Wulfram Gerstner
EPFL, Lausanne, Switzerland

Learning In Neural Networks: RL1 (continued}
Reinforcement Learning and SARSA

Parts 4-6. Examples of Reward-based Learning

Objectives for Lecture RL1:

- Reinforcement Learning (RL) is learning by rewards \/
- Agents and actions, states and rewards V
- Convergence In expectation

- EXxploration vs Exploitation Rreading:

_ ' Sutton and Barto, Reinforcement Learning
Bellman equatlon (MIT Press, 2"d edition 2018)

- SARSA algorithm Chapters: 1.1-1.4; 2.1-2.6: 3.1-3.5: 6.4

Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2"d edition 2018, also online)

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

Recall: Learning hy reward

Learning by reward
BUT.:

Reward Is rare:

'sparse feedback’ after
a long action seguence

Previous slide.

How does a human learn to play table tennis: How does a child learn to play the
piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the
players during the learning phase. Rather the player ‘discovers’ good movements
by rather coarse feedback. For example, the ball in table tennis does not land on
the table as it should. That is bad (nhegative feedback). The ball has a great spin
so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog's behavior
by giving a ‘goodie’ at the moment when it spontaneously performs a nice action,
then It can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the
goodie for the dog, or just the feeling ‘now | did well’ for humans.

Recall: Elements of Reinforcement Learning:

- discrete states: ",
old state S Q Q

/

/

S S
new state S

- current state: St

- discrete actions: ay, a; ... ay
- current action: a;

- current reward:

- Mean rewards for transitions:

a
s—s’

often most transitions have zero reward

OO0 C
OO0 C

[BleXeXo
E¥a¥al)

Previous slide.

The elementary step Is:

The agent starts In state s.

It takes action a

It arrives Iin a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the
transition (capital R with indices identifying the transition) from the actual reward
(lower-case r with index t) that Is recelved at time t on a transition.

Note that iIn many practical situations most transitions or states have zero
rewards, except a single ‘goal’ state at the end.

- Environment with discrete states @ a Q
- Transitions (potentially stochastic)
are driven by actions
- Aim: choose good actions
to optimize reward
-> Markov Decision Problem (MDP)

S S,

>

- current actual reward: r;

(=
Distinction between 5
O

- Mean reward for transition:
R ., =E(r|s,a,s)

S—S

)

Cood
000 C
000 C

Previous slide.
Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete.
For the moment we also think of the states as discrete (but next week we will go

to continuous state space).
Transitions between actions are influenced by action choices.
Transitions can be stochastic.

Actions should be chosen so as to maximize the reward. This setting is also
known as Markov Decision Problem (MDP).

Recall: Q-value for one-step horizon games/handit prohlem
Q-value 0Q(s,a)

Expected reward for
action a starting from s

S/

Reminder:
R =E(r‘s’,a,s)

S—S

Similarly: |
O(s,a) =E(r|s,a) s’ S

Now we know the Q-values: which action should you choose?

Previous slide.

PSa_l)S, is the probability that you end up in a specific state s’ if you take action
al In state s.
We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a) Is attached to the branches linking the state s with the actions.
actions are indicated by green boxes; states are indicated by black circles.

The mean reward R_ . is defined as the expected reward given that you start in

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, It IS easy to calculate the Q-
values (Blackboard 1).

Recall: One-step horizon games (handit prohlem}
Q-value = expected reward for state-action pair

If Q-value Is known, choice of action Is simple
-> take action with highest Q-value

BUT: we normally do not know the Q-values S
- estimate by online update /O\
)/0(s\az)

AQ(s,a) = n[ry — Q(s,a)]

Learning rate: often n , often «

AQ(s,a) = alrr —Q(s,a)] ,

Previous slide.
The only remaining problem is that we do not know the Q-values, because the
casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out Is by trial and error (that is, by playing many times
— the casino will love this!).

Recall: Upndate rule in Expectation (Theorem)
After taking action a In state s, we update with

AQ(s,a) =m [r; — Q(s,a)] (1)

(1) If (1) has converged In expectation given (s,a), then
0(s,a) has a value,

Q(s,a) = E [Q(s,a)ls,al = Q(s,a) =) pe R,

(1) If the learning rate n decreases,
fluctuations around the empirical mean

(Q(s, a))t‘sa decrease. If (Q(s, a))

converges for fixed n, then the empirical s’
mean approaches Q(s,a) .

t|s,a

Previous slide.
When evaluating the expectation value given (s,a), the learning rate drops out since we set the left-
hand-side to zero. The exact value of n Is not relevant, as discussed in the theorem. Part (i) of the
theorem states that the expectation value of 0 (s, a) is the correct Q-value. For a quick proof of
EQ(s,a)ls,al = Q(s,a) see the video. On the blackboard a stronger statement was shown:

Q(s,a) = Q(s, a).
Convergence In expectation is equivalent to imagining that you start millions of trials with the same
value 0 (s, a) without any intermediate update. So in that sense it is like an infinite ‘batch’ of
examples. The stochastic variables are the next state s’ and the received reward ;. The value of
0 (s, a) is not stochastic but ‘frozen’. Therefore (trivially) E [0 (s, a)|s,al= O(s, a) .
In practice, we do not have expectations but online updates with fluctuations. It is important
that n 1s small at the end of learning so as to limit the amount of fluctuations. Part (i) states that
online mean for small learning rate also goes to the correct Q-value.
Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the calculation of part
(1) apply analogously to the long-term empirical temporal average (denoted by angular brackets). The
average Is across all those time steps where action ¢ was chosen In state s, denoted as

(Q(s,a)) . We assume convergence, hence our hypothesis reads

(AQ(S, a)) =1 (rt o 6(5» a)> = 0.

t|s,a
The specific result (Q(s, a)) = Q(s,a) is based on linearity and is not true for the multi-step

t|s,a
t|s,a

t|s,a
horizon that we discuss later.

Recall: One-step horizon: summary
Q-value = expected reward for state-action pair

If Q-value not known:
- estimate 0 by trial and error
-> update with rule ;

AQ(s,a) =n[r,—Q(s,a)] (1)

—>Let learning rate n decrease over time

Iterative algorithm (1) fluctuates, but ‘makes sense’

Previous slide.
Let us distinguish the ESTIMATE Q(s,a) from the real Q-value Q(s, a)

The update rule can be interpreted as follows:

If the actual reward Is larger than (my estimate of) the expected reward, then |
should increase (a little bit) my expectations.

The learning rate n :

In exercise 1, we found a rather specific scheme for how to reduce the learning
rate over time. But many other schemes also work in practice. For example you
keep n constant for a block of time, and then you decrease it for the next block.

Note: In later lectures | will often use the symbol a instead of n

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.

Wulfram Gerstner

Learning Neural Networks: RL1 e
Reinforcement Learning and SARSA

Part 4. Exploration vs. Exploitation

- Examples of Reward-based Learning
- Elements of Reinforcement Learning
- One-step horizon (bandit problems)

- Exploration vs. Exploitation

Previous slide.

To estimate the Q-values you have to play all the different actions several times.
However, If you know the Q-values you should only play the best action.

ldeal: take action with maximal QO (s, a)

Problem: correct Q values not known
(since reward probabillities and
branching probabilities unknown)

Exploration versus exploitation

|

Explore so as to Take action which looks

estimate reward optimal, so as to
probabablities maximize reward

Previous slide.

Since Q-values are not known, you are always In the situation of an exploration-
exploitation dilemma.

Note: All estimates of Q will be empirical estimates. Here In this and the next slide
| still write Q-hat for the empirical average. However, later, | simplify the notation
and write for the empirical estimate Q(s,a) without the hat whenever the meaning

IS Implicitly clear.

greedy makes you stuck:
Example

az

Assume thaAt you Initialize all Q values with zero; set T] =0.2 (constant)
update AQ(s,a) =N[r: —Q(s, a)]
Trial 1: you choose action al, you get It=5.5

Trial 3 — 4: continue ‘greedy’: = you continue with action 1

Trial 2: you choose action a2, you get t=4.0

@ S=state

action

r=1 actual reward

@ S’=new state

Given the outcomes of the first two trials, action al looks better.
You can check that whatever the outcome In trial 3 (even for reward=0!), the
estimated Q-value of action al is still higher than that of action a2!

Problem: correct Q values not known

S greedy strategy:

Q(s,al) O(s,a2) - take aciion ar WhiACh looks best

Q(s,a*) = Q(s,aj) forall)
al a2

o \ ATTENTION:
<r> = R$HS with ‘greedy’ you may get

stuck with a sub-optimal strategy
(see Exercise!)

Previous slide.

If you know the correct Q-values, the best choice would be to choose the action
with maximal Q-value (called ‘greedy’ action). But since you don’t know the Q-
values It Is risky to choose the greedy action because you may get stuck with a
suboptimal choice.

In (almost all) applications of reinforcement learning we work with estimated Q-
values.

Previously we used a hat to distinguish the ESTIMATED (Q(s,a) from the real Q-
value Q(s,a). However, In the following | will write the estimated Q-values without
the hat. Nearly always Q means estimated Q.

hats have been dropped! Problem: correct Q values not known
S greedy strategy:
Q(s,al) Q(s,a2) - take action a* which looks best
Q(s,a*) = Q(s,a)) for all j

1 a2

a
&qgreedy strategy:
<r>=RZ . - take action a* which looks best

: with prob P=1-¢

S

Softmax strategy: take action a’
withprob | = exp[Q(a))]

P(a') =
@)= S ol Q@)

AQ(s,a) =n [rs — Q(s,a)] Optimistic greedy:’
Initialize with Q values that are too big

Previous slide.

Softer versions of greedy allow you to choose occasionally an action which looks
suboptimal, but which allows you to further explore the Q-values of other options.

Epsilon-greedy and softmax are examples following this idea.
Note that ‘softmax’ is a function that one also encounters in multiclass tasks with
1-hot coding (see course of ‘'machine learning’;)

A radically different approach is optimistic greedy. If you initialize all Q-values at
the same value, but clearly too high (compared to maximal reward that you can
get In the scheme), then the Q-value of action al decreases Initially each time
you play al, which in turn favors other actions that you have not yet played.

Example: 10-armed bandit
with fluctuating reward

|

al a10

EXploration and Exploitation: practical approach
Epsrlon greedy simulation

e—O 1

= e=0.]

()Ol

average reward

performance across several
10 armed bandrts

Average
reward

1000

Plays

O OO O

In each action, actual rewards

fluctuate around a mean
Rk= R°¥

s—s’

g U opmee

Y%
Optimal
action 40% -

20%

00
Plays

ethods on the 10-armed testbed.

Figure 2.1 Average performance of e-greedy action-value m
T % >s over 2000 tasks. All methods used sample averages as their action-

book: Sutton and Barto

Previous slide.

Computer simulation of a situation where actual rewards r fluctuate around the
mean reward R. There are 10 different actions a1, ..., a10 each with a different
mean reward R1, ..., R10.

There exist two different ways to evaluate the performance.
Top: what is the average reward that you get by playing epsilon-greedy?

Bottom: what Is the fraction of times that you play the optimal action, by playing
epsilon-greedy.

Three different values of epsilon are used.

The curves are averages over many instantiations of different 10-armed bandits.

Epsilon-greedy, combined with iterative update of Q-values

A simple bandit algorithm

Initiahize, for a = 1 to k:

ﬂf{{a}; Hﬁ, Sutton and Barto call R what | call

Repeat forever:
arg max, (J(a) with probability 1 — & (breaking ties randomly)
A . . .
a random action with probability =
R + bandit(A)

N(A) + N(A) + _
Q(A) + Q(A) % R—Q(A)

S

learning rate Sutton and Barto, ch. 2

Previous slide.

This Is the style of pseudo-code that we will see a lot over the next few weeks. It Is taken from
the book of Sutton and Barto (MIT Press, 2018); Sutton and Barto made a pdf online available.

Q(a) Is the Q-value for action a. Since we have always the same starting state in which we have
to make our choice of action, we can suppress the index of the state s. Q(a) = Q(s_{start},a).

N(a) Is a counter of how many times the agent has taken action a.

In this specific example the learning rate eta Is the inverse of the count N(a) (see earlier
exercise); but in the more general setting we would remove the counter and just use some
heuristic reduction scheme for eta.

Note that in class we define (1-epsilon) as the probability of taking the ‘best’ action
corresponding to argmax Q and epsilon is then distributed over the OTHER actions. Sutton and
Barto distribute epsilon over ALL actions, including the ‘best'.

Thus for a total choice of 3 actions, Sutton and Barto have a probability of epsilon/3 for the
other actions (and with the definition in class it would be epsilon/2).

We use an iterative method and update Q-values with eta=0.1

[] With a greedy policy the agent chooses the ‘best possible’ action

|] Using an epsilon-greedy method with epsilon = 0.1
means that, even after convergence of Q-values,
In about 10 percent of cases a suboptimal action Is chosen.

[] If the rewards In the system are between O and 1 and Q-values
are Initialized with Q=2, then each action iIs played at least
5 times before exploitation starts.
(exploitation starts when you no longer choose the wrong action)

Previous slide.

Here we define as in class (1-epsilon) as the probability of taking the ‘best’ action
corresponding to argmax Q and epsilon Is then distributed over the OTHER

actions.

Quiz: Exploration - Exploitation with Softmax policy

Softmax policy: take action a’ with prob ~ p(a") = Zelxp[ﬁ[,gg(l)])]
exp a

| | Suppose we have 3 possible actions a4, a,, a; and use the
softmax policy. Is the following claim true?
For Q(a;) =4, Q(ay,) =1, Q(az) = 0 the preference
for action a, IS more pronounced
than for Q(a,) = 34, Q(a,) = 31, Q(a3) = 30.

Quiz: Exploration - Exploitation with Softmax policy

All Q values are Initialized with the same value Q=0.1
Rewards In the system are r =0.5 for action 1 (always)
and r=1.0 for action 2 (always)

We use an iterative method and update

Q-values with eta=0.1

1. [] If we use softmax with beta = 10, then, after 100 steps,

action 2 I1s chosen almost always

2. [] If we use softmax with beta = 0.1, then, after 100 steps
action 2 Is taken about twice as often as action 1.

Softmax policy: take action a’
with prob exp[AQ(a)]

P(a') =
@) =S ol Q@)

Your notes (Quiz not given In class).

Use that exp(5) is a big number!

lyes], since beta|Q(a2)-Q(al)]|=5 Softmax policy: take action a’
[no], with beta=0.1, exp(beta*Q)=1+... with prob P(a’) = explpQ(a’)]
>both action chosen with about the same prob. >_exp[4Q(a)]

Exploration and Exploitation: Summary

- |If we know the Q-values we can exploit our knowledge
- Exploitation = action which Is best = argmax Q(a)

- But we never know the Q-values for sure
- We need to estimate the Q-values by playing the game
- Explore possibilities, transitions, outcomes, reward

For complex problems, there is no perfect trade-off
Between exploration and exploitation

Wulfram Gerstner

Learning in Neural Networks: RL1 e
Reinforcement Learning and SARSA

Part 5. Bellman Equation

- Examples of Reward-based Learning
- Elements of Reinforcement Learning
- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation

Previous slide.
So far our Q-values were limited to situations with a 1-step horizon. Now we will
get more general.

Multistep horizon
Policy (s, a)

probabllity to choose
action a In state s

1=>,,m(s,a’)

Examples of policy:
-epsilon-greedy
-softmax

a

Stochasticity gy

probabllity to end In state s’
taking action a In state s

Previous slide.

After a first action that leads to state s’ starting from state s , the agent can now
take a second action starting from s'.

Note that there are two different types of branching ratio:

(s, a,) describes the probability that the agent uses action al when it is in
state s — based on the agent’'s policy (such as epsilon-greedy)

al
P s—g! describes as before the probability that the agent arrives in state s’
given that it chooses action al in state s.

As before we are interested In the expected reward. The Q value Q(s,a) describes
the total accumulated reward the agent can get starting in state s with action a.

Next slide: rewards that are n steps away are discounted with a factor y™

Total expected (discounted) reward

Starting In state s with action a

Q(s,a) =

_ 2 3
—<7”t TY Vi1t VoTigo2t Vo TeysTt)

2 3
=E[ry + Y Tep1t V2t v 1z + s, @)

Discount factor: y <1

-Important for recurrent state transition graphs!
-avolds blow-up of summation

-gives less weight to reward In far future

Previous slide.

Angular brackets denote expectation (or averages over many trials, always with
the same policy n(s,a) and all starting In (s,a).

Red-font lower-case r indicates the reward collected over multiple time steps In
one single episode, starting in state s with action a.

Expectation means that we have to take the average over all possible future
paths giving each path its correct probabillistic weight.

The probabillistic weight includes the fixed policy =(s,a)

as well as the branching ratio P(s,a)

Beliman equation Blackboard4:
Bellman eq.

Space for calculations.

Q(81 a) — Z Psa—>s'

Bellman equation =

value consistency of
neighboring states

Remark:

Sometimes Bellman equation Is written
for greedy policy: n(s,a) =§,,.

with action a* = argmax Q(s, a’)

Previous slide.

The Bellman equation relates the Q-value for state s and action a with the Q-
values of the neighboring states.

Neighboring means reachable in a single step.

Note that the two different types of branching ratio both enter the equation.

Bottom: In the case of a greedy policy, the Bellman equation simplifies

Q(s,a) = Z s | Ress +7Zﬂ($ a’)Q(s’ a)

\ I
|

for greedy policy:
T[(S: (1) — 6a,a*
with action a* = argmax Q(s, a’)

|
Q(s,a) = z |y [R§‘_>S,+ymaxa,Q(S’a’)]

Previous slide.
For a greedy policy, the sum over actions disappears from the Bellman equation
and Is replaced by the max-sign.

Quiz: Bellman euuatinn with nnlicv T
Q(s:2) = 2P| R 72 7(s, @),)

Z LolRg+y) 9,00 Qs)]

a’

[] The Bellman equation is linear
INn the variables Q(s’a’)

| | The set of variables Q(s,a’) that solve
the Bellman equation is unique and
does not depend on the policy

Your comments.

Wulfram Gerstner

Learning Neural Networks: RL1 e
Reinforcement Learning and SARSA

Part 6. SARSA Algorithm

- Examples of Reward-based Learning
- Elements of Reinforcement Learning
- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation

- SARSA Algorithm

Previous slide.
We not turn to the first practical algorithm, called SARSA. This Is an algorithm that
IS widely used In the field of reinforcement learning.

Problem: Q-values not given
S

Q(s,al) Q(s,a2)

al a2
T
<r=>= Rsa—>s' ft \C/ \
S’ Q

Solution: Iterative update
AQ(S, Cl) =1 [rt o Q(S, Cl)]

while playing with policy (s, a)

Previous slide.

Reminder: for the 1-step horizon scenario we found that we could calculate the Q-
values iteratively.

We Iincrease the Q-value by a small amount (with learning rate O<eta<<l1) if the
reward observed at time t is larger than our current estimate of Q.

And we decrease the Q-value by a small amount if the reward observed at time t
IS smaller than our current estimate of Q.

lterative updates with one data point at a time are also called ‘online algorithms'.
Thus our update rule is an online algorithm for the estimation of Q-values.

Iterative update of 0-values for multistep environments
S

Problem: Q-values not given
S

Q(s,al) Q(s,a2)

al a2
T
<r=>= Rsa—>s' ft \J \
S’ Q

Solution: Iterative update
AQ\(S, a) — n [rt T Q\(S) a)]

while playing with policy (s, a)

Previous slide.
The question now Is: can we have a similar iterative update scheme also for the
multi-step horizon?

Blackboardb:
SARSA update

Your notes.

Iterative update of Q-values for multistep emuronments
Bellman equatlon
Q(s,a) = Z 2 | R, +72n<s a")Q(s, a>

Problem:
- Q-values not given
- branching probabilities not given
- reward probabilities not given

Solution: Iterative update
AQ(s,a) =M [r; +yQ(s',a’) = Q(s, a)]

while playing with policy (s, a)

Previous slide.
Even for the case of the multi-step horizon, we can estimate the Q-values by an

Interative update:

The Q-values Q(s,a) Is Increased by a small amount If the sum of (reward
observed at time t plus discounted Q-value In the next step) is larger than our

current estimate of Q(s,a).
This iterative update gives rise to an online algorithm.

NOTE: in the following we always work with empirical estimates, and drop the
‘hat’ of the variable Q.

Q(31 a) — Z Psa—>s' Rsa—>s' T 7/272-(8” a’)?(3’1 a’)
T S' B a’ a

Bellman equation
= consistency of Q-values
across neighboring states

SARSA update rule

AQ(s,a) = M[ry +yQ(s’,a’) — Q(s, a)]
= make Q-values of neighboring states
more consistent

Previous slide.

The Bellman equation summarizes the consistency condition:

The (average) rewards must explain the difference between Q(s,a) and y Q(s’,a’)
averaged over all s and a'.

Or equivalently:

Q(s,a) must be explained by the (average) reward in the next step and the
discounted Q-value In the next state.

The Iiterative update formula implies that Q(s,a) needs to be adapted so the
current reward explains the difference between Q(s,a) and Q(s’,a’).

An equivalent form of writing the update Is:

AQ(s,a)=n [r-(Q(s.a) -y Q(s’,a"))]

This form highlights the similarity to the case of the update rule in the cae of the
one-step horizon.

Initialise Q values
Start from initial state s
1) being in state s
and having chosen action a
[according to policy (s, a)]
2) Observe reward r
and next state s’
3) Choose action a’in state s’
[according to policy (s, a)]
4) Update with SARSA update rule

AQ(s,a) =M [re +yQ(s,a) = Q(s,a)]

b)set:s<¢s’;, a< a
6) Goto 1)

Stop when all Q-values have converged

Previous slide.

The update rule gives immediately rise to an online algorithm. You play the game.
While you run through one of the episodes you observe the state s, choose action
a, observe reward r, observe next state s’ and choose next action a’. At this point
In time (and not earlier) you have all the information to update the Q-value Q(s,a).

The name SARSA comes from this sequence state-action-reward-state-action.

SARSA algorithm. AQ(s,a) =M [rr +y0Q(s',a’) —Q(s,a)]

We have Initialized SARSA and played for n>2 steps.

Is the following true for the next steps?

| | In SARSA, updates are applied after each move.

'] In SARSA, the agent updates the Q-value Q(sq).a)
related to the current state s)

[] In SARSA, the agent updates the Q-value Q(s(-1),a(t-1))
related to the previous state, once it has chosen a)

|] In SARSA, the agent moves In the environment
using the policy (s, a)

| | SARSA Is an online algorithm

Previous slide.

Variant A: SARSA IS consistent w. Bellman equation Blackboard 6A:
. SARSA
We proof the following:.

Suppose that we have found a set of Q-values. S
We keep them frozen while evaluating expectation: Q(s,a)
IFF E[AQ(s,a)] = 0, then the Q-values solve the

Bellman equation.

Notes:
- Expectation Is taken for fixed Q-values ,
and hence for fixed policy (consider Q-values as 6°'?) Q(s,a’)

- Expectation E[AQ(s, a)] is taken over all possible 3
paths starting in (s,a). | call this ‘batch-like’.
- The length of the path Is given by the needs
of the update equation: Here from (s,a) to (r,s’,a’) () Os"

- Look at state-action-diagram to keep track of terms

Your comments.

We have proven the following.

Suppose that we have found a set of Q-values. S
We keep them frozen while evaluating expectation. Q(s,a)
IFF E[AQ(s,a)] = 0, then the Q-values solve the

Bellman equation. ,
E[AQ(s,a)] = ME[r; +yQ(s',a") = Q(s,a)]=0 v

/ \ \ (sS",a Q(s,a’) <

N PLGRE 47) Phg Y m(s,a) Qs a) = Q(s,a) @i Ei ’
‘ Sn

Look at graph to take expectations:
- If algo Is on a branch (s,a), all remaining expectations are “given s and a”

Previous slide.
This Is version A of the theorem. In the proof, we exploit the condition:

E[AQ(s,a)|s,a]l =0

In order to take the expectations, we look at graph:
- if in the evaluation we are in state s’, all remaining expectations are “given s™

- If we are on a branch (s,a), all remaining exp. are "given s and a".

We exploit that all Q-values and the policy are fixed while we evaluate the expectation.
Hence E[Q(s,a)] = Q(s,a).

Note that the proof works In both direction. If the Q-values are those of the Bellman
equation, the expected SARSA update step vanishes. And Iif the expected SARSA
update step Is zero, then the Q-values correspond to the Bellman equation. Both

direction work under the assumption of a fixed policy.

The stronger theorem (with fluctuations, version B) Is sketched in the appendix (and
video).

Additional Notes: This weaker theorem (variant A that corresponds to the one on the
previous slide) takes expectations for FIXED Q-values. We can interpret these
expectations as the following ‘batch’ computation

We assume a fixed policy (i.e., under the assumption of a fixed set of Q-values) and a
‘batch version’ of SARSA. Batch-SARSA means that in order to evaluate E[AQ (s, a)ls, a]
we use a large number of starts from the same value (s,a) each time running one step

up to (s’,a’) [note that this gives different (s’,a’). Once the number of starts is large

enough to get a full sample of the statistics we update Q(s,a). If the updates with the
batch-SARSA do not lead to a change of Q values (for all state-action pairs), then this
means that batch-SARSA has converged to the Bellman equation for this fixed policy.
(That was the theorem In the main text).

Batch-SARSA is a computational implementation of the way many statistical
convergence proofs work: you assume that you average over a full statistical sample of
all possiblilities given your current state or the current state-action pair. Expectation
signs in the update step imply updating over a “full batch of data’. In this approach Q-
values no longer fluctuate, and hence do not need expectation signs; the policy no
longer fluctuates and also does not need expectations signs.

Your comments.

Variant B: Beliman equation and SARSA: theorem for smalln

Setting: ‘temporal averaging S
The SARSA algo has been applied Q(S,CVO\

for a very long time, using updates
[7: +yQ(s’,a’) — Q(s,a)]

IF (i) averaged over many update steps
(AQ(s,a)ls,a) =0
(i) learning rate n is VERY small (n—>0)

AQ(s,a) =M

THEN: fluctuations of Q are negligible and the
set of expected Q -values solves the Bellman eq. () ()

Qs.a) =2 R

with the current policy z(s’,a’) Wrong for any finite v

R, +7Zﬂ(s a")Q(s',a’)

Only true In the limit:

Previous slide. There are two different versions of the theorem. This version B is proven in the
annex, In a fashion similar to the case of the 1-step horizon.

In class (earlier slides) we have shown for the multi-step horizon a weaker statement: Expections
over SARSA updates are consistent with the Bellman equation if the expected update
vanishes: In version A, we assume that Q-values are fixed (frozen) when we take the
expectation. In version B, we take the empirical mean over all moments when we played
action a in state s. Hence the next update uses Q-values that have changed in the previous one.

Note that taking the expectation in version A Is different from averaging over update steps In
version B. In version A, taking the expectation means that we average over all possible outcomes
IN the current situation, with momentarily fixed Q-values and fixed policy (i.e., the one induced by
the set of Q-values at time t). This distinction Is important, because for a fixed policy averaging
IS relatively easy.

However, when averaging over time steps as in variant B, the Q-values and policy are different In
each time step, and the proof therefore requires a limit n =0, so that changes can be neglected.
Hence there are two versions of the theorem and two proof-sketches:

Blackboard 6A. On the earlier slides, we assume Q-values are fixed and do not fluctuate.
Blackboard 6B. In the Annex, we assume that Q-values may fluctuate slightly about their stable
values. This approach gives additional insights into the situation of the online SARSA, once it has
converged In expectation.

Teaching monitoring — monitoring of understanding

| | today, up to here, at least 60% of material was new to me.

[] up to here, | have the feeling that | have been able to follow
(at least) 80% of the lecture.

Learning outcome and conclusions: MUST DO:
- Reinforcement Learning is learning by rewards Exercise SARSA

-> world Is full of rewards (but not full of labels)
- Agents and actions

- agent learns by interacting with the environment

-> state s, action a, reward r
- Exploration vs Exploitation

- optimal actions are easy If we know reward probabillities

-> since we don't know the probabilities we need to explore
- Bellman equation

- self-consistency condition for Q-values
- SARSA algorithm: state-action-reward-state-action

- update while exploring environment with current policy

Exercise: SARSA In 1-dim environment
e Update of Q values In SARSA (with y =1)

AQ(s,a) = [+vQ(s,a) —Q(s,a)]

@ pPolicy for action choice:
Pick most often action

a, =argmaxQ, (s, a)
Break ties stochastically — °

® States form linear sequence
e Reward only at goal.

@ Initialise Q values at 0. Start at top state s1.

@ Q values after 2 complete episodes?

goal

Exercise 4: SARSA for Linear Track. EXEFCISG 4 (at 15h15)

Exercise 4. SARSA algorithm

In the lecture, we introduced the SARSA (state-action-reward-state-action) algorithm, which (for
discount factor v = 1) is defined by the update rule

AQ(s,a) =n|r— (Q(s,a) — Q(s',d"))] , (1)

where s’ and a' are the state and action subsequent to s and a. In this exercise, we apply a greedy
policy, i.e., at each time step, the action chosen is the one with maximal expected reward, i.e.,

aj = argmax Qu(s,). (2)

If the available actions have the same (Q-value, we take both actions with probability (.5.

Consider a rat navigating in a 1-armed maze (=linear track). The rat is initially placed at the upper
end of the maze (state s), with a food reward at the other end. This can be modeled as a one-
dimensional sequence of states with a unique reward (r = 1) as the goal is reached. For each state, the
possible actions are going up or going down (Fig. 2). When the goal is reached, the trial is over, and
the rat is picked up by the experimentalist and placed back in the initial position s and the exploration
starts again.

a. Suppose we discretize the linear track by 6 states, s1,..., sg. Initialize all the Q-values at zero. g"
How do the Q-values develop as the rat walks down the maze in the first trial? goal

b. Calculate the Q-values after 3 complete trials. How many Q-value values are non-zero? How
many trial do we need so that information about the reward has arrived in the state just ’below’
the starting state?

ure 2: A linear maze.

c¢. What happens to the learning speed if the number of states increases trom 6 to 127 How many
()-values are non-zero after 3 trials? How many trial do we need so that information about the
reward has arrived in the state just 'below’ the starting state?

ANnex: VariantB - SARSA and Bellman equation (proof for small)
Setting: "Temporal Averaging’ S
The SARSA algo with stochastic policy = Q(sa)

has been applied for a long time with updates
AQ(s,a) =M [r; +yQ(s',a) — Q(s,a)] ,
IF (i) learning rate MNis small; AND IF

(1) for all Q-values
(AQ(s,a)ls,a) =0

THEN the expectation values (temporal average)
of the set of 0-values solves the Bellman eq.

Q(s,a) = Z P | R:. .+ yz 7(s',a")Q(s’,a’)

with the current policy z(s’,a’)

Notes: A few points should be stressed:
1. This Is not a convergence theorem. We just show consistency as follows:
If SARSA has converged then it has converged to a solution of the Bellman equation.
2. In fact, for any finite n the SARSA Q-values (Q-hat) fluctuate a little bit. It
IS only the EXPECTATION value of the Q-hat which converges.
3. We should keep in mind that SARSA is an on-policy online algorithm for arbitrary
state-transition graphs. Hence the value Q-hat at (s,a) and (s’a’) will both fluctuate!
4. The policy depends on these Q-hat-values and hence fluctuates as well.
To keep fluctuations of the policy small, we need small n .
We imagine that all Q-hat values fluctuate around their expectation value
with small standard deviation. As a result, &= also fluctuates around a ‘standard’ policy.
5. The fluctuations of the policy can be smaller than that of the Q-values: for
example In epsilon-greedy, you first order actions by the value of Q(s,a),
and then only the rank of Q(s,a) matters, not their exact values. In the proof we assume
that the fluctuations of the policy become negligible (= shift policy outside expectation).
6. We show that the Q-values in the sense of Bellman are the expectation values of
the Q-hat In the sense of SARSA.
/. EXxpectations are over many trials of the ONLINE SARSA.
The statement and proof is different to slide 127 and to the book of Sutton and Barto.

(nrnnf Ior small n)

Claim for Online SARSA: Q(s a) jitters, but its mean (Q(s,a)) solves Bellman

L“YP othesis

<AQ(§C«)>

Clts=ly = h + §-Bsho

aunl g ctuadlon: /\ /

@

Vo€ /{ b =

=/

\

(06, @) =) Pl [RE+y 2”(5 D(Q(s',a))]

SDLCCL‘\(,O(/T: A (_f 7 75 SW%-[;/ the '(\{.’/(;"T"W-.!(")Cr.

couscles MA Cosced! o Creecel! e
4 <T'/»/> = TF,(Q)

(""\/n SCaq A

Look at graph to take expectations
over update steps

- If algo Is In state s, expectations “given s’
- If algo Is on a branch (s,a), all remaining
expectations are “given s and a”

PHQLM,Q{‘E ‘fgf Tr— eufw qu{ftj B g_ Ifﬁfm‘f,./ |
oM ?' lank — O czf?&* cﬂéf f-? Uft}b'fr:j 2y q,.p_J; . é,,&:- / g L /

4 ’?[L.{CJ(L{':IJ‘LGHF {:’3.-9254 c}’)/{’{ uz’(gf'“—mq{) &{5 2"”{3@{)
""LEM HTQ E{'Cbéft‘l!

rewvmf

solves Bellman!

Notes: This Is a proof sketch of the consistency of online SARSA (Variant B). We allow
all Q-values to fluctuate around their expectation (visualized as ‘temporal averaging’) ,
but we still have to keep fluctuations of the policy negligibly small.

If we allow for small fluctuations of the policy, then we have to realize that these
fluctuations are correlated with the fluctuations of Q-values. Thus the evaluation of the
product E(x Q) Is not trivial. Moreover, correlations can lead to a shift of the value and
make the result inconsistent with the Bellman equation.

This variant B therefore only works in the limit of vanishing learning rate.

The other theorem (Variant A that corresponds to the one on the slides in the main
part of this lecture) takes expectations for FIXED Q-values. We can interpret these
expectations as corresponding to a ‘batch’ computation.

Batch-SARSA is a computational implementation of the way many statistical
convergence proofs work: you assume that you average over a full statistical sample of
all possiblilities given your current state or the current state-action pair. Expectation
signs in the update step imply updating over a ‘full batch of data’. In this approach Q-
values no longer fluctuate, and hence do not need expectation signs; the policy no
longer fluctuates and also does not need expectations signs.

SARSA is consistent with Belliman (n— 0 Version of
1 AQ(s, a) =11[?‘t +v0(s', a') — Q'(s,)] Video (Variant B)

1

%Eﬁﬁé fﬁﬁ)) = Eli] +y ﬁ[sa'f - E | el

El]%\ueﬁ'm ('5'{,‘3{ Z ? ¢ Rg 55! FYZ ?—F[‘W{Sq
S w U‘—“
EL] Z P s ' [?\f oty / T(s ")
¢ | !,
Y =
2(s a)
’ Bellwregu

Online: Q(s,a) jitters, but its mean (expectation) solves Bellman
Look at graph to take expectations: O O

- If algo is In state s, all remaining expectations are “given s’
- If algo Is on a branch (s,a), all remaining exp. are “given s and a”

The proof steps for version A were shown In class.
The proof steps for version B are not shown In class (available as video).

The end of RL1

Initialise Q values
Start from initial state s
1) being in state s
choose action a
[according to policy (s, a)
2) Observe reward r
and next state s’
3) Choose action a’ in state s’
[according to policy (s’, a’)]
4) Update with SARSA update rule

AQ(s,a) =M [r +yQ(s,a) — Q(s,a)]
b)set:s<¢s’;, a< a
6) Goto 2)

Stop If all Q-values have converged (some criterion)

(previous slide)
The SARSA update In step 4 implements the idea that the immediate reward must
account for the difference in Q-values between neighboring states.

e I
Q(s,a1) € AQ+Q(s,az:

SARSA update step
AQ(s,a) = n[ry +yQ(s,a’) — Q(s,a)]

(previous slide)

The backup diagram describes how many states and actions the algorithm has to
keep in memory so as to enable the next update step.

In SARSA, when you are in (s’,a’) you need to go back to the branch (s,a) so that
you can do the SARSA update.

siimmary: SARSA algorithm and Backup Diagram

Sarsa (on-policy) for estimating @

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state, -) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode): _
Take action A, observe R, S’ In algo: 7; Is called R
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A)+ Q(S,A) + o [E’. +vQ(S", A") — Q(S, A}]
S« S8 A+ A';
until S 1s terminal

@
T action

(f State

e action pick next action a’ before you update
Sarsa Sutton and Barto, Ch. 6.4

(previous slide)

In SARSA, we can update Q(s,a), once we have seen the next state s’ and the
next action a'. In other words, the current action is a’ and we had to keep the most
recent state s’ and the earlier ‘branch’ characterized by action a in memory.

Note: | would argue that we also need to keep the earlier state s in memory
because you update Q(s,a) and not Q(a); therefore you need to know the full state
action pair (s,a)! -- But Sutton and Barto use a slightly different convention and
that Is the one we follow here.

The backup diagrams play arole in the following for the analysis of other
algorithms.

Notation In pseudo-algo (difference of the book of Sutton and Barto to lecture)
1.1 simply write 1, for the actual reward at time t, and s, s" and a, a,’ for the states
and actions, respectively. In their book Sutton and Barto introduce In the
Pseudocode dummy variables R,S,A, that take the role of place holders for the
observed rewards, states, and actions.

2. | often call the learning rate n; Sutton and Barto call it a.

Wulfram Gerstner

Reinforcement Learning Lecture 2 SPEL Lousanne, Suitzerand
Variants of TD-learning methods and eligibility traces

Part 2: Variations of SARSA

1. Review and introduction of BackUp diagrams
2. Variations of SARSA

(previous slide)
SARSA is one example of a whole family of algorithms that all look very similar.

Expected SARSA for estimating Q

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q) (e.g., e-greedy)

Repeat (for each step of episode):
Take action A, observe R, S’

Choose A" from S’
Q(S,A)«— Q(S,A) +C({R —+
S« 8:; A« A

[2a m(S",a)Q(S",a)])-Q(S, A)}

until S 1s terminal '
action I
state /&
action o090

Expected Sarsa
Sutton and Barto, Ch. 6.6

(previous slide)

The first variant is ‘Expected SARSA..

In standard SARSA, we pick the next action a’ and actually take it, before the
updata of Q(s,a) Is done.

In expected SARSA, the update rule averages over all possible next action with a
weight given by the policy .

The actual next action Is chosen according to the policy.

Q(31 a) — Z Psa—>s'

Bellman equation =
value consistency of
neighboring states

Remark:
Sometimes Bellman eguation Is written
for greedy policy:

with action

(previous slide)

The next variant is Q-learning.

Q-learning uses not an average with the current policy, but performs the averaging
with the best policy, i.e., the greedy policy.

The idea Is that you run a stochastic policy that includes exploration and visits
all state-action pairs. However, since you plan to use after learning the greedy

policy so as to maximize your returns, you already update the Q-values according
the greedy policy.

Since the current policy and the update scheme differ, Q-learning is called “off-
policy'.

D
Q-learning (off-policy TD control)

Initialize Q(s, a), for all s € 5, a € A(s), arbitrarily, and Q(ferminal-state,-) = 0

L]
L

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R,
Q(S,A) + Q(S,A) + a|R + 1
S+ 5

until S 1s terminal

action I
state ﬁ\\ _max operation
© o o

action Q-learning
Sutton and Barto, Ch. 6.5

(previous slide)

Q-learning is called ‘off-policy’ because you update as if you used a greedy policy
whereas during learning you are really running a different policy (such as epsilon-
greedy): 1t Is as If you turn-off the current policy during the update.

In Q-learning the update step Is such that the current reward should explain the
difference between Q(s,a) and the maximum Q(s’,a’) running over all possible
actions a'. It is a TD algorithm (Temporal Difference), because neighboring states
are visited one after the other. Hence neighbors are one time step away.

It does not play a role which action a’ you actually choose (according the your
current policy). The max-operation iIs indicated In the back-up diagram by the little
arc.

On-policy versus 0ff-policy algorithm:

action
ON-POLICY: action a’ in update rule is the REAL action
I action SARSA: you actually perform next action,
State(? according to the policy,
: thi‘:;' Next and then you update Q(s,a)

Sarsa

OFF-POLICY: action a’ in update rule is DIFFERENT from real one

action Q-learning: you look ahead and imagine
state a greedy next action to update Q(s,a)
best (but you then perform the actual next action

¢ oo based on your current policy)

Q-learning action

(previous slide)
On-policy versus OFF-policy.

Your real actions are chosen according to the policy (in both cases!).
But In OFF-policy algos this policy iIs NOT the one used for the update rule.

summary: SARSA and related algorithms

[action SARSA: you actual perform next action,
state Cf according to the policy,
e action and then you update Q(s,a)

Sarsa

I action Exp. SARSA: you look ahead and average
state /?\ over potential next actions
J &N\ actions and then you update Q(s,a)

Expected Sarsa

I action Q-learning: you look ahead and imagine
state greedy next action to update Q(s,a)
/%%\ best (but you then perform the actual next action

¢ oo based on your current policy)

)-learning action

(previous slide)
Summary of the three variations of SARSA and their back-up diagrams.

Teaching monitoring — monitoring of understanding

| | today, after the break, at least 60% of material was new to me.

| | after the break, | have the feeling that | have been able to follo
(at least) 80% of the lecture.

(previous slide)

Wulfram Gerstner

Reinforcement Learning Lecture 2 SPEL Lousanne, Suitzerand
Variants of TD-learning methods and eligibility traces

Part 4: Monte-Carlo Methods

1. Review and introduction of BackUp diagrams
2. Variations of SARSA

3. TD Learning (Temporal Difference)

4. Monte-Carlo Methods

(previous slide)
Instead of using TD methods, the same state-action graph can also be explored
with Monte-Carlo methods

- in state s, take action a and note Q(s,a)
- play trial (episode) until the end,
- then update, using the total

accumulated discounted
reward (=‘Return’) =

e ¥V Tt Voot v3 T
- use Return to update Q(s,a)

same episode Is also
used to estimate Q(s’,a’)
of children state

I action

end of trial

(previous slide)
1) Suppose you want to estimate the value Q(s,a) of state-action pair (s,a).
Q(s,a) I1s the EXPECTED total discounted reward, also called expected Return.

To estimate Q(s,a)) you start in state s with action a, run until the end and evaluate
for this single episode the return defined as

Return (s,a) =1 + Yy 14,4t)/27”H_2+ V3 Tiyn

This Is a single episode. If you start several times in (s,a), you get a Monte-Carlo
estimate of Q(s,a), by averaging over all episodes that started in (s,a).

2) You can be smart and use the SAME episode also to estimate the value O¢s’,a’)
of other states s’. Thus while you move along the graph, you open an estimation
variable for each of the state-action pairs that you encounter.

Combining points 1) and 2) gives rise to the following algorithm.

Start at a random state-action pair (s,a) (exploring starts)
Return(s,a) = r, + y 1y, 1+ Vo1 o+ y3 1paq+...

. action
Monte Carlo ES (Exploring Starts),
Initialize, for all s € 8, a € A(s):
Q(s,a) «< arbitrary state
n(s) ¢ arbitrary = ~—— e-greedy is good policy
Returns(s,a) < empty list t
¢ action

Repeat forever:

Choose Sy € & and Ag .t. all pairs have probability > 0

(Generate an episode starting from Sy, Ag, following w

For each pair s, a appearing in the episode:
(- + the return that follows the first occurrence of s.a "
Append G to Returns(s.a T aCtIOn

(J(s,a) + average(Returns(s,a

Q(s,a) = average[Return(s,a)| end of trial
Note: single episode also allows to update Q(s’a’) of children

(previous slide)
In this (version of the) algorithm you first initialize Q(s,a) and Return(s,a) for all

state-action pairs.

For each state s that you encounter, you observe the (discounted) rewards that
you accumulate until the end of the episode. The total accumulated discounted

reward starting from (s,a) is the ‘Return(s,a)’

After many episode you estimate the Q-values Q(s,a) as the average over the
Returns(s,a).

Note that
- stochasticity In the initial states assures that all pairs (s,a) are tested, even If the

policy Is not stochastic.
- In theory, this estimation method is hence compatible with a greedy policy.

- In practice, | always recommend epsilon greedy (and we can reduce epsilon as
we have learned more and more).

Quiz: Monte Carlo methods

We have a network with 1000 states and 4 action choices
IN each state. There Is a single terminal state.

We do Monte-Carlo estimates of total return to estimate
Q-values Q(s,a).

Our episode starts with (s,a) that i1s 400 steps away from
the terminal state. How many return R(s,a) variables do |
have to open In this episode?

| | one, I.e. the one for the starting configuration (s,a)
|] about 100 to 400

| | about 400 to 4000
[] potentially even more than 4000

(previous slide) your notes.

— 2 3
Return(s)= 1, +y 1o b o1t vd 1eys

First-visit MC prediction, for estimating V

m +— policy to be evaluated
V' <« an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

Repeat forever:
Generate an episode using T

Initialize: ﬁT> aCt| on
o

For each state s appearing 1in the episode:]
(< the return that follows the first occurrence of s
Append G to Returns(s)
V(s) + average(Returns(s))

I action

4)
single episode starting In state sO also allows to| end of trial

_update V(s) of children states

J

(previous slide, not shown In class). Instead of Q-values, we can also use Monte-

Carlo estimates for V-values
In this (version of the) algorithm you first open V-estimators for all states.

For each state s that you encounter, you observe the (discounted) rewards that
you accumulate until the end of the episode. The total accumulated discounted

reward starting from s is the ‘Return(s)

After many episode you estimate the V-values V(s) as the average over the
Returns(s).

Note that the above estimations are done in parallel for all states s that you
encounter on your path.

Also note that the Backup diagram Is much deeper than that of Q-learning, since
you always continue until the end of the trial before you can update Q-values of
state-action pairs that have been encountered many steps before.

Batch-expected SARSA: solving Bellman step by step

Bellman: use all the available information after N episodes £
Q(S,a):ZPSZS. R:‘%S.+7/Z7f(8',a')Q(S',a’) T
t
known OO0 0O0 O
1 L
T't+1
o O 0O OO "
Conditions:
- directed graph, HaE
- fixed policy Tt
- N episodes played OO0 O C

Sf

(previous slide, not shown In class)

Alternatively, If you have a directed graph, the Bellman equation can also be used
as In dynamic programming: starting from the bottom leaves of the graph (end of
episodes, terminal state=set of final states sr) you walk upward and find Q-values
step by step. You know your policy, so it Is similar to expected SARSA, except that
you work in ‘batch’ mode. | call this batch-expected SARSA.

It Is still an empirical estimation, since the rewards and the transitions need to be
estimated from the episodes that have been played.

> (s, s’ a'>>}

al’

Q(S, Cl) — {<rt> + 4

The first brackets: empirical estimate over immediate rewards.
The second brackets: empirical estimate over next states s'.

And now we ask: Is this a good algorithm?? Else which of the previous ones Is
better?

“Oh, so many, many variants ...”
on-policy
MC/Monte Carlo
(na'l've averaging)
pbatch | o

0 SARSA
g onllne

4th axis:
Ry S V-value vs Q-value
.~ .~ _-off-policy
TD/bootstrap Classify/locate algorithms
(exploit Bellman eq)

(previous slide)

There are many variants of algorithms.
We can organize these across three axes.
1) Batch versus online;

2) off-policy versus on-policy;

3) Monte-Carlo versus TD.

Q-learning or SARSA both use ‘bootstrapping’ since they update Q-values based
on other Q-values. All TD methods have this bootstrapping feature.

Q-learning has the max-operation in the update (and hence off-policy), whereas
SARSA is ‘'on-policy’. Both Q-learning and SARSA are Online (as opposed to
batch).

In batch algorithms you have to play several episodes before you do the update.
We considered Batch Monte Carlo. But one can also construct a Batch-Expected
SARSA that Is closely related to solution of the Bellman equation (hidden slides)
and uses the idea of ‘bootstrapping’ - whereas Monte-Carlo does not.

A fourth axis for the classification could be whether we use V-values or Q-values.

“Oh, so many, many variants ...”

Question:
Three ways to estimate Q-values with policy =
1) SARSA (online, on-policy, TD, bootstrap) ‘only looks back’
2) Expected SARSA (online, on-policy, TD, bootstrap)
3) Monte-Carlo (batch over many episodes, not bootstrap, not

TD)

We have played N trials (N full episodes to terminal state)
How do the three algorithms rank?

Which one Is best? -2 commitment:
write down 1 or 2 or 3

siimmary: Monte-Garlo versus TD methods

Exploiting Bellman: TD Is better than Monte Carlo

The averaging step in TD methods (‘bootstrap’) is
more efficient (compared to Monte Carlo methods)
to propagate information back into the graph,

since Information from different starting states Is
combined and compressed In a Q-value or V-value.

(previous slide)
The example on the next slide illustrates the following: in Monte-Carlo methods

you only exploit information of trials that go through the state-action pair (s,a) to
evaluate Q(s,a); in TD methods (or with the Bellman equation) you compare
Q(s,a) with Q(s’,a’) and all trials that pass through (s’,a’) contribute to estimate
Q(s’,a’) even those that have started somewhere else and have never passed
through (s,a). Hence In the latter case you exploit more information.

Note that in the explicit example above we compared a batch-expected-SARSA
with Monte-Carlo. However, true online TD learning (such as SARSA or Q-
learning) Is also slow to converge, but for a different reason, as explained in the

next section.

(previous slide, not shown In class)
There are many variants of algorithms — but which one Is the best?

To find out which one Is best, consider the following example.

Monte-Carlo versus TD methods (Exercise nrenaratmnl

5 episodes, first action Is always al.
Episode 1: States 1-4-7 with action a2, Return=0

Episode 2: States 1-4-8 with action a3, Return=0.4

Episode 3. States 2-4-6 with action a2, Return=2
Episode 4. States 2-4-8 with action a3, Return=0.4

Episode 5: States 3-4-7 with action a2, Return=0.5

What 1s Q(s,al) [with s=1,2,3] after 5 trials, for two algorithms?
() Monte-Carlo: average over total accumulated reward for given (a,s)
(1) Expected SARSA —online updates after each step.

for each Q(s,a): first update step with rate n:=1, second one with n2=1/3

Monte-CGarlo versus hatch-TD methods/Bellman equation:

Comparison in batch mode: We have observed N episodes,
and update (once) after these N episodes.

Example: 1d random walk error with respect to exact V-value

S A N/ ;;;t NS / 9
RMS 15
veraged Monte-Carlo
r=1 over states .1 VG
. 05 1D —
Conclusion: ' -
" 0
TD Is better than T
Monte Carlo Walks / Episodes

Sutton and Barto, 2018

Figure 6.2: Performance of TD(0) and constant-a« MC under batch training on the random walk task.

(previous slide) All episodes start in the center state, C, then proceed either left or

right by one state on each step, with equal probabillity (random walk). Episodes
terminate either on the extreme left (reward zero) or the extreme right, (reward 1);

all other rewards are zero.

Because we do not discount future rewards, the true value of each state V(s) can
be calculated as, from A through E, 1/6; 2/6; 3/6; 4/6; 5/6.

The root-mean-square error (RMS) compares the estimated value with the above

true’ values V(s).
We see that TD performs better than MC In this case.

Sutton and Barto, 2018

Teaching monitoring — monitoring of understanding

| | today, after the break, at least 60% of material was new to me.

| | after the break, | have the feeling that | have been able to follo
(at least) 80% of the lecture.

Monte-Carlo Estimation of Q-values [on-policy)
Combine epsilon-greedy policy with Monte-Carlo Q-estimates

On-policy first-visit MC control (for s-soft policies),

Initialize, for all s € 8, a € A(s): » action
(Q(s, a) < arbitrary
Returns(s, a) < empty list

m(a|s) < an arbitrary e-soft policy (e-g-; ep3i|0n'greedY) ? State

Repeat forever: .
(a) Generate an episode using m ® action
(b) For each pair s,a appearing in the episode:

(& + the return that follows the first occurrence of s, a

Append G to Returns(s,a)

Q(s,a) < average(Returns(s,a)) - :
(c) For each s in the eisc:de: I action
A" < argmaxa Q(s, a) (with ties broken arbitrarily)
For all a € A(s):
l—c+¢e/|A(s)] ifa=A"
m(als) { e/ A(s)] if q £ A*
Q(s,a) = average[Return(s,a)] end of trial

Note: single episode also allows to update Q(s’a’) of children

(previous slide/not shown In class/just as a reference)
This algorithm combines Monte-Carlo estimates with an epsilon-greedy policy.
Note for Monte-Carlo estimates, the agent waits until the end of the episode (end

of trial), before it can update the Q-values.

Similar to the earlier Monte-Carlo algorithms, the Q-values of all those state-action
pairs that have been visited Iin that trial are updated (as opposed to an algorithm
where you would only update Q(s0,a0) of the Initial state and action.)

Note that this is an on-policy algorithm because the epsilon-greedy policy Is
reflected In the final Q-values.

NOw starts a Detour.

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Artificial Neural Networks: RL1 Detour

Part 3b: Detour to standard ML
Expectation, Batch, and ONLINE rules

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)

- Expectation, batch, and online rules

V1deo on https://icnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html
https://www.youtube.com/watch?v=BgqRW5rp8ac&list=PL7SYVYyKTNxXbu/7EZTleyrJUNMwbg37/WG3&index=7

Previous slide.

Last week we did a first calculation with expectations and | argued that this Is
‘batch-like’. Since the type of calculation is important, but since this comparison
caused many questions after class, | add a detour.

All the material in this part is in principle standard material in Machine Learning
classes, even though | put the accent on aspects that are important for
Reinforcement Learning.

Detour Machine Learning ReGap: Online, Batch, Expectation
LOSS
L(6)

initigl fingl parameter

value Vvalue 6

Your notes. (Review of gradient Descent)
The set of parameters (also called parameter vector) is generically denoted by 6.

The loss function (error function) Is denoted by capital L.

Detour Machine Learning ReGap: Online, Batch, Expectation
V| f(x):ax+b | 0SS

X

XX

X X o=
X X

_—
-
-
-
>
- =
=
-

1 fina b
value
Gradient descent in ‘batch mode’

Your notes. (Review of gradient Descent)

The specific parameters of the linear function are a and b. For the drawing of the
loss function, only one of the two parameters is plotted.

The aim Is to fit a set of data points by the linear function.
Dashed red lines show intermediate update steps.

Note: For the learning rate | will often use the symbol a instead of n

Detour Machine Learning ReGap: Online, Batch, Expectation
A f(x)=ax+
y VD f10) = f(xla,b) = ax +b

X

XX

X X o=
X X

_—
-
-
-
>
=
-
=
-
-
-
-
- _
-

Parameters 6 = (a, b)

X ; :
a algo (iterative update)\
AD d 0 iterate to convergence criteria
——CK@L() pold p,
b= bod + Ab

0
— analogously for a
Ab a - L(a, b) N

Your notes. (Review of gradient Descent)

The set of parameters (also called parameter vector) is generically denoted by 6.
And then the parameters are specified to be a and b.

Changes of parameters are calculated by gradient descent on the Loss function.

Detour Machine Learning ReGap: Online, Batch, Expectation

L(6)

CONCLUSION 1, from rule (1):
If A6=0 then

- parameter 8 no longer changes
- (local) minimum at 6°4

Gradient is always evaluated at 6°'¢

d
AH — — E L(H)‘Q(?ld (1)

|s this ‘batch mode’ or ‘online mode’?
Gradient descent in ‘batch mode’

-~

a

~

lgo (iterative update)

iterate to convergence criteria

N

Qold «— Q
—_— pnold
0 =0 +AG J

Your notes. (Review of gradient Descent)

The update rule tells us Immediately that the update vanishes at a parameter
value that has zero gradient. Only minima can be generically approached by
gradient descent (not the maxima).

Detour Machine learning Hﬂﬂall: ﬂlllille, Batch, Expectation
| 0SS function N

L(6) = E[L(F(x16),) L(6) = Y 16, 3,)]
|

loss per data point

Gradient descent (batch) Example: [=L2 loss, linear model
d f(xk‘g) — flgxk‘a, b) = aXy + b

AO = —a — L(6
a —- L(O)

1
L(6) = N2<axk +b —y,)?

A = —« E[— [(f(x]|0),y)] AO =—« _Z:dH [[(f(x|0), Vi)]

Your notes. (Review of gradient Descent)

The loss function Is the expectation across all possible pairs (x,y) with the

appropriate statistical weight. The loss per data point is denote by a small
character /.

Often a large batch of N data points Is taken Iinstead. These N data points must
be representative for the statistical distribution p(x,y).

The example shows the linear function that we considered earlier.

Loss function 1 N
L(8) = E[l(f(x|6),y)] L(B) = NE[l(f(xk‘H)JYR)]
L(O) = [dxdy p(x, II(Ex]0),y)] k|

loss per data point

Gradient descent (batch)

d
A0 = —a — L(6
a —- L(O)

d
AO = —af dxdy p(x,y)[ﬁ [(f(x]6),y]

N
a 1 da
A9 = —a [l(f(xw),y)]] A0 = d— (£), 9101
k

Your notes. (Review of gradient Descent)

On the left:

The loss function Is the expectation across all possible pairs (x,y) with the
appropriate statistical weight. The gradient operation is linear and can be
exchanged with the expectation (which Is also a linear operation).

On the right:
The same calculation with a large batch of N data points.
The average of N In the gradient is analogous to the expectation (red boxes).

Gonclusion: Exnectatlnn Batch size N to Infinity

A = —a E[— [(f(x]|6), }’] ‘statistical
— formulation’
A8 = —af dxdy p(x, y)[l(f(x\H) yl | with ‘expectations’

choose N data points using the

appropriate statistical welight
&

A9 = —a —Z = [L(ECe]9, 7))
- Bl 1=, NZ

Your notes. (Review of gradient Descent)

We said that the average of N in the gradient is ‘analogous’ to the expectation.
For the limit N to Infinity batch and expectation are again identical.

The idea of the density p(x,y) Is shown for the same example as before.

Gonclusion: Exnectatinn = Batch size N to Infinity

A = —a E[— [(f(x]6),y] CONCLUSION 1 from rule (1):

AG

\ sk

N

If A6=0 (with N to infinity) then
6 doesn’t change

N

1 - (local) minimum at g°'¢

lim Nz[] . @eld=gortim jn ‘statistical’ sense
k

N

d
@ =) == 1G] 0), 7))
k

Your notes. (Review of gradient Descent)

A repetition of what we have seen before:
If the update step in the batch rule (N to infinity) vanishes, then we know that we

are at a minimum of the loss function.

And this Is equivalent to saying:
If the update step of the true loss function with the expectation sign vanishes,

then we know that we are at a minimum of the loss function.

. L©) |

AO = 1 . [(t(x, |6
=~y A, gg (0190

H

Online: I
Hoptim
AG = —a— [1(f(x10), yic)] g—goia

G N

algo (iterative update)
iterate to convergence criteria

Qold «— H

N 0 = 6°¢ +A0 J

v

Update after each data point
a.k.a. ‘'stochastic gradient descent’

Your notes. (Review of gradient Descent)
An online rule means: drop the statistical averaging.
Here it means: drop the sum over data points.

As a result the parameter vector 6
can change after each data point!

And this Is true even If we are already at the exact minimum of the true loss. The
next data point might for example be an outlier and the parameter vector changes
again. Therefore the gradient descent solution always |jitters.

The size of the jitter depends on the learning rate (here called alpha).

Online:
Conclusion:
AO = —« 05 [[(f(xk10), yi)]g=gota - Online update has jitter
| BUT
Update after each data point - Expected update has no jitter

Expected Online Update (6 = 6°“ frozen):

d
E[AO| = —aE [E | L(f(xk [0), yi)1g=goid]

Conclusion:;
Expected update of the online rule Is identical
to batch update with infinite data

Your notes. (Review of gradient Descent)

We can ask:
What would be the EXPECTATION of the update step.

Suppose we momentarily have the parameter § = 9°'4.
Then we ask what is the EXPECTED change at this location.

Comparison with the batch rule shows that the expected update of the online rule
is identical to batch update with infinite data evaluated at 8 = 9°'4.

THIS IMPLIES:

If by chance 8 = °' is the exact minimum, the expected update is zero;
but the ACTUAL update can be nonzero!

This Is also summarized In the next slide and the quiz.

Batch rule with N to Infinity

Online Rule

CONCLUSION 1 from rule (1):
If A6=0 (with N to Infinity) then
- 0 doesn’t change

- (local) minimum at 6°“
. @old—goptim

CONCLUSION 2:

- 0 |itters forever. BUT:

- if by chance 8°'? such that
E(A6)=0 then

(local) minimum at g°!¢ = gortim

Hoptim

Jitters forever!

emporal mean iIs
QOMETIEMS optimal

Previous slide/next slide. Summary slides:
If the expected update is zero [i.e., E(A8)=0] for a given set of parameter § = 0°'4, then

0 Is a locally optimal parameter, even for the online rule;
O = @°ld— goprtim

There is no statement how we would find this parameter 9 = @optim

A completely different statement concerns the mean of the jittering parameter 0 .

If the update steps are symmetric, then the mean of the parameter 6 is the optimal one:
<g> — Qoptim

However, If the update steps are asymmetric, then the mean (8) of the parameter 6 Is
shifted compared to the optimal one (next slide).

For gradient descent on a loss function we recognize the asymmetry In loss curve.
However (even In cases where we do not have a loss function) what really counts Is

whether the update steps are symmetric or not:
Suppose the current parameter is 0= 0°P"™1¢ where is small, i.e. close to the optimum

Symmetry Is guaranteed if update steps are linear A= ae with small constant a.

Batch rule with N to Infinity

Online Rule

CONCLUSION 1 from rule (1):
If A6=0 (with N to Infinity) then
- 0 doesn’t change

- (local) minimum at 6°“
. @old—goptim

CONCLUSION 2:

- 0 |itters forever. BUT:

- if by chance 8°'? such that
E(A6)=0 then

(local) minimum at g°!¢ = gortim

Asymetric updates:
temporal mean Is not optimal

uiz: Expectation, Batch, Online (Recap of ML

[] With a batch rule and small learning rate, | sometimes reach
a local minimum without remaining parameter jitter.

[] With a batch rule at a local minimum | never have any remaining
parameter jitter

|] With an online rule at a local minimum | never have any remaining
parameter jitter

|] With an online rule at a local minimum the expectation of the
online update step vanishes.

|] The expectation of the online update step Is equivalent to
a very large batch (N to infinity)

[] With an online rule jittering round the minimum, the temporal mean is
guaranteed to be at the location of the minimum

Teaching monitoring — monitoring of understanding

| | up to here, at least 60% of material was new to me.

[] 1 have the feeling that | have been able to follow
(at least) 80% of the lecture up to here.

End of Detour:
Apply to 0-values in the Bandit prohlem.

ML: parameters are called 6
Function fitting: parameters are aand b

Bandit problem: parameters are Q(s,a)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158

