Y ﬁ e 2 1 2 value
1 v(s)

TD-error

0 =nlr: +vV(ses1) —VI(s)]

(previous slide)
Bottom right: Recall from the TD algorithms that the updates of the weights are

proportional to the TD error o

In the actor-critic algorithm the TD error I1s now also used as the learning signal
for the policy gradient:

TD error: The current reward r; at time step t
IS compared with the expected reward for this time step [V (s¢) —yV()S¢]

[Note the difference to the algorithm in section 6:
There the total accumulated discounted reward R

was compared with V(s;)]

At
St~Send

Actor-Critic = ‘REINFORCE’ with TD hootstrapping

One-step Actor—Critic (episodic)

Input: a differentiable policy parameterization m(als, 8)
Input: a differentiable atate value parameterization v(s,w)
Parameters: step sizes o > 0, a%¥ > 0

Initialize policy parameter 6@ € R4 and state-value weights w € R?
Repeat forever:

[nitialize S (first state of episode)

I <1

While S is not terminal:

A (]S, _ TD error

(if S is terminal, then 0(S",w) = 0)

State ?

action T

state O
TD(0)

6+ 0+ aﬁ'fwg 1n~r(A|5 0)
JR ;I
S+ 5

‘online’

Previous slide.
Pseudocode of Algo In the notation of Sutton and Barto (2018)

Comparison: ACTOR-GRITIC (versus REINFORCE with haselinel

Aim of actor: n(a\g,y/@){(st) state
update the parameters 0 _ ?

of the policy n(als,0)

';: ;ﬁ,. N

Kbyt

update proportional toTD-error
O =M[r, +yV(ses1) = V(s)]

Aim of critic: estimate V using TD learning

(previous slide)
For a comparison of ‘actor-critic’ with ‘REINFORCE with baseline’

In both algorithms (actor critic and REINFORCE with baseline), the actor learns
actions via policy gradient.

In the actor-critic algorithm the critic learns the V-value via bootstrap TD-learning
(see week 9).

In the actor-critic algorithm the TD error Is also used as the learning signal for the
policy gradient.

The backup diagram of actor-critic is short: State ?
action T
state O

TD(0)

Comparsion: REINFORGE with baseline (vs actor-critic) .
1. Aim of actor iIn REINFORCE T[(a‘SNSt) ¢ action

update the parameters 6
of the policy n(als,0)

MA/\‘?;
o”t EKQ

NNV

V(s)

2. update proportional to
RETURN-error: [Ratt —V (s,)]

T action

3. Aim of critic: estimate V (using Monte-Carlo) nd of trial

(previous slide)
We continue the comparison with REINFORCE with baseline.

In both algorithms (actor critic and REINFORCE with baseline), the actor learns
actions via policy gradient.

In the REINFORCE algorithm the baseline estimator learns the ? state
V-value via Monte-Carlo sampling of full episodes. T action
In the REINFOCE algorithm the mismatch between actual return ? state
and estimated V-value (‘RETURN error’) is used as { action

the learning signal for the policy gradient.

The Backup diagram is long: I action

end of trial

Quiz: Policy Gradient and Deen RL

Your friend claims the following. Is he right?
| | Even some policy gradient algorithms use V-values

| | V-values for policy gradient can be calculated in a separate
deep network (but some parameters can be shared with the actor networ

| | The actor-critic network has basically the same
architecture as deep REINFORCE with baseline: in both
architectures one of the units represents the V-values
| | While actor-critic uses ideas from TD learning,
REINFORCE WITH BASELINE does not.

Previous slide.
This Is a repetition of an earlier slide.

One-step Actor—Critic (episodic)

Input: a differentiable policy parameterization m(als, @)
Input: a differentiable state-value parameterization o(s,w)
Parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 8 € R?" and state-value weights w € R?
Repeat forever:
[nitialize S (first state of episode)
I 1
While S is not terminal:
A~m7(:|S,0)
Take action A, observe S, R
6 < R+~o(5" ,w) — 0(S,w) (if S” is terminal, then 9(S’,w) = 0)
wW— W+ aVITiVyt(S,w)
O+ 0+ a’I5Velnm(A|S,H)
1 + "]rI
S+ S

Teaching monitoring — monitoring of understanding

| | today, up to here, at least 60% of material was new to me.

[] up to here, | have the feeling that | have been able to follow
(at least) 80% of the lecture.

Terminology for Actor-Gritic

Sutton and Barto Some others
and this class:
REINFORCE WITH BASELINE - Actor-Critic Architecture
(in general sense)
Actor-Critic Algorithm - Advantage Actor-Critic Algorithm

(In narrow sense)

e Teeot e

X = Slates

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reinforcement Learning Lecture 9
Policy Gradient and Actor-Critic Methods

Part 4: Eligibility traces for policy gradient

1. Introduction
2. From Policy gradient to Deep RL

3. Actor-Critic
4. Eligibility traces for policy gradient

(previous slide)
Two weeks ago we discussed eligibility traces.

It turns out that policy gradient algorithm have an intimate link with eligibility
traces. In fact, eligibility traces arise naturally for policy gradient algorithms.

In standard policy gradient (e.g., REINFORCE with baseline) we need to run each
time until the end of the episode before we have the information necessary to
update the weights.

The advantage of eligibility traces Is that updates can be done truly online (similar
to the actor critic with bootstrapping).

Actor-critic with eligibility traces

Online algorithm
Actor learns by policy gradient
Critic learns by TD-learning

For each parameter, one eligibility trace
Update eligibility traces while moving
Update weights proportional to TD-delta and eligibility trace

(previous slide)
The idea of policy gradient is combined with the notion of eligibility traces that we

had seen two weeks ago.

The result I1s an algorithm that is truly online: you do not have to wait until the end
of an episode to start with the updates.

Hﬂ\liﬂw: Eli!lilliliw Tl'ﬂﬂﬂs Tabular: parameters Q(S,CI]
O OO 1dea eligibility trace e(s,a)
A

) (p—=r= - keep memory of previous state-action pairs
o ~y (b, - memory decays over time
S Q - Update an eligibility trace for state-action pair

e(s,a) <« he(s,a) decay of all traces

) O O O e(s,a) <« e(s,a)+ 1 ifaction a chosen in state s
() @«@ «) - update all Q-values:
S O AQ(s,a)=n [r-(Q(s,a)- yQ(s,a’))] e(s,a)

| ! ' Here: tabular SARSA
9 (O™ Th-delta with eligibility trace

One eligibility trace per parameter

(previous slide)
This the SARSA algorithm with eligibility traces that we had seen two weeks ago.

We had derived this algo for a tabular Q-learning model as well as for a network
with basis functions and linear read-out units for the Q-values Q(s,a).

In the latter case It was not the Q value itself that had an eligibility trace, but the
weights (parameters) that contributed to that Q-value.

We now use the same idea.

Elgibiinty Traces for actor-critic

ldea:

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

Zy < Zg A decay of all traces
Zy < Zp T %kln[ﬂ (als, 6k)] increase of all traces
- update all parameters of ‘actor’ network:

ABx=n [\"'[Vise)-y V[St+1]}]] Zj Here: policy gradient
TD-YdeIta with eligibility trace
(actor network)

(previous slide)
Eligibility traces can be generalized to deep networks.

Here we focus on the actor network.

For each parameter 6, of the network we have a shadow parameter z; : the
eligibility trace.

Eligibility traces decay at each time step (A <1) and are updated proportional to the

derivative of the log-policy. Interpretation:
The update of the eligibility trace can be seen as a ‘candidate parameter update’ —

but it is not yet the ‘real’ update of the actual parameters.

The update of the actual parameters w;, of the actor network are proportional to
the eligibility trace z;, and the TD-error

6 = [r: +yV(sir1) = VI(se)]

= [re = [V(se) = ¥V (se41)]

Parameters are updated at each time step of the episode (as opposed to Monte-
Carlo where one has to wait for the end of the episode). Hence ‘true online’.

NETWORK for Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters 6
Eligibility traces of actor have parameters ZQ

The critic network has parameters w. W
Eligibility traces of critic have parameters Z.

Actor chooses actions with policy &

CO ot p ut V[x]
PO Ax
0, 2 | q”a‘g”{' "gj’i‘ W, Z
€ sgoogole
& & & OO 80

S S

(previous slide) Algorithm in Pseudo-code by Sutton and Barto.

The actor network has parameters 6
While the critic network has parameters w.

The actor network Is learned by policy gradient with eligibility traces.
The critic network by TD learning with eligibility traces.

Candidate updates are implemented as eligibility traces z.

Actor-Critic with Eligibility traces (hootstrapping/TD trick)

Actor—Critic with Eligibility Traces (episodic), for estimating mg ~ T,

Input: a differentiable policy parameterization 7 (a|s, 6)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: trace-decay rates \? & [0,1], AW € [0, 1]; step sizes a? > 0, a¥ > 0
Initialize policy parameter 6 € R and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):
Initialize S (first state of episode)
2% < 0 (d’-component eligibility trace vector)
z" < 0 (d-component eligibility trace vector)
[+ 1 State
Loop while S is not terminal (for each time step): TD error ?

action I

(if S” is terminal, then v(.5",w) = 0) state ()

/\WZW + IV (S w) ..
2% « A ;/\929 + IVinrw(A|S,0) ID(0)
w<—w+aVvozVW
0+ 6+ aY05z° _ _
= F el | suggest to cut this: use continuous and

§ 5 not episodic setting (see next section)

(previous slide) Algorithm in Pseudo-code by Sutton and Barto.
The actor network has parameters 6

While the critic network has parameters w

The actor network Is learned by policy gradient with eligibility traces.

The critic network by TD learning with eligibility traces.

Note that Sutton and Barto include a discount factor vy (in the update of the eligibility
trace) but in the exercises we will see that the discount factor can (to an excellent
approximation) be absorbed into A. This algo is for ‘episodic, i.e. problem with
terminal states (which causes the step ‘I € y1‘; we drop this step later)

actor output V(x)
‘r i TD

l

Quiz: Policy Gradient and Reinforcement learning

| | While actor-critic uses ideas from TD learning,

REINFORCE with baseline uses Monte-Carlo
estimates of V-values

[] Eligibility traces are ‘shadow’ variables for each parameter

| | Eligibility traces appear naturally in policy gradient algos.

(your comments)

The proof of the last item is what we will sketch now — proof in the exercises.

Introduction to Reinforcement Learning

Two types of algo with different philosophy

TD learning Policy Gradient

tabular Bellman eq., Direct action modeling
Q/V values, Bootstrap | Not Bootstrap

temporal smoothing | eligibility traces /n-step| eligibility traces (natural)

SARSA(L), Q(L) REINFORCE (A) w. baseline
CO”“DUOUS/ ves, ad hoc, heuristic | yes, natural, but slow
function approx semi-gradient
N ~

Actor-critic with eligibility traces
and TD-updates

Previous page
Summary: Reinforcement Learning has two major types of algorithms, I.e. TD-learning
and Policy Gradient.

The advantage of TD learning Is the bootstrapping effect. Combined with ad-hoc

eligibility traces it yields powerful algorithms for the tabular setting. Excellent example are
SARSA(A) and Q(A\)

The advantage of policy gradient are two-fold:

(1) since we optimize directly the action outcomes, effects of function approximation
(such as smoothing, imprecise representations of different cases) are automatically
taken Iinto account

(i) In the continuing setting, eligibility traces arise naturally.

By default (without baseline subtraction) the algorithm is slow.

The best way to add baseline subtraction Is the actor-critic architecture.
It combines the best of both worlds, since the V-value for the base line uses TD learning.

Introduction to Reinforcement Learning

Two types of algo with different philosophy

TD learning

Policy Gradient

tabular

Lecture RL1+«

temporal smoothing

Lecture RL 3
continuous/

function approx

Bellman eq.,
Q/V values, Bootstrap

eligibility traces /n-step
SARSA(L), QL)

yes, ad hoc, heuristic
semi-gradient

Direct action modeling
Not Bootstrap | ecture RL4

eligibility traces (natural)
REINFORCE (L) w. baseline

yes, natural, but slow
Lecture RLS,

~

—————— toda
Actor-critic with eligibility traces y
and TD-updates

Previous page
Summary:
During the first 7 weeks we covered In 5 lectures all the major types of algorithms.

Today is the end of the ‘Introduction’ part.

We are now ready to apply the algorithms In various applications —
or study specific topics such as the relation to biology and distributed hardware.

This will be done In the coming weeks.

At the end of the lecture today, you should be able to read current literature on
Reinforcement Learning.

Reinforcement Learning Lecture
Policy Gradient and Actor-Critic Methods

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Part 5: Eligibility traces (Math)

1.
2.
3. Actor-Critic
4.
5.

Introduction
From Policy gradient to Deep RL

Eligibility traces for policy gradient
Eligibility traces arise naturally in policy gradient

summary: Eligibility traces from Policy Gradient

‘Policy Gradient Theorem’:

An algorithm with eligibility traces arises naturally
In the frame work of policy gradient.

Proof. assumes setting of ‘continuing’ environment
(as opposed to episodic).

Aim: optimize returns from ALL states

? state ﬁ) state

. action
action

State
ﬁ) State ?
. action
¢ action °
| . action
I action T
terminal state O
end of episode never ends:

episode continuing setting

Previous slide.
Episodic setting means that we have a fixed start state and a terminal state.

Once we have arrived at the terminal state we put the agent back to the start
State.

Continuing setting means that every state Is a possible start state. The
environment allows loops. There Is no strict terminal state since we can always
imagine that the agent is from the nominal ‘terminal state’ automatically moved
on to a (probabilistically selected) state inside the environment.

In both cases rewards can be collected at any state In the environment.

Review: Policy Gradient over multiple time steps (episodic)

Optimize RETURN from starting state s;: state
Calculation yields several terms of the form ? action
Total accumulated discounted reward T state
collected In one episode starting at s;, a; ?
/ o Aaction
At d f
Ab; X [RSt_)Send]d_Hj ln[ﬂ(atlst’ 6)] I action
At+1 d
+V[R5t+1—>send]d9j ln[ﬂ(at+1 |St+1J 9)
+ end of

episode

Previous slide.
This Is a repetition of an earlier slide.

NOW: Policy Gradient over multiple time steps (infinite horizon)

Optimize EXPECTED average RETURN from ALL STATES:
—E[Return from starting state s;

+ Return from next state s; . 4 -

DT
é

+ Return from next state s;.

o+—)+—eo+—)—eo—)

+ Return from next state s;. 3 ?
®

.. Return from s; ., |

_ ® ? ®
(and take limit K — oo) | 95 L ¢

Previous slide.

The Return from the first state Is the sum over all future (discounted) rewards
starting at s;

The Return from the next state Is the sum over all future (discounted) reward
starting at sy

... and so forth.

But the aim Is to optimize the Expected Returns from ALL STATES.

This will give many terms

. Policy Gradient over multiple time steps (Preparation for Exercise}

Step 1: Rewrite RS 5oy =Tt TV T Y 2Tty 31isa

Step 2a: use log-policy update formula (*) for state s;
Step 2b: Use same update formula, but for states s;. {, s,
Step 3: Sum results from step 2 and

reorder terms according to ;...

)00, <[ReS s 1% In[m(a;lss, 0))

St™75end-do;

|)/[Rat+1] d ln[ﬂ(at+1|5t+1; 9)]

St+17%end-do;

Previous slide.
This Is the start of the calculations for the blackboard part.
It will also appear in the exercise.

J. Policy Gradient for eligibility traces (Exercisel

Step 4: Introduce ‘shadow variables’ for eligibility trace

Zr < Zr A decay of all traces

Zy <z + %kln[ﬂ (als, 8x)] update of all traces

Step 5: Rewrite update rule for parameters with eligibility trace

AB=n 11 Zj

Previous slide.
This Is a repetition of the exercise

9. Algo of Policy Gradient with eligbility traces (Exercisel

Run trial. At each time step, observe state, action, reward
1) Update eligibility trace for all parameters &

Zy < Z Y decay of all traces

Z < Zx + @ln[ﬂ (als, 8x)] increase of all traces

2) update all parameters &

AB=n 11 Zj

Note: | have set A= y as a result of the calculation

Previous slide.

And these two updates can now be mapped to the algorithm of Sutton and Barto
that we saw a few slides before.

Conclusion:;
(1) eligibility traces are a compact form for rewriting a policy gradient algorithm.

(1) The derivations show that the decay factor of policy gradient must be equal to
the discount factor of the Return, hence y=A

For an episodic setting boundary effects would appear — but since we are here In
the infinite-horizon continuing setting, we have nor boundary effects. Indeed,
there are minor differences at the ‘bounderies’ that is, the beginning and end of
each episode — but these do not matter if we think of the environment as being
very large — potentially infinitely large because of loops.

summary: Eligibility traces from Policy Gradient

‘Policy Gradient Theorem’:
An algorithm with eligibility traces arises naturally

IN the framework of policy gradient.
Decay rate of eligibility traces = Discount Factor v

Proof: - assumes setting of ‘continuing’ environment
(as opposed to episodic)
- we optimize the expected average
return from ALL states

Note: Algorithm for ‘continuing’ setting is the better one
(better than the one for episodic setting)

Previous slide. Your notes

Actor Critic with Ehgibility Traces (continuing setting)

Actor—Critic with Eligibility Traces (continuing)

Input: a differentiable policy parameterization 7(als, 8)
Input: a differentiable state-value parameterization v(s,w)

e

Parameters: trace-decay rates \? € [0,1], \Y € [0, 1]; step sizes o® >0, a™% > 0, n > 0

6

z% <+ 0 (d’-component eligibility trace vector)

z% + 0 (d-component eligibility trace vector)

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Initialize S € S (e.g., to sp) TD error (fOr ,y:l)

BEPEEII forever: /
A~ m(:]9,0) —
Take action A. observe S’. 1 bUt Set y_}\' o

b+ 1r +o(S5'w)—o(Sw (if S’ is terminal, then o(S",w) = 0)

— H+no
zV — \VzV + V0 (S,w)

e o e o Update eligibility traces
W WHavoz” o 1 Adapted from

0 0+ af52° - Update parameters Sutton&Barton
S+ 5 . 2018

Notes:

1) Here Sutton and Barto have suppressed the factor y. (by setting y=1).
They do not identify y=A.

2) The starting point of the derivation of Sutton and Barto is to optimize the
average reward (I optimized average return with discount factor v.

3) However, | would set y=A and add the A in the update for the TD error:
o&n[r FAV(S,w) = V(S,w)]

The reason Is

(1) that the critic learns V-values with TD-learning and should use the same
discounting y=A as the actor.

(1) The baseline subtraction for an actor that uses discounted cumulative

rewards for returns should match the consistency condition of the Bellman
eguation.

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reinforcement Learning Lecture
Policy Gradient and Actor-Critic Methods

1. Review Policy gradient

2. From Policy Gradient to Deep Reinforce
3. Actor-Critic

4. Eligibility traces for policy gradient

5. Eligibility traces arise naturally (math)

6. Application: Navigation task

/. Model-based versus Model-free

Previous slide.
Final point. Model-based versus Model-free

1. Model-based versus Model-iree

What happens in RL when
you shift the goal after
learning?

starting positions

Previous slide.
Final point: are we looking at the right type of RL algorithm?
Imagine that the target location is shifted in the SAME environment.

1. Model-hased versus Model-free Reinforcement Learning

What happens in RL when
you shift the goal after
learning?

ATl
e AP
R T

@ 7 11

/o
//
/4—-
/-<~
,\
,v.
"
la
"

—> The value function has to
be re-learned from scratch.

value [a.u.]

agent learns ‘arrows’, but not
the lay-out of the environment:
Standard RL is ‘'model-free’

Previous slide.

After a shift, the value function has to be relearned from scratch, because the RL
algorithm does not build a model of the world. We just learn ‘arrows’: what is the
next step (optimal next action), given the current state?

1. Model-hased versus Model-free Reinforcement Learning

Definition:
Reinforcement learning Is model-free, If the agent does

not learn a model of the environment.

Note: of course, the learned actions are always
Implemented by some model, e.g., actor-critic.
Nevertheless, the term model-free Is standard in the field.

Previous slide.
All standard RL algorithms that we have seen so far are ‘'model free'.

1. Model-hased versus Model-free Reinforcement Learning

Definition:
Reinforcement learning Is model-based, If the agent does

also learn a model of the environment.

Examples: Model of the environment

- state sl is a neighbor of state s17.

- If | take action a5 In state s7, | will go to s8.
- The distance from s5 to s15is 10m.

- elc

Previous slide.
Examples of knowledge of the environment, that would be typical for model based
algorithm

1. Model-hased versus Model-free Q-learning

Model-free:
the agent learns directly and only
the Q-values/V-values/policy

Model-based:
the agent learns the Q-values/policy
and also the transition probabillities

P(ll

s—s’

Previous slide.
Let us go back to our ‘tree’. If the algorithm knows the transition probabilities, or

builds up an estimation of the transition probabilities, then this means that it Is a
model-based algorithm.

If the algo does not contain elements that explicitly enable an estimation of
transition probabilities, then the algorithm is model-free.

Note that knowledge of the physics of a robot (e.g., the laws of physics that
govern the dynamics of movement) or knowledge of the rules of a game (e.q.,
allowed moves in chess) is an example of explicit knowledge of transition
probabilities, and hence, Iif this knowledge is available to the algo, then the algo Is

called ‘'model-based’.

1. Model-hased versus Model-free Reinforcement Learning

Advantages of Model-based RL:
- the agent can readapt If the reward-scheme changes
- the agent can explore potential future paths in its ‘'mind’
-> agent can plan an action path
- the agent can update Q-values in the background
- dream about action sequences
(run them In the model, not In reality)
Note: Implementations of Chess and Go are ‘'model-based’,
because the agent knows the rules of the game and can
therefore plan an action path. It does not even have to learn
the ‘model’ (since the rules are given/known).

next slide.

Many modern applications of RL have a model-based component, because you
need to play a smaller number of ‘real’ action sequences ...

And computer power necessary for running things in the background is cheaper
than acting ‘in real’.

1. Model-hased learning

A

Model based:

You know what state to
L : expect given current
state and action choice.
‘'state prediction’.
Experiment with
human participants

7N

10 0 0 1 0 10 0 25 25 0 10 0 0 10 0 25
B Session 1: State Space Exposure (no choices)

LEFT LEFT Glascher et al. 2010

State and Reward Prediction Task (previous slide)

(A) A specific experimental task for human participants was a sequential two-
choice Markov decision task in which all decision states are represented by
fractal Images. The task is to move through a binary decision tree. Each trial
begins in the same state. Subjects can choose between a left (L) or right (R)
button press. With a certain probability (0.7/0.3) they reach one of two
subsequent states in which they can choose again between a left or right
action. Finally, they reach one of three outcome states associated with different
monetary rewards (0, 10cent, and 25cent).

(B) Importantly, to encourage model-based behavior human participants first
watched artificially generated sequences that enabled them to learn which

actions caused which transition, so that they could estimate the transition
probabillities.

Glascher et al. 2010

1. Model-based Reinforcement learnint

Reward Exposure

Sl
x ol

25¢ 10c¢ Oc

Q(S’ a) — Z Psa—>s'

R, +7) 7(s',a)Q(s',a)

()
Q(s,a:
Pal e A
s—s’
O O C
] L
a3
S’%S"
OO O O "

Glascher et al. 2010

Model based RL allows to think about conseguences of actions:
Where will | get a reward?

You just need to play the probabilities forward over the model graph: you simulate
an experience (in your mind!) before taking the real actions.

Glascher et al. 2010

summary: Model-hased Versus Model-iree

- learns model of environment - does not
transition matrix’
- knows ‘rules’ of game - does not
- planning ahead is possible - cannot plan ahead
- can update Bellman equation - cannat
In ‘background’ without action
- can simulate action sequences - cannot

(without taking actions)

- no need to use elgibility traces - Elgibility traces and V-values
keep memory of past
- is not online/causal - completely online, causal,

forward In time.

Model-based RL is more powerful than Model-free RL.

The overhead for memory/algorithmic complexity Is often acceptable so that In
computer-applications model-based is today preferred.

Updating knowledge in the background (without playing the actions) is also
called ‘off-line’ update.

Learning outcomes and Conclusions:

- policy gradient algorithms
- updates of parameter propto |[Return]d%ln[ﬂ]
- why subtract the mean reward/mean Return?
-> reduces noise of the online stochastic gradient
- actor-critic framework (‘advantage actor critic’)
- combines TD with policy gradient
- eligibility traces as ‘candidate parameter updates’
-> true online algorithm, no need to wait for end of episode
- Differences of model-based vs model-free RL
-> play out consequences Iin your mind by running the

state transition model walit

The end of today's Lecture!
... and also the end of 8 weeks of
‘Foundations of Learning in Neural Networks’

- We are now ready to look at specific applications
Thanks!

The END

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Subtract a baseline
	Slide 16
	Slide 17: Subtract a reward baseline
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Quiz: Policy Gradient and Deep RL
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Quiz: Policy Gradient and Reinforcement learning
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

