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Three-factor Learning Rules 

- Reward-based learning needs three-factor learning rules 

- 3-factor rules vs. 2-factor rules

- Neuromodulators act as 3rd factor 

- Experiments supporting three-factor learning rules

Learning in Neural Networks:

Three-factor learning rules



Previous slide. 

Since Hebbian learning rules are limited, we have to extend the framework and 

include a ‘third factor’ that could represent reward.

Video for this first section:

https://www.youtube.com/watch?v=jGj2sTdQLME

Which is part 4 of lecture: 
Reinforcement Learning and the Brain: 3-factor rules and brain-style computing 

on 

https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

For most of the RL part, I also have videos on this page:
https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

https://www.youtube.com/watch?v=jGj2sTdQLME


Review: Hebbian rules

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s



Previous slide. 

Review: Hebb rules, but Hebbian learning rules are limited



Hebbian Learning

= unsupervised learning

pre
post

ij

Review: Hebb rule of synaptic changes

∆𝑤𝑖𝑗 = 𝐹 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑤𝑖𝑗

no notion of reward

or success.



Previous slide. 

In standard Hebbian learning, the change of the synaptic weight depends only on 

presynaptic activity  (pre) and the state of the postsynaptic neuron (post). The rule 

is local, and does not contain the notion of reward or success.

The value of the weight wij is measured by sending a test-pulse across the 

synapse. The change of the weight is a function of ‘pre’ and ‘post’ and the weight 

itself where ‘pre’ and ‘post’ are rather general variables.



Is Hebbian Learning sufficient? No! –We need a third factor! 

Eligibility trace:

Synapse keeps memory

of pre-post coincidences

over a few seconds

Image: Fremaux and Gerstner, Front. Neur. Circ., 2016

Dopamine:

Reward/success

action plan

place

Schultz et al. 1997; Waelti et al., 2001;  

→ Reinforcement learning:success = reward – (expected reward)

TD-learning, SARSA, Policy gradient     (book: Sutton and Barto, 2018)



Previous slide. 

Hebbian learning as it stands is not sufficient to describe learning in a setting were 

rewards play a role. If joint activity of pre- and post causes stronger synapses, the rat is 

likely to repeat the same unrewarded action a second time. A three-factor rule adds the 

influence of a neuromodulator (e.g., dopamine): reward-modulate plasticity. 

Hypothetical functional role of neuromodulated synaptic plasticity. 

(A) Schematic reward-based learning experiment. An animal learns to perform a desired 

sequence of actions (e.g.,move straight,then turn left) in a T-maze through trial-and-error 

with rewards (cheese). 

(B) The current position (“place”) of the animal in the environment is represented by an 

assembly of active cells in the hippocampus.These cells connect to neurons (e.g.,in the 

dorsal striatum) which code for high-level actions at the decision point, e.g., “turn left” or 

“turn right.” These neurons in turn project to motorcortex neurons, responsible for the 

detailed implementation of actions. Connections between neurons that are active together 

are marked (flag/eligibility trace).

(C) Neuromodulator timing. While spikes occur on the time scale of milliseconds, the 

success signal (green arrows/shaded) may come a few seconds later.  



Reinforcement Learning

= reward + Hebb

SUCCESS

Δ𝑤𝑖𝑗 ∝ 𝐹(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡,𝑀𝑂𝐷;𝑤𝑖𝑗)

local      global

Classification of synaptic changes: Reinforcement Learning

broadly diffused signal:

neuromodulator

(e.g., success) 



Previous slide. 

For the moment we say that reinforcement learning depends on three factors: the 

Hebbian pre- and postsynaptic factor plus a success signal related to reward.

We will get more precise later.



unsupervised vs reinforcement

Theoretical concept

  - passive changes

  - exploit statistical   correlations

LTP/LTD/Hebb

pre
post
ij

Reinforcement Learning

pre

ij

success

Theoretical concept

  - conditioned changes

  - maximise reward

Functionality

-useful for development 
     ( develop good filters)

Functionality

  - useful for learning 

          a new behavior

  

Classification of synaptic changes



Previous slide. 

This does not mean the standard Hebbian learning is wrong: in fact it is very 

useful for the development of generic synaptic connections, e.g., to make neurons  

develop good filtering properties that pick up relevant statistical signals in the 

stream of input. Unsupervised Hebbian learning can for example implement 

Principal Component Analysis or Independent Component Analysis.

The three-factor rules are relevant for learning novel behaviors via feedback 

through reward.



Three-factor rule: the role of neuromodulators 

= Hebb-rule gated by a neuromodulator

Δ𝑤𝑖𝑗 ∝ 𝐹(𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡,𝑀𝑂𝐷;𝑤𝑖𝑗)

local      global

Neuromodulators: Interestingness, surprise;

   attention; novelty



Previous slide. 

To summarized: The three-factor rules have a Hebbian component: pre- and 

postsynaptic activity together, but in addition the third factor which is related to 

neuromodulators.

There are several neuromodulators in the brain.



- 4 or 5  neuromodulators

- near-global action

(reward – exp. reward)

(surprise)

n
o

ra
d

re
n

a
lin

e
Dopamine/reward/TD:

Schultz et al., 1997,

Schultz, 2002

Neuromodulator projections

Image:

Fremaux and Gerstner, Frontiers (2016) 

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)



Previous slide. 

The  most famous neuromodulator is dopamine (DA) which is related to reward, 

as we will see.

But there are other neuromodulators such as noradrenaline (also called 

norepinephrine, NE) which is related to surprise.

Left: the mapping between neuromodulators and functions is not one-to-one. 

Indeed, dopamine also has a ‘surprise’ component.

Right: most neuromodulators send axons to large areas of the brain, in particular 

to several cortical areas. The axons branch out in thousands of branches. 

Thus the information transmitted by a neuromodulator arrives nearly everywhere.

In this sense, it is a ‘global’ signal, available in nearly all brain areas.



Formalism of  Three-factor rules with eligibility trace

𝑧𝑖𝑗 = 𝑓(𝜑𝑖) 𝑔(𝑥𝑗) 

𝑀𝑂𝐷 𝑆 Ԧ𝜑, Ԧ𝑥 ⋅ 𝑧𝑖𝑗

Stimulus
pre

post
ij

Success signal

𝑀𝑂𝐷(𝑆 Ԧ𝜑, Ԧ𝑥 )𝑥𝑗 = activity of presynaptic neuron

𝜑𝑖 = activity of postsynaptic neuron

𝑤𝑖𝑗 = 

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑧𝑖𝑗 ← l 𝑧𝑖𝑗
Step 3: eligibility trace translated into weight change

Three-factor rule defines a framework



Previous slide.  Why this is a good algo will become clear in a few weeks!

Three-factor rules are implementable with eligibility traces. 

1. The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is 

similar to the Hebb-rule, but the change of the synapse is not yet implemented.

The exact condition for setting the eligibility trace COULD be the one from the 

actor-critic/policy gradient framework, but could also be some other combination 

of pre-and postsynaptic factors.

2. The eligibility trace decays over time

3. However, if a neuromodulatory signal M arrives before the eligibility trace has 

decayed to zero, an actual change of the weight is implemented.

The change is proportional to 

- the momentary value of the eligibility trace

- the value of the success signal

The success signal can be broadcasted by a neuromodulator signaling

- Reward (minus reward-baseline) OR

- TD-error



Hebbian rules versus Three-factor rules

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s



Previous slide. 

The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is 

similar to the Hebb-rule, but the change of the synapse is not yet implemented.

Note that joint activation can imply spikes of pre- (green) and postsynaptic  

(orange) neuron (top); 

Or spikes of a presynaptic neuron combined with a weak voltage increase in the 

postsynaptic neuron (middle).

Bottom: three-factor rule only  if a neuromodulatory signal M arrives before the 

eligibility trace has decayed to zero, an actual change of the weight is 

implemented. The neuromodulater arrives through the branches 

The ideas of three-factor rules can be traced back over several decades.

Early papers were 

First experimental papers Schultz 1997

Crow 1968, Barto, 1983/1985, Schultz 1997, 



Three-factor rules: synaptic flags and delayed reward (mod)

synaptic flag

plays role of

eligibility trace

Fig: Gerstner et al. 2018, Frontiers



Previous slide. 

Specificity of three-factor learning rules. 

(i) Presynaptic input spikes (green) arrive at two different neurons, but only one 

of these also shows postsynaptic activity (orange spikes). 

(ii) A synaptic flag is set only at the synapse with a Hebbian co-activation of

pre- and postsynaptic factors; the synapse become then eligible to interact with 

the third factor (blue). Spontaneous spikes of other neurons do not interfere. 

(iii) The interaction of the synaptic flag (eligibility trace) with the third factor leads 

to a strengthening of the synapse (green).

Fig caption: Gerstner et al. 2018



3. Recent experiments for Three-factor rules

Neuromodulators for reward; interestingness; surprise;

   attention; novelty

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

Step 3: (delayed) neuromodulator: 

eligibility trace translated into weight change



Previous slide. 

three-factor learning rules are a theoretical concept.

But are there any experiments? Only quite recently, a few experimental results 

were published that directly address this question.



Yagishita et al.  2014, SCIENCE

Kasai lab

Three-factor rules in striatum: eligibility trace and delayed DA

-Dopamine (DA) can come with a delay of 1s

-Long-Term stability over at least 50 min.

Striatum involved

in action selection

(later today)



In striatum medial spiny cells, stimulation of presynaptic glutamatergic fibers 

(green) followed by three postsynaptic action potentials (STDP

with pre-post-post-post at +10ms) repeated 10 times at 10Hz yields LTP if 

dopamine (DA) fibers are stimulated during the presentation (d < 0) or shortly 

afterward (d = 0s or d = 1s) but not if dopamine is given with a delay d = 4s; 

redrawn after Fig. 1 of (Yagishita et al., 2014), with

delay d defined as time since end of STDP protocol.

Lower left: the image from the beginning of this lecture comes from this 

experiment of Yagishita. This image  demonstrates the Long-Term Stability 

over at least 50 min

Yagishita et al.  2014

3. Three-factor rules in striatum: eligibility trace and delayed Da



Three-factor rules in cortex: eligibility trace and delayed NE

He et al., 2015, NEURON

Kirkwood lab.

NE = norepinephrine

5HT=serotonin



second example

In cortical pyramidal cells, stimulation of two independent 

presynaptic pathways (green and red) from layer 4 to layer 2/3 by

a single pulse is paired with a burst of four postsynaptic spikes 

(orange).

If the pre-before-post stimulation was combined with a pulse of 

norepinephrine (NE) receptor agonist isoproterenol

with a delay of 0 or 5s, the protocol gave LTP (blue trace). 

If the post-before-pre stimulation

was combined with a pulse of serotonin (5-HT) of a delay of 0 or 

2.5s, the protocol gave LTD (red trace).

(He et al., 2015).



Three-factor rules: summary

Three factors are needed for synaptic changes:

- Presynaptic factor   = spikes of presynaptic neuron

or the effect of spike arrival at the synapse

- Postsynaptic factor =  spikes of postsynaptic neuron

or increased voltage or a function of both

- Third factor              = Neuromodulator such as dopamine



Previous slide. 

three-factor learning rules are a theoretical concept.

But recent experiments show that the brain really can implement three-factor 

rules. Importantly, the third factor (neuromodulator) can come with a delay of one 

or two seconds after the Hebbian induction protocol that sets the eligibility trace.

Minimal delays work better than longer delays.



Quiz.  Synaptic Plasticity and Learning Rules

Learning rules in the brain

[ ] Hebbian learning depends on presynaptic activity 

AND on state of postsynaptic neuron

[ ] Reinforcement learning depends on neuromodulators

such as dopamine indicating reward (or ‘success’) [ ] 

Three-factor rule: presynaptic signal, postsynaptic 

signal, and neuromodulator signal (e.g., DA) MUST  

arrive at the same time.

[x]

[x]

[ ]
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 1

Reinforcement Learning and SARSA 

Objectives for Lecture RL1 (Part 1-3)

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Convergence in expectation, online and batch.

Part 1: Examples of Reward-based Learning 

Reading:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, 

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4

34
34

Video for most of this lecture: 
RL Lecture 1 on https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

Parts 1-3.

https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html


No labeled data?

REPETITION: Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence



Previous slide. (already shown before the break)

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example, the ball in table tennis does not land on 

the table as it should. That is bad (negative feedback). The ball has a great spin 

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Reward information is available in the brain

Neuromodulator dopamine:

Signals “reward minus expected reward”

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. 

Inside the brain, reward information is transmitted by the neuromodulator 

dopamine. Neurons that use dopamine as their chemical transmission signal are 

situated in nuclei below the cortex and have cables (axons) that reach out to vast 

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator 

dopamine transmit a generic success signal that is not just reward, but something 

like ‘reward minus expected reward’.

To conclude, reward information is available throughout the brain.



Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing 

the shift of the middle bar

Feedback: 

tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.

shift



Previous slide (This example is not shown in class) 

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern 

with three bars. The task is to distinguish cases where the middle bar is shifted to 

the left from those where it is shifted to the right.

Bottom right: 

The minimal shift that is just recognizable decreases over time (1 block = 1 

practice session) indicating learning.

The feedback signal is just right or wrong.



Examples of reinforcement learning: animal conditioning



Previous slide.  (already shown before the break)

If you put a rat into an environment it will wander around. Suppose that, at some 

place, it discovers a food source hidden below the sand of the surface. 

After a couple of trials it will go straight to the location of the food source which 

implies that it has learned the appropriate sequence of actions in the environment 

to find the food source.



Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. (This example is not shown in class)

Actual experiments for location learning are often performed in a Morris water 

maze. In the maze, there are 4 starting points and one target location which is a 

platform hidden (in milky water) just below the water surface. The rat does not like 

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.

Bottom right: the time to reach the platform decreases over trials, indicating 

learning. 



Chess Artificial neural network 

(AlphaZero) discovers different 

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

REPETITION: Deep reinforcement learning



Previous slide. 

In chess a neural network trained by reinforcement learning discovers winning 

strategies by playing against itself. Similarly, a neural network playing Go against 

itself learns to play at a level so as to beat one of the world champions.

The aim of the class is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and 

in May we will turn to Deep RL.



Deep reinforcement learning

Network for choosing action

2nd output for value of state:

  probability to win 

input

output

action:
Advance king

Learning by success signal

-   change connections

aim:

- choose next  action to win

aim for value unit:

- predict value of current 

position



Previous slide. (already shown before the break)

At the end of this semester, you will be able to understand the algorithms and 

network structure used to achieve these astonishing performances. Important are 

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we 

can loosely define the value as the probability to win, or the ‘average reward’ that 

you can get starting from this state.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim 

is just to give you a flavor of the high-level concepts.



Deep Reinforcement Learning:

Control a dynamic system (example of past minproject)

advance push 

left

actions

value

Example: Play Pong (Atari game)



Previous slide. 

In one of the miniprojects training will be based on reward: successful  behavior  

of the simulated agent will give positive rewards. 



Quiz: Rewards in Reinforcement Learning 

[ ] Reinforcement learning is based on rewards

[ ] Reinforcement learning aims at optimal action choices

[ ] In chess, the player gets an external reward after every move

[ ] In table tennis, the player gets a reward when he makes a point

[ ] A dog can learn to do tricks if you give it rewards at appropriate 

moments

[x]

[x]

[ ]

[x]

[x]



Previous slide. Your notes (already shown before the break)

. 



Wulfram Gerstner
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Reinforcement Learning and SARSA 

Part 2: Elements of Reinforcement Learning

- Examples of Reward-based Learning

- Elements of Reinforcement Learning



Previous slide.

We now start with the formalization of reinforcement learning 



Elements of Reinforcement Learning:

-states 

-actions

-rewards 



Previous slide. 

Reinforcement learning needs states, actions, and rewards.



Elements of Reinforcement Learning:

- discrete states 

- discrete actions 

- sparse rewards



Previous slide (already shown before the break)

.

Note that, for standard formulations of Reinforcement Learning Theories this 

(normally)  implies discretizing space and actions.

We will study continuous-space formulations only next week. 



Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′
𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



REPETITION: States in Reinforcement Learning:

- discrete states: 

starting state

arrival state 

𝑠

𝑠′

- current state: 𝑠𝑡

𝑠 𝑠′

state = current configuration/well-defined situation 

= generalized ‘location’ of actor in environment

a



Previous slide.

What are these discrete states?

Loosely speaking a state is the current configuration that uniquely describes the 

momentary situation. We can think of the   generalized ‘location’ of the actor in the 

environment

To get acquainted with this, let us look at an example.



reward if tip above line

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

States?

→ discretize!

Suppose 5 states per dimension,

How many states in total?

[ ] 5

[ ] 25

[ ] 125

[ ] 625

3 actions:        = no torque, 

= torque +1 at elbow,  

= torque -1 at elbow

a1

a2

a3

5x5x5x5=625



Previous slide. 

The aim of the acrobat is to move the tip above the blue line. To achieve this 

torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.

But what are the states? How many states do we have?



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions

400th episode: short sequence of ‘smart’ actions



Previous slide.

An episode finishes if the target is reached. Over time episodes get shorter and 

shorter indicating that the acrobat has discovered (via reinforcement learning) a 

smart sequence of actions so as to reach the target (i.e., move the tip above the 

reference line)



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

after 400 episodes



Previous slide. 

One example of an action sequence, after learning, is shown.



Summary: Elements of Reinforcement Learning

- discrete actions: 

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

𝑎

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

There can be MANY states

Often need to discretize first

(→ later we try to model in continuum)     

𝑎



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we 

also think of the states as discrete (but next week we will go to continuous state 

space) 



Quiz: Reinforcement Learning for backgammon

From Book:

Sutton and Barto

Game position =

discrete states!

Suppose 2 pieces  per player,

How many states in total?

[ ] 100<n<500

[ ] 500<n<5000

[ ] 5 000<n<50 000

[ ] n>50 000

N>24x24x23x23>23x23x23x23>250 000



Previous slide. 

Backgammon game. There are 24 fields on the board. Players have several 

pieces. Pieces are protected if there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.

How many  different states are there in total?



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning and the Brain:

Coarse Brain Anatomy and Reinforcement Learning



Previous slide.

Before we can make a link to Reinforcement Learning we need to know a bit 

more about the brain.

Video for this  section:

https://www.youtube.com/watch?v=16d6XEO7sHY

Which is part 2 of lecture: 
Reinforcement Learning and the Brain: 3-factor rules and brain-style computing 

on 

https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

For most of the RL part, I also have videos on this page:
https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

https://www.youtube.com/watch?v=16d6XEO7sHY


Coarse Brain Anatomy and Reinforcement Learning

Reinforcement learning needs:

- states / sensory representation

- action selection

- reward signals

→ where are states encoded in the brain?

→ where is action selection encoded in the brain?

→ how is reward encoded in the brain?

→ is a ‘TD-error’ signal implemented in the brain?



Previous slide.

In reinforcement learning, the essential variables that define the update step of 

the learning rule are the  states (defined by sensory representation), a policy for 

action selection, the actions themselves, and the rewards given by the 

environment.

If we want to link reinforcement learning to the brain, we will have to search for 

corresponding substrates and functions in the brain. 

Therefore we now take a rather coarse and simplified look at the anatomy of the 

brain.

The Wikipedia articles give more information for those who are interested.



Coarse Brain Anatomy: Cortex

frontal

cortex
occipital

cortex

parietal

cortex

temporal

cortex fig: Wikipedia

vision

motor

audition

Sensory representation in visual/somatosensory/auditory cortex  

somato-sensory



Previous slide.

Left: Anatomy. The Cortex is the part of the brain directly below the skull. It is 

a folded sheet of densely packed neurons. The biggest folds separate the 

four main parts of cortex (frontal, parietal, occipital, and temporal cortex)

Right: Functional assignments. Different parts of the brain are involved in 

different tasks. For example there several areas involved in processing visual 

stimuli (called primary and secondary visual cortex). Other areas are 

involved in audition (auditory cortex) or the presentation of the body surface 

(somatosensory cortex). Yet other areas are prepared in the preparation of 

motor commands for e.g., arm movement (primary motor cortex)



Coarse Brain Anatomy
- many different cortical areas

- but also several brain nuclei sitting below the cortex

- Some of these nuclei send dopamine signals

- Dopamine sent from: VTA and substantia nigra

- Dopamine is related to reward, surprise, and pleasure 

fig: Wikipedia commons

VTA

substantia

nigra

nucleus 

accumbens



Previous slide.

Left: Anatomy. View on the folds of the cortex, and main cortical areas in 

different color. 

Right: Below the cortex sit different nuclei. Some of these nuclei use 

dopamine as their signaling molecule. Important nuclei for dopamine are the 

Ventral Tegmental Area (VTA) and the Substantia Nigra pars compacte

(SNc). These dopamine neurons send their signals to large areas of the 

cortex as well as to the striatum (and nucleus accumbens).

Since dopamine is involved in reward, these dopamine neurons will play a 

role in this lecture that links reinforcement learning and the brain.

Frontal Cortex is also involved in many aspects related to Reinforcement 

Learning.

In the next slides we will focus on striatum and hippocampus.



Coarse Brain Anatomy: Striatum
- Striatum sits below cortex

- Part of the ‘basal ganglia’

- Dorsal striatum involved in 

action selection, decisions

striatum
thalamus

Striatum consists of

- Caudate (dorsal striatum)

- Putamen (dorsal striatum)

Nucleus Accumbens is

part of ventral striatum fig: Wikipedia

https://en.wikipedia.org/wiki/Striatum



Previous slide.

Left: Sketch of the Anatomical location of striatum and thalamus. 

Right: the striatum lies also below the cortex. Since the striatum is involved in 

action selection it will play an important role in this lecture.

From Wikipedia:
The striatum is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the 

forebrain. The striatum is a critical component of the motor and reward systems; receives 

glutamatergic and dopaminergic inputs from different sources; and serves as the primary 

input to the rest of the basal ganglia.

Functionally, the striatum coordinates multiple aspects of cognition, including both motor 

and action planning, decision-making, motivation, reinforcement, and reward

perception.The striatum is made up of the caudate nucleus and the lentiform nucleus. The 

lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus.

In primates, the striatum is divided into a ventral striatum, and a dorsal striatum, 

subdivisions that are based upon function and connections. The ventral striatum consists 

of the nucleus accumbens and the olfactory tubercle. The dorsal striatum consists of the 

caudate nucleus and the putamen. A white matter, nerve tract (the internal capsule) in the 

dorsal striatum separates the caudate nucleus and the putamen.[4] Anatomically, the term 

striatum describes its striped (striated) appearance of grey-and-white matter

https://en.wikipedia.org/wiki/Nucleus_(neuroanatomy)
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Basal_ganglia
https://en.wikipedia.org/wiki/Forebrain
https://en.wikipedia.org/wiki/Motor_system
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Glutamate_(neurotransmitter)
https://en.wikipedia.org/wiki/Dopaminergic
https://en.wikipedia.org/wiki/Cognition
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Decision-making
https://en.wikipedia.org/wiki/Motivation
https://en.wikipedia.org/wiki/Reinforcement
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Lentiform_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Globus_pallidus
https://en.wikipedia.org/wiki/Primate
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Nucleus_accumbens
https://en.wikipedia.org/wiki/Olfactory_tubercle
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/White_matter
https://en.wikipedia.org/wiki/Nerve_tract
https://en.wikipedia.org/wiki/Internal_capsule
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Striatum#cite_note-FERRE2010-4


Coarse Brain Anatomy: hippocampus

fig: Wikipedia

Henry Gray (1918) Anatomy of the Human Body

Hippocampus

- sits below/part of temporal cortex

- involved in memory

- involved in spatial memory

Spatial memory:

knowing where you are,

knowing how to navigate in an environment

Hippocampus involved in spatial memory

→ ‘state representation’

https://en.wikipedia.org/wiki/Henry_Gray


Previous slide.

From Wikipedia:

The hippocampus (named after its resemblance to the seahorse, from the Greek

ἱππόκαμπος, "seahorse" from ἵππος hippos, "horse" and κάμπος kampos, "sea monster") 

is a major component of the brains of humans and other vertebrates. Humans and other 

mammals have two hippocampuses, one in each side of the brain. The hippocampus 

belongs to the limbic system and plays important roles in the consolidation of information 

from short-term memory to long-term memory, and in spatial memory that enables 

navigation. The hippocampus is located under the cerebral cortex (allocortical)[1][2][3] and in 

primates in the medial temporal lobe.

https://en.wikipedia.org/wiki/Seahorse
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Vertebrates
https://en.wikipedia.org/wiki/Cerebral_hemisphere
https://en.wikipedia.org/wiki/Limbic_system
https://en.wikipedia.org/wiki/Short-term_memory
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Spatial_memory
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Allocortex
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Martin2003-1
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Amaral2007-1a-2
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Amaral2007-1b-3
https://en.wikipedia.org/wiki/Medial_temporal_lobe


rat brain

CA1

CA3

DG

pyramidal cells

soma

axon

dendrites

synapses
electrodePlace fields

Hippocampal place cells  



Previous slide.

The upper left figure shows the rat brain with the hippocampus highlighted. Rats 

are animals that walk around a lot in their environment and have a large 

hippocampus. The next two images are a slice of hippocampus with three regions 

marked: Dentate Girus (DT), area CA3, and area CA1.

In CA 3 and CA1 it is common to find place cells, i.e., cells that respond only in a 

small region of the environment.



Main property: encoding the animal’s  location

place 

field 

Hippocampal place cells  



Previous slide.

in a large 2D environment, the place cells show activity in a localized region 

(place field). Importantly, this activity  is mostly independent of the direction of the 

head or the walking direction. In that sense, the place cell is really a location in 

the environment, as opposed a certain configuration of visual cues on the retina.

It is known that the place field depends on (highly processed) visual input as well 

as self-motion information (path integration).



Coarse Brain Anatomy and Reinforcement Learning

Reinforcement learning needs:

- representation of states / sensory input / ‘where’

→ hippocampus? / sensory cortex?

- action selection → striatum?, motor cortex?

- reward signals  → dopamine?

→ Candidate brain areas and brain signals!  



Previous slide.

In reinforcement learning, the essential variables are the  states (defined by 

sensory representation), a policy for action selection, the actions themselves, and 

the rewards given by the environment.

If we want to link reinforcement learning to the brain, we will have to search for 

corresponding substrates and functions in the brain. 

The potential relations show candidate brain region for a mapping to state, 

actions, and reward.  The above rough ideas need to be defined during the rest of 

this lecture. 



Action Learning reconsidered

Eligibility trace:

Synapse keeps memory

of pre-post coincidences

over a few seconds

Image: Fremaux and Gerstner, Front. Neur. Circ., 2015

Dopamine:

Reward/success

action plan

place

Schultz et al. 1997; Waelti et al., 2001;  

→ Reinforcement learning:success = reward – (expected reward)

TD-learning, SARSA, Policy gradient     (book: Sutton and Barto, 2018)

dorsal striatum

Hippocampal

Place cells



Previous slide (repetition).

Hebbian learning as it stands is not sufficient to describe learning in a setting were 

rewards play a role. If joint activity of pre- and post causes stronger synapses, the rat is 

likely to repeat the same unrewarded action a second time. A three-factor rule adds the 

influence of a neuromodulator (e.g., dopamine): reward-modulate plasticity. 

Hypothetical functional role of neuromodulated synaptic plasticity. 

(A) Schematic reward-based learning experiment. An animal learns to perform a desired 

sequence of actions (e.g.,move straight,then turn left) in a T-maze through trial-and-error 

with rewards (cheese). 

(B) The current position (“place”) of the animal in the environment is represented by an 

assembly of active cells in the hippocampus, called place cells. These cells connect to 

neurons (e.g.,in the dorsal striatum) which code for high-level actions at the decision 

point, e.g., “turn left” or “turn right.” These neurons in turn project to motorcortex neurons, 

responsible for the detailed implementation of actions. Connections between neurons that 

are active together are marked (flag/eligibility trace).

(C) Neuromodulator timing. While spikes occur on the time scale of milliseconds, the 

success signal (green arrows/shaded) may come a few seconds later.  



1. Quiz: Coarse Functional Brain anatomy

[ ] the brain = the cortex (synonyms)

[ ] the cortex consists of several areas

[ ] some areas are more involved in controlling motor output,

others in the representation of the body surface

[ ] below the cortex there are groups (clusters) of neurons

[ ] Hippocampus sends out dopamine signals

[ ] VTA  sends out dopamine signals

[ ] dopamine is linked to reward, pleasure, surprise

[ ] striatum is involved in action selection

[ ] hippocampus is involved in the representation of ‘WHERE’

[ ]

[x]

[x]

[x]

[ ]

[x]

[x]

[x]

[x]



Previous slide. Your comments



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 1 

Reinforcement Learning and SARSA 

Part 3: One-step horizon (bandit problems)

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)



Previous slide. 

We start with the simplest discrete example:  the agent takes an action. 

Immediately afterwards, the game is over and reward is given. I call this a one-

step scenario or 1-step horizon.  

Video for most of this lecture: 
RL Lecture 1 on https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

Parts 1-3.

https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html


coins

buttons

Slot Machine

3-armed bandid

action=button press

One-step horizon games (bandit)



Previous slide. 

The standard example is a multi-armed bandit, or slot machine: you have to 

choose between a few actions, and once you have pressed the button you can 

just wait and see whether you get reward or not.



One-step horizon games 𝑠

𝑠′

a1

Blackboard1:

Q-valuesQ-value:

Expected reward for

action a starting from s Q(s,a1)

Q(s,a)



Previous slide. 

One of the most central notion in reinforcement learning is the Q-value. 

Q(s,a) has two indices: you start in state s and take action a.

The Q-value Q(s,a) is (an estimate of) the mean expected reward that you will get 

if you take action a starting from state s.



One-step horizon games Blackboard1:

Q-values



Your notes. 



One-step horizon games: Q-value

𝑄 𝑠, 𝑎 = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



Optimal policy (greedy)

take action a* with

Q(s,a*)  ≥ Q(s,aj)

other actions

𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]

optimal action:

Suppose all Q-values are known: 

Optimal policy is also called ‘greedy policy’

=6 =2 =5



Previous slide. 

And once you have the Q-values it is easy to choose the optimal action:

Just take the one with maximal Q-value.



One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

→ take action with highest Q-value

BUT: we normally do not know the Q-values

→ estimate by trial and error

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Q(s,a3)



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Previous slide. 

Teaching monitoring – feedback for the teacher.



Exercise 1 (Exercise session]

𝑠

𝑠′

a1 a2 a3
𝑄 𝑠, 𝑎 = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑃𝑠→𝑠′
𝑎1

Expected reward 𝑄 𝑠, 𝑎1

Show that empirical averaging over k trials gives an update rule

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 −𝑄 𝑠, 𝑎 ]

𝑟𝑡





Next Lecture at 12h15

Exercise 1 (in class)



One-step horizon: Proposition

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

→ take action with highest Q-value

If Q-value not known: 

→ estimate ෠𝑄 by trial and error

→ update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]       (1)

→Let learning rate  decrease over time 





Convergence in Expectation
After taking action a in state s, we update with

(i) If (1) has converged in expectation given (s,a), then 
෠𝑄 𝑠, 𝑎 has a value,

(2) 
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1



(ii) If the learning rate  decreases, 

fluctuations around the empirical mean
෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
decrease. If ෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

converges for fixed , then the empirical 

mean approaches 𝑸 𝒔, 𝒂 

෡𝑄 𝑠, 𝑎 = 𝐸 ෡𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]              (1)              



Previous slide. 

When evaluating the expectation value given (s,a), the learning rate  drops out since we set the left-

hand-side to zero. The exact value of  is not relevant, as discussed in the  theorem. Part (i) of the 

theorem states that the expectation value of ෠𝑄 𝑠, 𝑎 is the correct Q-value. For a quick proof of 

𝐸 ෠𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) see the video. On the blackboard a stronger statement was shown:
෠𝑄 𝑠, 𝑎 = 𝑄(𝑠, 𝑎). 

Convergence in expectation is equivalent to imagining that you start millions of trials with the same 

value ෠𝑄 𝑠, 𝑎 without any intermediate update. So in that sense it is like an infinite ‘batch’ of 

examples. The stochastic variables are the next state s’ and the received reward 𝑟𝑡. The value of 
෠𝑄 𝑠, 𝑎 is not stochastic but ‘frozen’. Therefore (trivially) 𝐸 ෠𝑄 𝑠, 𝑎 |𝑠, 𝑎 = ෠𝑄 𝑠, 𝑎 .
In practice, we do not have expectations but online updates with fluctuations. It is important 

that  is small at the end of learning so as to limit the amount of fluctuations. Part (ii) states that 

online mean for small learning rate also goes to  the correct Q-value. 

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the calculation of part 

(i) apply analogously to the long-term empirical temporal average (denoted by angular brackets). The 

average is across all those time steps where action a was chosen in state s, denoted as  
෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂
.  We assume convergence, hence our hypothesis reads

∆෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝜼 𝑟𝑡 − ෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 0 . 

The specific result ෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

= 𝑸 𝒔, 𝒂 is based on linearity and is not true for the multi-step 

horizon that we discuss later. 



Proof: Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation, then 
෠𝑄 𝑠, 𝑎 has an expectation value,

(2) 

𝑠

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1



𝐸 ෡𝑄 𝑠, 𝑎 = ෡𝑄 𝑠, 𝑎 = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]              (1)              

Blackboard2:

Proof of (i)

Note: the expectation is over all possible ‘futures’. For the bandit problem 

the future is defined by the possible next states and possible rewards.



Your notes. 



Blackboard2

converged in expectation → 𝐸(∆ ෠𝑄 𝑠, 𝑎 |s,a)=0

expectation of all

possible futures with 

correct statistical 

weight

we always start in 

(s,a) while the 

system is frozen

Perspective similar to a batch mode: 

update only after (infinitely) many trials that 

all start in (s,a) with the same value ෠𝑄 𝑠, 𝑎
=

update the expectation over all possibilities 

that may occur in the next time step.

Part (i) of Theorem



Previous slide:
෠𝑄 𝑠, 𝑎 denotes the current estimate of the Q-value. Claim: If Q no longer 

changes (in expectation) then it must be the correct Q-value.

There are different views on how to interpret the ‘expectation;:

- Formally from a mathematical point of view: average over all possible outcomes 

of the next time step given (s,a).

- In a simulation this would correspond to the following sampling procedure:

You freeze the value of ෠𝑄 𝑠, 𝑎 and run MANY times (N to infinity) a test with the 

state-action pair (s,a) as a starting condition. Then you evaluate the resulting 

‘batch update’ averaged across all these examples. If the batch update with 

millions of examples is zero, that implies that you have converged to the correct 

value.

In the copies of the  blackboard notes, there are two versions of the proof:

First, on page 2, top half of page a SIMPLE proof.

Second, on page 4 (final page), the stronger proof with more in-between steps 

showing ෡𝑄 𝑠, 𝑎 = 𝐸 ෡𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝐸 ෡𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 𝑄(𝑠, 𝑎) = ෍

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎



Blackboard3
Part (ii) of Theorem:

We work with the online update ∆ ෠𝑄 𝑠, 𝑎 . With finite learning 

rate, the value of  ෠𝑄𝑡 𝑠, 𝑎  fluctuates around a mean

෠𝑄𝑡 𝑠, 𝑎
෡𝑸 𝒔, 𝒂

𝒕|𝒔,𝒂

Under the hypothesis of the theorem (i.e., the mean converges), 

then the  mean is equal to the ‘correct’ Q-value.

෡𝑸 𝒔, 𝒂
𝒕|𝒔,𝒂

𝒕|𝒔,𝒂



Notes. 

Proof  of part (ii) of the theorem is in the Blackboard notes on page 3  – think 

about it. The proof works because of linearity. 

More information regarding the philosophy of different averaging procedures also 

in Exercise 3 this week and beginning of the lecture of  next week. 



One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

→ take action with highest Q-value

If Q-value not known: 

→ estimate ෠𝑄 by trial and error

→ update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆ ෠𝑄 𝑠, 𝑎 = [𝑟𝑡 − ෠𝑄 𝑠, 𝑎 ]       (1)

→Let learning rate  decrease over time 

Iterative algorithm (1) converges in expectation



Previous slide. 

Let us distinguish the ESTIMATE ෠𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate  : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep  constant for a block of time, and then you decrease it for the next block.

Note: in later lectures I will often use the symbol  instead of 

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.



Teaching monitoring – monitoring of understanding 

[ ] today, at least 60% of material was new to me.

[ ] I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Previous slide. 

Teaching monitoring – feedback for the teacher.
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