
Wulfram Gerstner

EPFL, Lausanne, Switzerland
Learning in Neural Networks: RL1 (continued)

Reinforcement Learning and SARSA 

Objectives for Lecture RL1:

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Convergence in expectation 

- Exploration vs Exploitation

- Bellman equation

- SARSA algorithm

Parts 4-6: Examples of Reward-based Learning 

Reading:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Recall: Learning by reward

Learning by reward ‘’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence



Previous slide. 

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example, the ball in table tennis does not land on 

the table as it should. That is bad (negative feedback). The ball has a great spin 

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Recall: Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′

𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



Recall: Elements of Reinforcement Learning

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

- current actual reward: 𝑟𝑡

𝑠 𝑠′

𝑎- Environment with discrete states

- Transitions (potentially stochastic)

are driven by actions       

- Aim: choose good actions

to optimize reward

→ Markov Decision Problem (MDP)

Distinction between



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. 

For the moment we also think of the states as discrete (but next week we will go 

to continuous state space).

Transitions between actions are influenced by action choices.

Transitions can be stochastic.

Actions should be chosen so as to maximize the reward. This setting is also 

known as Markov Decision Problem (MDP).



Recall: Q-value for one-step horizon games/bandit problem

𝑄 𝑠, 𝑎 = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



Recall: One-step horizon games (bandit problem)
Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

→ take action with highest Q-value

BUT: we normally do not know the Q-values

→ estimate by online update
𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)
=6 =2 =5

∆𝑄 𝑠, 𝑎 = h[𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

∆𝑄 𝑠, 𝑎 = 𝛼 [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

Learning rate: often h , often 𝛼



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Recall: Update rule in Expectation (Theorem)

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

After taking action a in state s, we update with

(i) If (1) has converged in expectation given (s,a), then 
෠𝑄 𝑠, 𝑎 has a value,

(2) 

h

(ii) If the learning rate h decreases, 

fluctuations around the empirical mean
෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
decrease. If ෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

converges for fixed h, then the empirical 

mean approaches 𝑸 𝒔, 𝒂 

෡𝑄 𝑠, 𝑎 = 𝐸 ෡𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]              (1)              



Previous slide. 

When evaluating the expectation value given (s,a), the learning rate  drops out since we set the left-

hand-side to zero. The exact value of h is not relevant, as discussed in the  theorem. Part (i) of the 

theorem states that the expectation value of ෠𝑄 𝑠, 𝑎 is the correct Q-value. For a quick proof of 

𝐸 ෠𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) see the video. On the blackboard a stronger statement was shown:
෠𝑄 𝑠, 𝑎 = 𝑄(𝑠, 𝑎). 

Convergence in expectation is equivalent to imagining that you start millions of trials with the same 

value ෠𝑄 𝑠, 𝑎 without any intermediate update. So in that sense it is like an infinite ‘batch’ of 

examples. The stochastic variables are the next state s’ and the received reward 𝑟𝑡. The value of 
෠𝑄 𝑠, 𝑎 is not stochastic but ‘frozen’. Therefore (trivially) 𝐸 ෠𝑄 𝑠, 𝑎 |𝑠, 𝑎 = ෠𝑄 𝑠, 𝑎 .
In practice, we do not have expectations but online updates with fluctuations. It is important 

that h is small at the end of learning so as to limit the amount of fluctuations. Part (ii) states that 

online mean for small learning rate also goes to  the correct Q-value. 

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the calculation of part 

(i) apply analogously to the long-term empirical temporal average (denoted by angular brackets). The 

average is across all those time steps where action a was chosen in state s, denoted as  
෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
.  We assume convergence, hence our hypothesis reads

∆෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝜼 𝑟𝑡 − ෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 0 . 

The specific result ෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝑸 𝒔, 𝒂 is based on linearity and is not true for the multi-step 

horizon that we discuss later. 



Recall: One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

→ take action with highest Q-value

If Q-value not known: 

→ estimate ෠𝑄 by trial and error

→ update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]       (1)h

→Let learning rate h decrease over time 

Iterative algorithm (1) fluctuates, but ‘makes sense’



Previous slide. 

Let us distinguish the ESTIMATE ෠𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block.

Note: in later lectures I will often use the symbol  instead of h

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning Neural Networks: RL1

Reinforcement Learning and SARSA 

Part 4: Exploration vs. Exploitation

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)

- Exploration vs. Exploitation



Previous slide.

To estimate the Q-values you have to play all the different actions several times. 

However, if you know the Q-values you should only play the best action. 



Problem:  correct Q values not known

                 (since reward probabilities and

                 branching probabilities unknown)

Exploration versus exploitation                            

Take action which looks 

optimal, so as to 

maximize reward

Explore so as to

estimate reward 

probababities

Exploration – Exploitation dilemma 𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Ideal: take action with maximal 𝑄 𝑠, 𝑎

෠𝑄 𝑠, 𝑎1



Previous slide.

Since Q-values are not known, you are always in the situation of an exploration-

exploitation dilemma. 

Note: All estimates of Q will be empirical estimates. Here in this and the next slide 

I still write Q-hat for the empirical average. However, later, I simplify the notation 

and write for the empirical estimate Q(s,a) without the hat whenever the meaning  

is implicitly clear.



greedy makes you stuck:

Example

a1 a2

s s=state

a2 action

s’=new state

Q(s,a1)

rt=5.5

Assume that you initialize all Q values with zero; set      =0.2 (constant)

    update

 Trial 1: you choose action a1, you get rt=5.5            → 𝑄 𝑠, 𝑎1 =1.1

 Trial 2: you choose action a2, you get rt=4.0

 Trial 3 – 4: continue ‘greedy’: → you continue with action 1

rt=4rt=0

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h
h

𝑃𝑠→𝑠′
𝑎1 = 1

2
𝑃𝑠→𝑠3

𝑎2 = 3
4

rt=1    actual reward
𝑠2

→ 𝑄 𝑠, 𝑎2 =0.8

BUT: the expected reward                                      is larger for action 2.Q(s,a)= →→

'

''

s

a
ss

a
ss RP

𝑠1 𝑠3

^

^^

^

^



Given the outcomes of the first two trials, action a1 looks better.

You can check that whatever the outcome in trial 3 (even for reward=0!), the 

estimated Q-value of action a1 is still higher than that of action a2!



a1 a2

s

s’

a
ssR '→<r> =

greedy strategy:

 - take action a* which looks best

Q(s,a*) ≥ Q(s,aj)   for all j

Problem: correct Q values not known

Exploration and Exploitation

ATTENTION:

with ‘greedy’ you may get

stuck with a sub-optimal strategy

(see Exercise!)

^ ^
Q(s,a1)^

Q(s,a2)^



Previous slide.

If you know the correct Q-values, the best choice would be to choose the action 

with maximal Q-value (called ‘greedy’ action).  But since you don’t know the Q-

values it is risky to choose the greedy action because you may get stuck with a 

suboptimal  choice.

In (almost all) applications of reinforcement learning we work with estimated Q-

values.

Previously we used a hat to distinguish the ESTIMATED ෠𝑄 𝑠, 𝑎 from the real Q-

value 𝑄(𝑠, 𝑎). However, in the following I will write the estimated Q-values without 

the hat. Nearly always Q means estimated Q.



a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

greedy strategy:

 - take action a* which looks best

Q(s,a*) ≥ Q(s,aj) for all j

Problem: correct Q values not known

-greedy strategy:

 - take action a* which looks best

   with prob 



−=1P

Optimistic greedy:

   initialize with Q values that are too big

Softmax strategy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a




=



Exploration and Exploitation: practical approach

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

hats have been dropped!



Previous slide.

Softer versions of greedy allow you to choose occasionally an action which looks 

suboptimal, but which allows you to further explore the Q-values of other options.

Epsilon-greedy and softmax are examples following this idea. 

Note that ‘softmax’ is a function that one also  encounters in multiclass tasks with 

1-hot coding (see course of ‘machine learning’;)

A radically different approach is optimistic greedy. If you initialize all Q-values at 

the same value, but clearly too high (compared to maximal reward that you can 

get in the scheme), then the Q-value of action a1 decreases initially each time 

you play a1, which in turn favors other actions that you have not yet played.



a1 a10

s

s’

R1 R10

Exploration and Exploitation: practical approach

Example: 10-armed bandit

with fluctuating reward

in each action, actual rewards

fluctuate around a mean

Rk= 𝑅
𝑠→𝑠′
𝑎𝑘

Epsilon-greedy: simulation

Optimal action

=0.1
=0.01
=0

average reward

book: Sutton and Barto

=0.1

=0

performance across several 

10-armed bandits



Previous slide. 

Computer simulation of a situation where actual rewards r fluctuate around the 

mean reward R. There are 10 different actions a1, …, a10 each with a different 

mean reward R1, …, R10.

There exist two different ways to evaluate the performance.

Top: what is the average reward that you get by playing epsilon-greedy?

Bottom: what is the  fraction of times that you play the optimal action, by playing 

epsilon-greedy.

Three different values of epsilon are used. 

The curves are averages over many instantiations of different 10-armed bandits.



Sutton and Barto, ch. 2

Exploration and Exploitation: practical approach

Epsilon-greedy, combined with iterative update of Q-values

learning rate 

Sutton and Barto call R what I call rt



Previous slide.

This is the style of pseudo-code that we will see a lot over the next few weeks. It is taken from 

the book of Sutton and Barto (MIT Press, 2018); Sutton and Barto made a pdf online available.

Q(a) is the Q-value for action a. Since we have always the same starting state in which we have 

to make our choice of action, we can suppress the index of the state s. Q(a) = Q(s_{start},a).

N(a) is a counter of how many times the agent has taken action a.

In this specific example the learning rate eta is the inverse of the count N(a) (see earlier 

exercise); but in the more general setting we would remove the counter and just use some 

heuristic reduction scheme for eta.

Note that in class we define (1-epsilon) as the probability of taking the ‘best’ action 

corresponding to argmax Q and epsilon is then distributed over the OTHER actions. Sutton and 

Barto distribute epsilon over ALL actions, including the ‘best’.

Thus for a total choice of 3 actions, Sutton and Barto have a probability of epsilon/3 for the 

other actions (and with the definition in class it would be epsilon/2).



Quiz: Exploration – Exploitation dilemma 

[ ] With a greedy policy the agent chooses the ‘best possible’ action

[ ] Using an epsilon-greedy method with epsilon = 0.1 

means that, even after convergence of Q-values,

in about 10 percent of cases a suboptimal action is chosen.

[ ] If the rewards in the system are between 0 and 1 and Q-values

are initialized with Q=2, then each action is played at least 

5 times before exploitation starts.

(exploitation starts when you no longer choose the wrong action)

We use an iterative method and update  Q-values with eta=0.1

[ ]

[x]

[x]



Previous slide.

Here we define as in class  (1-epsilon) as the probability of taking the ‘best’ action 

corresponding to argmax Q and epsilon is then distributed over the OTHER 

actions. 



Quiz: Exploration – Exploitation with Softmax policy

[ ] Suppose we have 3 possible actions 𝑎1, 𝑎2 , 𝑎3 and use the 

softmax policy. Is the following claim true?

For 𝑄(𝑎1) = 4, 𝑄(𝑎2) = 1, 𝑄(𝑎3) = 0 the preference 

for action 𝑎1 is more pronounced 

than for 𝑄(𝑎1) = 34, 𝑄(𝑎2) = 31, 𝑄(𝑎3) = 30.

Softmax policy: take action a’ with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a




=



[no], 

𝑃(𝑎1) =
exp[𝛽𝑄 𝑎1 ]

σ𝑘 exp[𝛽𝑄 𝑎𝑘 ]
=

1

1 + σ𝑘>1 exp[𝛽(𝑄 𝑎𝑘 − 𝑄 𝑎1) ]

[ ]

→ only differences of Q-values matter



Quiz: Exploration – Exploitation with Softmax policy

1. [ ] if we use softmax with beta = 10,  then, after 100 steps,

action 2 is chosen almost always 

2. [ ] if we use softmax with beta = 0.1, then, after 100 steps 

action 2 is taken about twice as often as action 1.

All Q values are initialized with the same value Q=0.1

Rewards in the system are     r =0.5 for action 1 (always)

and r=1.0 for action 2  (always)

Softmax policy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a




=


[no], with beta=0.1, exp(beta*Q)=1+…

→both action chosen with about the same prob.

We use an iterative method and update Q-values with eta=0.1

[yes], since beta[Q(a2)-Q(a1)]=5



Your notes (Quiz not given in class). 

Softmax policy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a




=


[no], with beta=0.1, exp(beta*Q)=1+…

→both action chosen with about the same prob.

[yes], since beta[Q(a2)-Q(a1)]=5

Use that exp(5) is a big number!



Exploration and Exploitation: Summary

- If we know the Q-values we can exploit our knowledge

- Exploitation = action which is best = argmax Q(a)

- But we never know the Q-values for sure

- We need to estimate the Q-values by playing the game

- Explore possibilities, transitions, outcomes, reward

For complex problems, there is no perfect trade-off 

Between exploration and exploitation 



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks: RL1

Reinforcement Learning and SARSA 

Part 5: Bellman Equation

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation



Previous slide.

So far our Q-values were limited to situations with a 1-step horizon. Now we will 

get more general. 



Multistep horizon
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

𝜋 𝑠, 𝑎Policy

Examples of policy:

-epsilon-greedy

-softmax

𝑃𝑠→𝑠′
𝑎

probability to choose 

action a in state s

Stochasticity 

probability to end in state s’
taking action a in state s

𝜋 𝑠, 𝑎1

1=σ𝑎′ 𝜋 𝑠, 𝑎′

𝜋 𝑠′, 𝑎3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠′→𝑠"
𝑎3

Q(s,a3)



Previous slide.

After a first action that leads to state s’ starting from state s , the agent can now 

take a second action starting from s’.

Note that there are two different types of branching ratio:

describes the probability that the agent uses action a1 when it is in 

state s – based on the agent’s policy (such as epsilon-greedy)

describes as before the probability that the agent arrives in state s’ 

given that it chooses action a1 in state s.

As before we are interested in the expected reward. The Q value Q(s,a) describes 

the total accumulated reward the agent can get starting in state s with action a.

Next slide: rewards that are n steps away are discounted with a factor 𝛾𝒏

𝑃𝑠→𝑠′
𝑎1

𝜋 𝑠, 𝑎1



Total expected (discounted) reward
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄 𝑠, 𝑎1

Q(s,a)  =

Starting in state s with action a

= ർ 𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3 ۧ+ ⋯

Discount factor: 𝛾 <1
-important for recurrent state transition graphs!

-avoids blow-up of summation

-gives less weight to reward in far future

= 𝐸[𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3 + … |𝑠, 𝑎)]



Previous slide.

Angular brackets denote expectation (or averages over many trials, always with 

the same policy (s,a) and all starting in (s,a).

Red-font lower-case r indicates the reward collected over multiple time steps in 

one single episode, starting in state s with action a.

Expectation means that we have to take the average over all possible future 

paths giving each path its correct probabilistic weight.

The probabilistic weight includes the fixed policy  (s,a) 

as well as  the branching ratio P(s,a)



Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Blackboard4:

Bellman eq.



Space for calculations. 



Bellman equation with policy 
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 
Q(s,a1)

Q(s’,a’)

Bellman equation =

value consistency of 

neighboring states

Remark:

Sometimes Bellman equation is written

for greedy policy: 𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 



Previous slide. 

The Bellman equation relates the Q-value for state s and action a with the Q-

values of the neighboring states. 

Neighboring means reachable in a single step.

Note that  the two different types of branching ratio both enter the equation.

Bottom: in the case of a greedy policy, the Bellman equation simplifies



Bellman equation (for optimal actions)
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 
Q(s,a1)

Q(s’,a’)

for greedy policy: 

𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 

𝑄 𝑠, 𝑎 = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎  [ 𝑅𝑠→𝑠′

𝑎 +𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′𝑎′)]



Previous slide.

For a greedy policy, the sum over actions disappears from the Bellman equation 

and is replaced by the max-sign. 



Quiz: Bellman equation with policy 
𝑠

𝑠′

a a2 a3

𝑃𝑠→𝑠′
𝑎

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ  Q(s,a)

Q(s’,a’)
[ ] The Bellman equation is linear

in the variables Q(s’a’)

[ ] The set of variables Q(s’,a’) that solve

the Bellman equation is unique and 

does not depend on the policy 

[ ]

[ ]

= ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 [𝑅𝑠→𝑠′

𝑎 + 𝛾 ෍

𝑎′

𝜋 𝑄 𝑠′, 𝑎′ 𝑄 𝜋 (𝑠′, 𝑎′)]



Your comments. 



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning Neural Networks: RL1

Reinforcement Learning and SARSA 

Part 6: SARSA Algorithm

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation

- SARSA Algorithm



Previous slide.

We not turn to the first practical algorithm, called SARSA. This is an algorithm that 

is widely used in the field of reinforcement learning. 



a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

Review: Iterative update of Q-values

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑟𝑡



Previous slide.

Reminder: for the 1-step horizon scenario we found that we could calculate the Q-

values iteratively. 

We increase the Q-value by a small amount (with learning rate 0<eta<<1) if the 

reward observed at time t is larger than our current estimate of Q.

And we decrease the Q-value by a small amount if the reward observed at time t 

is smaller than our current estimate of Q.

Iterative updates with one data point at a time are also called ‘online algorithms’. 

Thus our update rule is an online algorithm for the estimation of Q-values.



a1 a2

s

s’

Q(s,a1)

a
ssR '→<r> =

Q(s,a2)

Iterative update of Q-values for multistep environments

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]   h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

?∆ ෠𝑄 𝑠, 𝑎 =

𝑟𝑡



Previous slide.

The question  now is: can we have a similar iterative update scheme also for the 

multi-step horizon?



Blackboard5:

SARSA update

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)



Your notes. 



Iterative update of Q-values for multistep environments

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾 ෠𝑄 𝑠′, 𝑎′ − ෠𝑄 𝑠, 𝑎 ]h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  

- Q-values not given

- branching probabilities not given

- reward probabilities not given 

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

Bellman equation:

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 

a1 a2 a3



Previous slide. 

Even for the case of the multi-step horizon, we can estimate the Q-values by an 

interative update: 

The Q-values Q(s,a) is increased by a small amount if the sum of  (reward 

observed at time t  plus discounted Q-value in the next step)  is larger than our 

current estimate of Q(s,a).

This iterative update gives rise to an online algorithm.

NOTE: in the following we always work with empirical estimates, and drop the 

‘hat’ of the variable Q. 



SARSA vs. Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 
Q(s,a1)

Q(s’,a’)

Bellman equation 

= consistency of Q-values 

across neighboring states

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾 ෠𝑄 𝑠′, 𝑎′ − ෠𝑄 𝑠, 𝑎 ]h

SARSA update rule 

= make Q-values of neighboring states

more consistent



Previous slide.

The Bellman equation summarizes the consistency condition: 

The (average) rewards must explain the difference between Q(s,a) and  Q(s’,a’) 

averaged over all s’ and a’.

Or equivalently:

Q(s,a) must be explained by the (average) reward in the next step and the 

discounted Q-value in the next state.

The iterative update formula implies that Q(s,a) needs to be adapted so  the 

current reward explains the difference between Q(s,a) and Q(s’,a’).

An equivalent form of writing the update is:

This form highlights the similarity to the case of the update rule in the cae of the 

one-step horizon. 

Q(s,a)=h [r-(Q(s,a) -  Q(s’,a’))]



SARSA algorithm
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

1) being in state s

and having chosen action  a

[according to policy              ]

2) Observe reward r 

     and next state   s’ 

3) Choose action   a’ in state s’

     [according to policy                ]

4) Update with SARSA update rule 

5) set: s  s’;   a  a’

6)  Goto 1)

Initialise Q values

Start from initial state s

𝑟𝑡

Stop when all Q-values have converged

𝜋 𝑠, 𝑎

𝜋 𝑠, 𝑎

h



Previous slide.

The update rule gives immediately rise to an online algorithm. You play the game. 

While you run through one of the episodes you observe the state s, choose action 

a, observe reward r, observe next state s’ and choose next action a’. At this point 

in time (and not earlier) you have all the information to update the Q-value Q(s,a).

The name SARSA comes from this sequence state-action-reward-state-action. 



SARSA algorithm.

[ ] in SARSA, updates are applied after each move.

[ ] in SARSA, the agent updates the Q-value Q(s(t),a(t))

related to the current state s(t)

[ ] in SARSA, the agent updates the Q-value Q(s(t-1),a(t-1))

related to the previous state, once it has chosen a(t)

[ ] in SARSA, the agent moves in the environment 

using the policy

[ ] SARSA is an online algorithm

We have initialized SARSA and played for n>2 steps. 

Is the following true for the next steps?  

𝜋 𝑠, 𝑎

[x]

[  ]

[x]

[x]

[x]

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h



Previous slide.



Variant A: SARSA is consistent w. Bellman equation

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑃𝑠→𝑠′
𝑎

We proof the following: 
Suppose that we have found a set of Q-values.

We keep them frozen while evaluating expectation: 

IFF 𝐸[∆𝑄 𝑠, 𝑎 ] = 0, then the Q-values solve the 

Bellman equation. 

Notes:

- Expectation is taken for fixed Q-values

and hence for fixed policy (consider Q-values as 𝜽𝒐𝒍𝒅)

- Expectation E[∆𝑄 𝑠, 𝑎 ] is taken over all possible 

paths starting in (s,a). I call this ‘batch-like’.

- The length of the path is given by the needs

of the update equation: Here from (s,a) to (r,s’,a’)

- Look at state-action-diagram to keep track of terms

Blackboard 6A:

SARSA



Your comments. 



Variant A: SARSA is consistent w. Bellman equation

Look at graph to take expectations: 

- if algo is on a branch (s,a), all remaining expectations are “given s and a”

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑟𝑡

𝑃𝑠→𝑠′
𝑎

(s’,a’)

𝐸[∆𝑄 𝑠, 𝑎 ] = 𝐸[𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]=0h

We have proven the following: 
Suppose that we have found a set of Q-values.

We keep them frozen while evaluating expectation.  

IFF 𝐸[∆𝑄 𝑠, 𝑎 ] = 0, then the Q-values solve the 

Bellman equation. 

෍

𝑠′

𝑃𝑠→𝑠′
𝑎 + 𝛾 ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 ෍

𝑎′

𝜋(𝑠′, 𝑎′) 𝑄(𝑠′, 𝑎′) = 𝑄 𝑠, 𝑎𝑅𝑠→𝑠′
𝑎



Previous slide.

This is version A of the theorem. In the proof, we exploit the condition:

In order to take the expectations, we look at graph: 

- if in the evaluation we are in state s’, all remaining expectations are “given s’”

- if we are on a branch (s,a), all remaining exp. are “given s and a”.

We exploit that all Q-values and the policy are fixed while we evaluate the expectation. 

Hence E[Q(s,a)] = Q(s,a).  

Note that the proof works in both direction. If the Q-values are those of the Bellman 

equation, the expected SARSA update step vanishes. And if the expected SARSA 

update step is zero, then the Q-values correspond to the Bellman equation. Both 

direction work under the assumption of a fixed policy.

The stronger theorem (with fluctuations, version B) is sketched in the appendix (and 

video).

𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎] = 0



Additional Notes: This  weaker  theorem (variant A that corresponds to the one on the  

previous slide)  takes expectations for FIXED Q-values. We can interpret these 

expectations as the following ‘batch’ computation

We assume a fixed policy (i.e., under the assumption of a fixed set of  Q-values) and a 

‘batch version’ of SARSA. Batch-SARSA means that in order to evaluate 

we use a large number of  starts from the same value (s,a) each time running one step  

up to (s’,a’) [note that this gives different (s’,a’). Once the number of starts is large 

enough to get a full sample of the statistics we update Q(s,a).  If the updates with the 

batch-SARSA do not lead to a change of Q values (for all state-action pairs), then this 

means that batch-SARSA has converged to the Bellman equation for this fixed policy. 

(That was the theorem in the main text).

Batch-SARSA is a computational implementation of the way many statistical 

convergence proofs work: you assume that you average over a full statistical sample of 

all possibilities given your current state or the current state-action pair. Expectation 

signs  in the update step imply updating over a ‘full batch of data’. In this approach  Q-

values no longer fluctuate, and hence do not need expectation signs; the policy no 

longer fluctuates and also does not need expectations signs. 

𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎]



Your comments. 



Variant B: Bellman equation and SARSA: theorem for small 

𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡
IF (i) averaged over many update steps

(ii) learning rate    is VERY small  (h→)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

Setting: ‘temporal averaging’

The SARSA algo has been applied

for a very long time, using updates

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 

𝑃𝑠→𝑠′
𝑎

(s’,a’)∆𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 0

h

h

THEN: fluctuations of Q are negligible and  the

set of expected Q-values solves the Bellman eq.

with the current policy (s’,a’)

Only true in the limit:

Wrong for any finite h



Previous slide. There are two different versions of the theorem. This version B is proven in the 

annex, in a fashion similar to the case of the 1-step horizon. 

In class (earlier slides) we have shown for the multi-step horizon a weaker statement: Expections

over SARSA updates are consistent with the Bellman equation if the expected update 

vanishes: In version A, we assume that Q-values are fixed (frozen) when we take the 

expectation. In version B, we take the empirical mean over all moments when we played 

action a in state s.  Hence the next update uses Q-values that have changed in the previous one. 

Note that taking the expectation in version A is different from averaging over update steps in 

version B. In version A, taking the expectation means that we average over all possible outcomes 

in the current situation, with momentarily fixed Q-values and fixed policy (i.e., the one induced by 

the set of  Q-values at time t). This distinction is important, because for a fixed policy averaging 

is relatively easy.

However, when averaging over time steps as in variant B, the Q-values and policy are different in 

each time step, and the proof therefore requires a limit h →0, so that changes can be neglected. 

Hence there are two versions of the theorem and two proof-sketches:

Blackboard 6A. On the earlier slides, we assume Q-values are fixed and do not fluctuate. 

Blackboard 6B. In the Annex, we assume that Q-values may fluctuate slightly about their stable 

values. This approach gives additional insights into the situation of the online SARSA, once it has 

converged in expectation.



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



- Reinforcement Learning is learning by rewards

→ world is full of rewards (but not full of labels)

- Agents and actions

→ agent learns by interacting with the environment

→ state s, action a, reward r
- Exploration vs Exploitation

→ optimal actions are easy if we know reward probabilities

→ since we don’t know the probabilities we need to explore

- Bellman equation

→ self-consistency condition for Q-values

- SARSA algorithm: state-action-reward-state-action 

→ update while exploring environment with current policy 

Summary: Reinforcement Learning and SARSA

Learning outcome and conclusions:

Before Next Week: 
MUST DO:

Exercise SARSA



Update of Q values  in SARSA (with 𝛾 =1)

policy for action choice:

),(maxarg* asQa a
a

t =

Exercise: SARSA in 1-dim environment

Pick most often action

Break ties stochastically

Q(s1,a1)

r=1

Q(s’,a1)

a1
a2

s1

a1
a2

s’

a1

goal

r=0

r=0

States form linear sequence

 Reward only at goal.

Initialise Q values at 0. Start at top state s1. 

Q values after 2 complete episodes?

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]



Exercise 4: SARSA for Linear Track. Exercise 4 (at 15h15)



Annex: Variant B - SARSA and Bellman equation   (proof  for small       ) 

𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡
IF (i) learning rate    is small;  AND IF

(ii) for all Q-values

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾 ෠𝑄 𝑠′, 𝑎′ − ෠𝑄 𝑠, 𝑎 ]h

Setting: ‘Temporal Averaging’
The SARSA algo with stochastic policy 

has been applied for a long time with updates

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 

𝑃𝑠→𝑠′
𝑎

(s’,a’)

h

THEN the expectation values (temporal average)

of the set of ෠𝑄-values solves the Bellman eq.

with the current policy (s’,a’)

h

∆𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 0



Notes: A few points should be stressed:

1. This is not a convergence theorem. We just show consistency as follows:

if SARSA has converged then it has converged to a solution of the Bellman equation.

2. In fact, for any finite  h the SARSA Q-values (Q-hat) fluctuate a little bit. It 

is only the EXPECTATION value of the Q-hat which converges.

3. We should keep in mind that SARSA is an on-policy online algorithm for arbitrary

state-transition graphs. Hence the value Q-hat at (s,a) and  (s’a’) will both fluctuate! 

4. The policy depends on these Q-hat-values and hence fluctuates as well. 

To keep fluctuations of the policy small, we need small h 

We imagine that all Q-hat values fluctuate around their expectation value   

with small standard deviation. As a result,  also fluctuates around a ‘standard’ policy. 

5. The fluctuations of the policy can be smaller than that of the Q-values: for 

example in epsilon-greedy, you first order actions by the value of Q(s,a), 

and then  only the rank of Q(s,a)  matters, not their exact values. In the proof we assume 

that the fluctuations of the policy become negligible (→ shift policy outside expectation).

6.  We show that the Q-values in the sense of Bellman are the expectation values of  

the Q-hat in the sense of SARSA.

7. Expectations are over many trials of the ONLINE SARSA.

The statement and proof is different  to slide 127 and to the book of Sutton and Barto. 



෠𝑄 𝑠, 𝑎 = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎  [ 𝑅𝑠→𝑠′

𝑎 +𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎 ෠𝑄 𝑠′, 𝑎′ ]

Variant B – temporal averaging: SARSA is consistent with Bellman   

Claim for Online SARSA:  ෠𝑄 𝑠, 𝑎 jitters, but its mean ෠𝑄 𝑠, 𝑎 solves Bellman
(proof  for small   h ) 

Look at graph to take expectations 

over update steps 

- if algo is in state s, expectations  “given s”

- if algo is on a branch (s,a), all remaining 

expectations are “given s and a”

solves Bellman!



Notes: This is a proof sketch of the consistency of online SARSA (Variant B). We  allow 

all Q-values to fluctuate around their expectation (visualized as ‘temporal averaging’) , 

but we still have to keep fluctuations of the policy negligibly small.  

If we allow for small fluctuations of the policy, then we have to realize that these 

fluctuations are correlated with the fluctuations of Q-values. Thus the evaluation of the 

product E( Q) is not trivial. Moreover, correlations can lead to a shift of the value and 

make the result inconsistent with the Bellman equation.

This variant B  therefore only works in the limit of vanishing learning rate.

The other  theorem  (Variant A that corresponds to the one on the slides in the main 

part of this lecture) takes expectations for FIXED Q-values. We can interpret these 

expectations as corresponding to a  ‘batch’ computation.

Batch-SARSA is a computational implementation of the way many statistical 

convergence proofs work: you assume that you average over a full statistical sample of 

all possibilities given your current state or the current state-action pair. Expectation 

signs  in the update step imply updating over a ‘full batch of data’. In this approach  Q-

values no longer fluctuate, and hence do not need expectation signs; the policy no 

longer fluctuates and also does not need expectations signs. 



SARSA: Temporal averaging (Variant B) h

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑟𝑡

𝑃𝑠→𝑠′
𝑎

(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

Blackboard 6B:

SARSA

(over update steps)Look at graph to take expectations over update steps 

- if algo is in state s, all remaining expectations are “given s”

- if algo is on a branch (s,a), all remaining exp. are “given s and a”

Version of 

Video (Variant B)



The proof steps for version A were shown in class.

The proof steps for version B are not shown in class (available as video).

The end of RL1



Review: SARSA algorithm
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

1) being in state s

choose action  a

[according to policy              ]

2) Observe reward r 

     and next state   s’ 

3) Choose action   a’ in state s’

     [according to policy                ]

4) Update with SARSA update rule 

5) set: s  s’;   a  a’

6)  Goto 2)

Initialise Q values

Start from initial state s

𝑟𝑡

Stop if all Q-values have converged (some criterion)

𝜋 𝑠, 𝑎

𝜋 𝑠′, 𝑎′

1)

2)

3)

4)
Q(s,a1) Q+

h



(previous slide)

The SARSA update in step 4 implements the idea that the immediate reward must 

account for the difference in Q-values between neighboring states.



Blackboard 1:

Backup diagram

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

𝑟𝑡

1)

2)

3)

4)
Q(s,a1) Q+

SARSA update step



(previous slide)

The backup diagram describes how many states and actions the algorithm has to 

keep in memory so as to enable the next update step.

In SARSA, when you are in (s’,a’) you need to go back to the branch (s,a) so that 

you can do the SARSA update.



Summary: SARSA algorithm and Backup Diagram 

Sutton and Barto, Ch. 6.4

action

action

state

pick next action a’ before you update

𝑟𝑡In algo:     is called R



(previous slide)

In SARSA, we can update Q(s,a), once we have seen the next state s’ and the 

next action a’. In other words, the current action is a’ and we had to keep the most 

recent state s’ and the earlier ‘branch’ characterized by action a in memory.

Note: I would argue that we also need to keep the earlier state s in memory 

because you update Q(s,a) and not Q(a); therefore you need to know the full state 

action pair (s,a)! -- But Sutton and Barto use a slightly different convention and 

that is the one we follow here.

The backup diagrams play a role in the following for the analysis of other 

algorithms.

Notation in pseudo-algo (difference of the book of Sutton and Barto to lecture) 

1.I simply write     for the actual reward at time t, and s, s’ and a, a,’ for the states 

and actions, respectively. In their book Sutton and Barto introduce in the  

Pseudocode dummy variables R,S,A, that take the role of place holders for the 

observed rewards, states, and actions.

2. I often call the learning rate h; Sutton and Barto call it 

𝑟𝑡



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 2

Variants of TD-learning methods and eligibility traces

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

Part 2: Variations of SARSA



(previous slide)

SARSA is one example of a whole family of algorithms that all look very similar.



Expected SARSA

Sutton and Barto, Ch. 6.6

action

action

state

Expected SARSA

+𝛼{𝑅 + 𝛾[σ ෤𝑎 𝜋 𝑆′, ෤𝑎 𝑄 𝑆′, ෤𝑎 ] − 𝑄(𝑆, 𝐴)}    



(previous slide)

The first variant is ‘Expected SARSA’.

In standard SARSA, we pick the next action a’ and actually take it, before the 

updata of Q(s,a) is done.

In expected SARSA, the update rule averages over all possible next action with a 

weight given by the policy 

The actual next action is chosen according to the policy.



Bellman equation for greedy policy
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 
Q(s,a1)

Q(s’,a’)

Bellman equation =

value consistency of 

neighboring states

Remark:

Sometimes Bellman equation is written

for greedy policy: 𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = max
𝑎′

𝑄(𝑠, 𝑎′)with action 



(previous slide)

The next variant is Q-learning.

Q-learning uses not an average with the current policy, but performs the averaging 

with the best policy, i.e., the greedy policy.

The idea is that you run a stochastic policy that includes exploration and visits 

all state-action pairs. However, since you plan to use after learning the greedy 

policy so as to maximize your returns, you already update the Q-values according 

the  greedy policy.

Since the current policy and the update scheme differ, Q-learning is called ‘off-

policy’.



Q-Learning algorithm

Sutton and Barto, Ch. 6.5

action

action

state max operation



(previous slide)

Q-learning is called ‘off-policy’ because you update as if you used a greedy policy 

whereas during learning you are really running a different policy (such as epsilon-

greedy): it is as if you turn-off the current policy during the update.

In Q-learning the update step is such that the current reward should explain the 

difference between Q(s,a) and the maximum Q(s’,a’) running over all possible 

actions a’. It is a TD algorithm (Temporal Difference), because neighboring states 

are visited one after the other. Hence neighbors are one time step away.

It does not play a role which action a’ you actually choose (according the your 

current policy). The max-operation is indicated in the back-up diagram by the little 

arc.



On-policy versus Off-policy algorithm:
action

action

state
SARSA: you actually perform next action,

according to the policy,

and then you update Q(s,a) 

statestate

action

best 

action

Q-learning: you look ahead and imagine

a greedy next action to update Q(s,a)

(but you then perform the actual next action

based on your current policy) 

actual next 

action

ON-POLICY: action a’ in update rule is the REAL action

OFF-POLICY: action a’ in update rule is DIFFERENT from real one



(previous slide)

On-policy versus OFF-policy.

Your real actions are chosen according to the policy (in both cases!). 

But in OFF-policy algos this policy is NOT the one used for the update rule.



Summary: SARSA and related algorithms

action

action

state
SARSA: you actual perform next action,

according to the policy,

and then you update Q(s,a) 

action

state

actions

Exp. SARSA: you look ahead and average

over potential next actions

and then you update Q(s,a) 

statestate

action

best 

action

Q-learning: you look ahead and imagine

greedy next action to update Q(s,a)

(but you then perform the actual next action

based on your current policy) 



(previous slide)

Summary of the three variations of SARSA and their back-up diagrams.



Teaching monitoring – monitoring of understanding 

[ ] today, after the break, at least 60% of material was new to me.

[ ] after the break, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



(previous slide)



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 2

Variants of TD-learning methods and eligibility traces

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

3. TD Learning (Temporal Difference)

4. Monte-Carlo Methods

Part 4: Monte-Carlo Methods



(previous slide)

Instead of using TD methods, the same state-action graph can also be explored 

with Monte-Carlo methods



action

state

state

action

action

end of trial

Monte-Carlo Estimation (for Q-values)

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑟𝑡

a1 a2 a3

Q(s,a3)- play trial (episode) until the end;

𝑟𝑡+1

𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3

- then update, using the total

accumulated discounted

reward (=‘Return’) = 

same episode is also 

used to estimate Q(s’,a’)

of children state

- in state s, take action a and note Q(s,a)

- use Return to update Q(s,a)



(previous slide)

1) Suppose you want to estimate the value Q(s,a) of state-action pair (s,a).

Q(s,a) is the EXPECTED total discounted reward, also called expected Return.

To estimate Q(s,a)) you start in state s with action a, run until the end and evaluate 

for this single episode the return defined as

This is a single episode. If you start several times in (s,a), you get a Monte-Carlo 

estimate of Q(s,a), by averaging over all episodes that started in (s,a).

2) You can be smart and use the SAME episode also to estimate the value Q(s’,a’) 

of other states s’. Thus while you move along the graph, you open an estimation 

variable for each of the state-action pairs that you encounter.

Combining points 1) and 2) gives rise to  the following algorithm.

𝑅𝑒𝑡𝑢𝑟𝑛 𝑠, 𝑎 = 𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3



state

state

action

action

end of trial

action

Monte-Carlo Estimation of Q-values (batch)

Return(s,a)  = 𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3+…

Start at a random state-action pair (s,a) (exploring starts)

Q(s,a) = average[Return(s,a)]

Note: single episode also allows to update Q(s’a’) of children

-greedy is good policy



(previous slide)

In this (version of the) algorithm you first initialize Q(s,a) and Return(s,a) for all 

state-action pairs.

For each state s that you encounter, you observe the (discounted) rewards that 

you accumulate until  the end of the episode. The total accumulated discounted 

reward starting from (s,a) is the ‘Return(s,a)’

After many episode you estimate the Q-values Q(s,a) as the average over the 

Returns(s,a).

Note that 

- stochasticity in the initial states assures that all pairs (s,a) are tested, even if the 

policy is not stochastic.

- In theory, this estimation method is hence compatible with a greedy policy.

- In practice, I always recommend epsilon greedy (and we can reduce epsilon as 

we have learned more and more).



Quiz: Monte Carlo methods

We have a network with 1000 states and 4 action choices

in each state. There is a single terminal state.

We do Monte-Carlo estimates of total return to estimate 

Q-values Q(s,a).

Our episode starts with (s,a) that is 400 steps away from

the terminal state. How many return R(s,a) variables do I 

have to open in this episode?

[ ] one, i.e. the one for the starting configuration (s,a)

[ ] about 100 to 400

[ ] about 400 to 4000

[ ] potentially even more than 4000

[ ]

[ ]

[x]

[ ]



(previous slide) your notes.



action

state

state

action

action

end of trial

Monte-Carlo Estimation of V-values
𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3Return(s)=

single episode starting in state s0 also allows to 

update  V(s) of children states



(previous slide, not shown in class). Instead of Q-values, we can also use Monte-

Carlo estimates for V-values

In this (version of the) algorithm you first open V-estimators for all states.

For each state s that you encounter, you observe the (discounted) rewards that 

you accumulate until  the end of the episode. The total accumulated discounted 

reward starting from s is the ‘Return(s)’

After many episode you estimate the V-values V(s) as the average over the 

Returns(s).

Note that the above estimations are done in parallel for all states s that you 

encounter on your path.

Also note that the Backup diagram is much deeper than that of Q-learning, since 

you always continue until the end of the trial before you can update Q-values of 

state-action pairs that have been encountered many steps  before.



Batch-expected SARSA: solving Bellman step by step

  







+=



→→

'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ 

Bellman:

Conditions:

- directed graph,

- fixed policy

- N episodes played

𝑠

𝑠′

a1 a2 a3

𝑠"

𝑟𝑡

𝑟𝑡+1

𝑠𝑓

𝑟𝑡+1

use all the available information after N episodes 

known



(previous slide, not shown in class)

Alternatively, if you have a directed graph, the Bellman equation can also be used 

as in dynamic programming: starting from the bottom leaves of the graph (end of 

episodes,  terminal state=set of final states sf) you walk upward and find Q-values 

step by step. You know your policy, so it is similar to expected SARSA, except that 

you work in ‘batch’ mode. I call this batch-expected SARSA. 

It is still an empirical estimation, since the rewards and the transitions need to be 

estimated from the episodes that have been played.

The first brackets: empirical estimate over immediate rewards.

The second brackets: empirical estimate over next states s’.

And now we ask: is this a good algorithm?? Else which of the previous ones is 

better?

𝑄 𝑠, 𝑎 = { 𝑟𝑡 + 𝛾 ෍

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄 𝑠′, 𝑎′ }



“Oh, so many, many variants …” 

online
batch

TD/bootstrap

(exploit Bellman eq)

MC/Monte Carlo

(naïve averaging)

on-policy

off-policy

batch

MC SARSA

4th axis:

V-value vs Q-value

Classify/locate algorithms



(previous slide)

There are many variants of algorithms.

We can organize these across three axes.

1) Batch versus online; 

2) off-policy versus on-policy; 

3) Monte-Carlo versus TD.

Q-learning or SARSA both use ‘bootstrapping’ since they update Q-values based 

on other Q-values. All TD methods have this bootstrapping feature. 

Q-learning has the max-operation in the update (and hence off-policy), whereas 

SARSA is ‘on-policy’. Both Q-learning and SARSA are Online (as opposed to 

batch).

In batch algorithms you have to play several episodes before you do the update.

We considered Batch Monte Carlo. But one can also construct a Batch-Expected 

SARSA that is closely related to solution of the Bellman equation (hidden slides) 

and uses the idea of ‘bootstrapping’ - whereas Monte-Carlo does not. 

A fourth axis for the classification could be whether we use V-values or Q-values.



Question:
Three ways to estimate Q-values with policy :

1) SARSA  (online, on-policy, TD, bootstrap) ‘only looks back’

2) Expected SARSA (online, on-policy, TD, bootstrap)

3) Monte-Carlo (batch over many episodes, not bootstrap, not 

TD)

We have played N trials (N full episodes to terminal state)

How do the three algorithms rank?

Which one is best? → commitment:

write down 1 or 2 or 3

“Oh, so many, many variants …” 



Summary: Monte-Carlo versus TD methods

Exploiting Bellman: TD is better than Monte Carlo

The averaging step in TD methods (‘bootstrap’)  is 

more efficient (compared to Monte Carlo methods)

to propagate information back into the graph,

since information from different starting states is 

combined and compressed in a Q-value or V-value.



(previous slide)

The example on the next slide illustrates the following: in Monte-Carlo methods 

you only exploit information of trials that go through the state-action pair (s,a)  to 

evaluate Q(s,a); in TD methods (or with the Bellman equation) you compare 

Q(s,a) with Q(s’,a’) and all trials that pass through (s’,a’) contribute to estimate 

Q(s’,a’) even those that have started somewhere else and have never passed 

through (s,a). Hence in the latter case you exploit more information.

Note that in the explicit example above we compared a batch-expected-SARSA 

with Monte-Carlo. However, true online TD learning (such as SARSA or Q-

learning) is also slow to converge, but for a different reason, as explained in the 

next section.



The End



(previous slide, not shown in class)

There are many variants of algorithms – but which one is the best?

To find out which one is best, consider the following example.



Monte-Carlo versus TD methods (Exercise *, preparation)

What is Q(s,a1) [with s=1,2,3] after 5 trials, for two algorithms?
(i) Monte-Carlo: average over total accumulated reward for given (a,s)

(ii) Expected SARSA –online updates after each step.

for each Q(s,a): first update step with rate h1=1, second one with h2=1/3

5 episodes, first action is always a1.
Episode 1:  States 1-4-7 with action a2, Return=0

Episode 2:  States 1-4-8 with action a3, Return=0.4

Episode 3:  States 2-4-6 with action a2, Return=2

Episode 4:  States 2-4-8 with action a3, Return=0.4

Episode 5:  States 3-4-7 with action a2, Return=0.5

𝑎3



Monte-Carlo

Monte-Carlo versus batch-TD methods/Bellman equation:

Comparison in batch mode: We have observed N episodes,

and update (once) after these N episodes.

Example: 1d random walk

Conclusion:

TD is better than

Monte Carlo

r=1

error with respect to exact V-value

Sutton and Barto, 2018



(previous slide)  All episodes start in the center state, C, then proceed either left or 

right by one state on each step, with equal probability (random walk). Episodes 

terminate either on the extreme left (reward zero) or the extreme right, (reward 1); 

all other rewards are zero. 

Because we do not discount future rewards, the true value of each state V(s) can 

be calculated as, from A through E,  1/6; 2/6; 3/6; 4/6; 5/6.

The root-mean-square error (RMS) compares the estimated value with the above 

‘true’ values V(s). 

We see that TD performs better than MC in this case. 

Sutton and Barto, 2018



Teaching monitoring – monitoring of understanding 

[ ] today, after the break, at least 60% of material was new to me.

[ ] after the break, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Monte-Carlo Estimation of Q-values (on-policy) 

state

state

action

action

end of trial

action

Combine epsilon-greedy policy with Monte-Carlo Q-estimates

(e.g., epsilon-greedy)

Q(s,a) = average[Return(s,a)]

Note: single episode also allows to update Q(s’a’) of children



(previous slide/not shown in class/just as a reference)

This algorithm combines Monte-Carlo estimates with an epsilon-greedy policy. 

Note for Monte-Carlo estimates, the agent waits until the end of the episode (end 

of trial), before it can update the Q-values.

Similar to the earlier Monte-Carlo algorithms, the Q-values of all those state-action 

pairs that have been visited in that trial are updated (as opposed to an algorithm 

where you would only update  Q(s0,a0) of the initial state and action.  )

Note that this is an on-policy algorithm because the epsilon-greedy policy is 

reflected in the final Q-values.



Now starts a Detour.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: RL1 Detour

Part 3b: Detour to standard ML

Expectation, Batch, and ONLINE rules

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)

- Expectation, batch, and online rules

https://www.youtube.com/watch?v=BgqRW5rp8ac&list=PL7SYVykTNxXbu7EZTleyrJUNMwbg37WG3&index=7

Video on https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html 



Previous slide.

Last week we did a first calculation with expectations and I argued that this is 

‘batch-like’. Since the type of calculation is important, but since this comparison 

caused many questions after class, I add a detour. 

All the material in this part is in principle standard material in Machine Learning 

classes, even though I put the accent on aspects that are important for 

Reinforcement Learning.



Detour Machine Learning ReCap:  Online, Batch, Expectation

parameter

Loss

initial 

value

final 

value 𝜃

𝐿 𝜃



Your notes. (Review of gradient Descent)

The set of parameters (also called parameter vector) is generically denoted by 𝜃.

The loss function (error function) is denoted by capital L.

.



Detour Machine Learning ReCap:  Online, Batch, Expectation

b

Loss

b=0 final 

value

x

y f(x)=ax+b

x
x

x
xx

x

Gradient descent in ‘batch mode’



Your notes. (Review of gradient Descent)

The specific parameters of the linear function are a and b. For the drawing of the 

loss function, only one of the two parameters is plotted.

The aim is to fit a set of data points by the linear function. 

Dashed red lines show intermediate update steps.

Note: For the learning rate I will often use the symbol  instead of h



Detour Machine Learning ReCap:  Online, Batch, Expectation

x

y

x
x

x
xx

x

f 𝑥|𝜃 = f 𝑥|𝑎, 𝑏 = 𝑎𝑥 + 𝑏
f(x)=ax+b

∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃

Parameters 𝜃 = 𝑎, 𝑏

∆𝑏 = −𝛼
𝜕

𝜕𝑏
𝐿 𝑎, 𝑏

algo (iterative update) 

𝑏𝑜𝑙𝑑 ← 𝑏

𝑏 = 𝑏𝑜𝑙𝑑 + ∆𝑏

iterate to convergence criteria

analogously for a



Your notes. (Review of gradient Descent)

The set of parameters (also called parameter vector) is generically denoted by 𝜃.
And then the parameters are  specified to be a and b.

Changes of parameters are calculated by gradient descent on the Loss function.



Detour Machine Learning ReCap:  Online, Batch, Expectation

∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃 |𝜃𝑜𝑙𝑑

algo (iterative update) 

𝜃𝑜𝑙𝑑 ← 𝜃

iterate to convergence criteria(1)

CONCLUSION 1,  from rule (1):

if ∆𝜃=0 then

- parameter 𝜽 no longer changes

- (local) minimum at 𝜽𝒐𝒍𝒅

𝜃

𝐿 𝜃

𝜃 = 𝜃𝑜𝑙𝑑 +∆𝜃

Gradient is always evaluated at 𝜃𝑜𝑙𝑑

Gradient descent in ‘batch mode’

Is this ‘batch mode’ or ‘online mode’?



Your notes. (Review of gradient Descent)

The update rule tells us immediately that the update vanishes at a parameter 

value that has zero gradient. Only minima can be  generically approached by 

gradient descent (not the maxima).



∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃

𝐿 𝜃 𝐿 𝜃 =
𝟏

𝑵
෍

𝒌

𝑵

[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼
𝟏

𝑵
෍

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

Detour Machine Learning ReCap:  Online, Batch, Expectation

Loss function

loss per data point

Gradient descent (batch)
f 𝑥𝑘|𝜃 = f 𝑥𝑘|𝑎, 𝑏 = 𝑎𝑥𝑘 + 𝑏

Example: 𝑙 =L2 loss, linear model

𝐿 𝜃 =
𝟏

𝑵
෍

𝒌

𝑵

𝑎𝑥𝑘 + 𝑏 − 𝑦𝑘
𝟐

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦)]

𝐿 𝜃 = 𝐄[𝑙 f x|𝜃 , y ]



Your notes. (Review of gradient Descent)

The loss function is the expectation across all possible pairs (x,y) with the 

appropriate statistical weight. The loss per data point is denote by a small 

character l .

Often a large batch of N data points is taken instead. These N data points must 

be representative for the statistical distribution p(x,y).

The example shows the linear function that we considered earlier.



∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃

𝐿 𝜃 = 𝐄[𝑙 f x|𝜃 , y ] 𝐿 𝜃 =
𝟏

𝑵
෍

𝒌

𝑵

[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼
𝟏

𝑵
෍

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

Detour Machine Learning ReCap:  Online, Batch, Expectation
Loss function

loss per data point

Gradient descent (batch)

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
[𝑙 𝑓(𝑥|𝜃 , 𝑦)]]

𝐿 𝜃 = ∫ 𝑑𝑥𝑑𝑦 𝑝 𝑥, 𝑦 𝑙 f x|𝜃 , y

∆𝜃 = −𝛼∫ 𝒅𝒙𝒅𝒚 𝒑 𝒙, 𝒚 [
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]



Your notes. (Review of gradient Descent)

On the left:

The loss function is the expectation across all possible pairs (x,y) with the 

appropriate statistical weight. The gradient operation is linear and can be 

exchanged with the expectation (which is also a linear operation).

On the right: 

The same calculation with a large batch of N data points.

The average of N in the gradient is analogous to the expectation (red boxes).



Conclusion: Expectation = Batch size N to infinity

∆𝜃 = −𝛼
𝟏

𝑵
෍

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]

x

x
x

x
xx

x

y

∆𝜃 = −𝛼∫ 𝒅𝒙𝒅𝒚 𝒑 𝒙, 𝒚 [
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]

choose N data points using the 

appropriate statistical weight

𝑬 … = lim
𝑁→∞

𝟏

𝑵
෍

𝒌

𝑵

[… ]

‘statistical

formulation’

with ‘expectations’



Your notes. (Review of gradient Descent)

We said that the average of N in the gradient is ‘analogous’ to the expectation.

For the limit N to infinity batch and expectation are again identical.

The idea of the density p(x,y) is shown for the same example as before.



Conclusion: Expectation = Batch size N to infinity

∆𝜃 = −𝛼
𝟏

𝑵
෍

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]

𝑬 … = lim
𝑁→∞

𝟏

𝑵
෍

𝒌

𝑵

[… ]

CONCLUSION 1 from rule (1):

if ∆𝜃=0 (with N to infinity) then

- 𝜽 doesn’t  change

- (local) minimum at 𝜽𝒐𝒍𝒅

- 𝜽𝒐𝒍𝒅=𝜽𝒐𝒑𝒕𝒊𝒎 in ‘statistical’ sense

𝜃



Your notes. (Review of gradient Descent)

A repetition of what we have seen before:

If the update step in the batch rule (N to infinity) vanishes, then we know that we 

are at a minimum of the loss function. 

And this is equivalent to saying:  

If the update step of the true loss function with the expectation sign vanishes, 

then we know that we are at a minimum of the loss function. 



∆𝜃 = −𝛼
𝟏

𝑵
෍

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

Detour Machine Learning ReCap:  Batch versus ‘Online’

∆𝜃 = −𝛼
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]𝜃=𝜃𝑜𝑙𝑑

algo (iterative update) 

𝜃𝑜𝑙𝑑 ← 𝜃

iterate to convergence criteria

𝜃 = 𝜃𝑜𝑙𝑑 +∆𝜃

Online:

Update after each data point

𝜽𝒐𝒑𝒕𝒊𝒎 𝜃

𝐿 𝜃 jitters forever!

a.k.a. ‘stochastic gradient descent’



Your notes. (Review of gradient Descent)

An online rule means: drop the statistical averaging.

Here it means: drop the sum over data points.

As a result the parameter vector  𝜃
can change after each data point!

And this is true even if we are already at the exact minimum of the true loss. The 

next data point might for example be an outlier and the parameter vector changes 

again. Therefore the gradient descent solution always jitters.

The size of the jitter depends on the learning rate (here called alpha).



Detour Machine Learning ReCap:  Batch, ‘Online’, Expectation

∆𝜃 = −𝛼
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]𝜃=𝜃𝑜𝑙𝑑

Online:

Update after each data point

𝐸[∆𝜃] = −𝛼𝐸[
𝑑

𝑑𝜃
𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]𝜃=𝜃𝑜𝑙𝑑

Expected Online Update (𝜃 = 𝜃𝑜𝑙𝑑 frozen):

Conclusion: 

Expected update of the online rule is identical 

to batch update  with infinite data 

Conclusion: 
- Online update has jitter

BUT

- Expected update has no jitter



Your notes. (Review of gradient Descent)

We can ask:

What would be the EXPECTATION of the update step.

Suppose we  momentarily have the parameter 𝜃 = 𝜃𝑜𝑙𝑑.

Then we ask what is the EXPECTED change at this location.

Comparison with the batch rule shows that the expected update of the online rule 

is identical to batch update  with infinite data evaluated at 𝜃 = 𝜃𝑜𝑙𝑑.

THIS IMPLIES:

If by chance 𝜽 = 𝜽𝒐𝒍𝒅 is the exact minimum, the expected update is zero; 

but the ACTUAL update can be nonzero!

This is also summarized in the next slide and the quiz.



CONCLUSION 1 from rule (1):

if ∆𝜃=0 (with N to infinity) then

- 𝜽 doesn’t  change

- (local) minimum at 𝜽𝒐𝒍𝒅

- 𝜽𝒐𝒍𝒅=𝜽𝒐𝒑𝒕𝒊𝒎

𝜃

Batch rule with N to infinity Online Rule

jitters forever!

𝜃

CONCLUSION 2:
- 𝜽 jitters forever. BUT:

- if by chance 𝜽𝒐𝒍𝒅 such that  

𝑬(∆𝜃)=0 then

(local) minimum at 𝜽𝒐𝒍𝒅 = 𝜽𝒐𝒑𝒕𝒊𝒎

temporal mean is

SOMETIEMS optimal

𝜽𝒐𝒑𝒕𝒊𝒎



Previous slide/next slide. Summary slides:

If the expected update is zero [i.e., 𝑬(∆𝜃)=0 ] for a given set of parameter 𝜃 = 𝜽𝒐𝒍𝒅, then 

𝜃 is a locally optimal parameter, even for the online rule:

𝜃 = 𝜽𝒐𝒍𝒅= 𝜽𝒐𝒑𝒕𝒊𝒎

There is no statement how we would find this parameter 𝜃 = 𝜽𝒐𝒑𝒕𝒊𝒎

A completely different statement concerns the mean of the jittering parameter  𝜽 .

If the update steps are symmetric, then the mean of the parameter 𝜃 is the optimal one: 
𝜃 = 𝜽𝒐𝒑𝒕𝒊𝒎

However, if the update steps are asymmetric, then the mean 𝜃 of the parameter 𝜃 is 

shifted compared to the optimal one (next slide). 

For gradient descent on a loss function we recognize the asymmetry in loss curve. 

However (even in cases where we do not have a loss function) what really counts is 

whether the update steps are symmetric or not:

Suppose the current parameter is 𝜃= 𝜽𝒐𝒑𝒕𝒊𝒎+𝜖 where  is small, i.e. close to the optimum

Symmetry is guaranteed if update steps are linear Δ𝜃= 𝛼𝜖 with small constant 𝛼.



𝜃

Batch rule with N to infinity Online Rule

𝜃

Asymetric updates: 

temporal mean is not optimal

CONCLUSION 1 from rule (1):

if ∆𝜃=0 (with N to infinity) then

- 𝜽 doesn’t  change

- (local) minimum at 𝜽𝒐𝒍𝒅

- 𝜽𝒐𝒍𝒅=𝜽𝒐𝒑𝒕𝒊𝒎

CONCLUSION 2:
- 𝜽 jitters forever. BUT:

- if by chance 𝜽𝒐𝒍𝒅 such that  

𝑬(∆𝜃)=0 then

(local) minimum at 𝜽𝒐𝒍𝒅 = 𝜽𝒐𝒑𝒕𝒊𝒎



Quiz: Expectation, Batch, Online (Recap of ML)

[ ] With a batch rule and small learning rate, I sometimes reach

a local minimum without remaining parameter jitter. 

[ ] With a batch rule at a local minimum I never have any remaining 

parameter jitter

[ ] With an online rule at a local minimum I never have any remaining

parameter jitter

[ ] With an online rule at a local minimum the expectation of the 

online update step vanishes.

[ ] The expectation of the online update step is equivalent to 

a very large batch (N to infinity)

[ ] With an online rule jittering round the minimum, the temporal mean is

guaranteed  to be at the location of the minimum

[x]

[x]

[  ]

[x]

[x]

[ ]



Teaching monitoring – monitoring of understanding 

[ ] up to here, at least 60% of material was new to me.

[ ] I have the feeling that I have been able to follow

(at least) 80% of the lecture up to here. 



End of Detour:

Apply to Q-values in  the Bandit problem. 

ML: parameters are called 𝜃

Function fitting: parameters are a and b

Bandit problem: parameters are Q(s,a)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158

