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Three-factor Learning Rules
- Reward-based learning needs three-factor learning rules
- 3-factor rules vs. 2-factor rules
- Neuromodulators act as 3 factor
- EXperiments supporting three-factor learning rules



Previous slide.

Since Hebbian learning rules are limited, we have to extend the framework and
include a ‘third factor’ that could represent reward.

For most of the RL part, | also have videos on this page:
https://Icnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

Video for this first section:

https://www.youtube.com/watch?v=|G|]2sTdQLME
Which Is part 4 of lecture:

Reinforcement Learning and the Brain: 3-factor rules and brain-style computing

on
https://lcnwww.epfl.ch/gerstner/VideolLecturesRL-Gerstner.ntml



https://www.youtube.com/watch?v=jGj2sTdQLME

Hebbian coactivation:
pre-post-post-post

Hebbian coactivation:
but no post-spikes

Image: Gerstner et al. (2018, review paper in Frontiers)



Previous slide.

Review: Hebb rules, but Hebbian learning rules are limited



Review: Hehbh rule of synaptic changes

Hebbian Learning
= unsupervised learning

pre OSt
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no notion of reward
Or success. Aw;; = F(pre'pOSt’ Wij)



Previous slide.

In standard Hebbian learning, the change of the synaptic weight depends only on
presynaptic activity (pre) and the state of the postsynaptic neuron (post). The rule
IS local, and does not contain the notion of reward or success.

The value of the weight w;; Is measured by sending a test-pulse across the
synapse. The change of the weight is a function of ‘pre’ and ‘post’ and the weight
itself where ‘pre’ and ‘post’ are rather general variables.



IS Hehbian Learning sufficient? No! - We need a third factor!

Image: Fremaux and Gerstner, Front. Neur. Circ., 2016
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Previous slide.

Hebbian learning as it stands Is not sufficient to describe learning In a setting were
rewards play a role. If joint activity of pre- and post causes stronger synapses, the rat Is
likely to repeat the same unrewarded action a second time. A three-factor rule adds the
iInfluence of a neuromodulator (e.g., dopamine): reward-modulate plasticity.

Hypothetical functional role of neuromodulated synaptic plasticity.

(A) Schematic reward-based learning experiment. An animal learns to perform a desired
seguence of actions (e.g.,move straight,then turn left) in a T-maze through trial-and-error
with rewards (cheese).

(B) The current position (“place™) of the animal in the environment Is represented by an
assembly of active cells in the hippocampus.These cells connect to neurons (e.g.,in the
dorsal striatum) which code for high-level actions at the decision point, e.g., “turn left” or
“turn right.” These neurons Iin turn project to motorcortex neurons, responsible for the
detailed implementation of actions. Connections between neurons that are active together
are marked (flag/eligibility trace).

(C) Neuromodulator timing. While spikes occur on the time scale of milliseconds, the
success signal (green arrows/shaded) may come a few seconds later.



Glassification of synaptic changes: Reinforcement Learning

SUCCESS painforcement Learning
= reward + Hebb

Aw;; < F(pre,post, MOD; w;;)

.

local global

broadly diffused signal:
neuromodulator
(e.g., success)



Previous slide.

For the moment we say that reinforcement learning depends on three factors: the
Hebbian pre- and postsynaptic factor plus a success signal related to reward.
We will get more precise later.



Glassification of synaptic changes
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Previous slide.

This does not mean the standard Hebbian learning is wrong: In fact it is very
useful for the development of generic synaptic connections, e.g., to make neurons
develop good filtering properties that pick up relevant statistical signals in the
stream of input. Unsupervised Hebbian learning can for example implement
Principal Component Analysis or Independent Component Analysis.

The three-factor rules are relevant for learning novel behaviors via feedback
through reward.



Three-factor rule: the role of neuromodulators

= Hebb-rule gated by a neuromodulator

Neuromodulators: Interestingness, surprise;
attention; novelty

Aw;; F(pre,post, MOD; Wij)

.

local global




Previous slide.

To summarized: The three-factor rules have a Hebbian component: pre- and

postsynaptic activity together, but in addition the third factor which is related to
neuromodulators.

There are several neuromodulators in the brain.



Imaae: Bioloaical Psvycholoay, Sinauer
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Previous slide.

The most famous neuromodulator iIs dopamine (DA) which iIs related to reward,
as we will see.

But there are other neuromodulators such as noradrenaline (also called
norepinephrine, NE) which Is related to surprise.

Left: the mapping between neuromodulators and functions is not one-to-one.
Indeed, dopamine also has a ‘surprise’ component.

Right: most neuromodulators send axons to large areas of the brain, in particular
to several cortical areas. The axons branch out in thousands of branches.

Thus the information transmitted by a neuromodulator arrives nearly everywhere.
In this sense, it is a ‘global’ signal, available in nearly all brain areas.



Formalism of Three-factor rules with eligibility trace

Three-factor rule defines a framework Success signal

x; = activity of presynaptic neuron Stg‘r”e'us MOD(S(¢,7))
@; = activity of postsynaptic neuron %
| ¢ . pOSt

Step 1: co-activation sets eligibility trace | |
Az;i =n f(@;) g(x;)
Step 2: eligibility trace decays over time
Zij < Nz
Step 3: eligibility trace translated into weight change
Aw;; =n MOD(S(3,%)) - z;;



Previous slide. Why this is a good algo will become clear in a few weeks!
Three-factor rules are implementable with eligibility traces.

1. The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is
similar to the Hebb-rule, but the change of the synapse Is not yet implemented.
The exact condition for setting the eligibility trace COULD be the one from the
actor-critic/policy gradient framework, but could also be some other combination
of pre-and postsynaptic factors.

2. The eligibility trace decays over time

3. However, If a neuromodulatory signal M arrives before the eligibility trace has
decayed to zero, an actual change of the weight is implemented.

The change is proportional to

- the momentary value of the eligibility trace

- the value of the success signal

The success signal can be broadcasted by a neuromodulator signaling

- Reward (minus reward-baseline) OR

- ID-error



Hehbian rules versus Three-factor rules

Hebbian coactivation:
pre-post-post-post

Hebbian coactivation:
but No post-spikes

Scenario of three-factor
rule: Hebb+modulator

Neuromodulator can come with a delay of 1s

Image: Gerstner et al. (2018, review paper in Frontiers)




Previous slide.

The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is
similar to the Hebb-rule, but the change of the synapse Is not yet implemented.
Note that joint activation can imply spikes of pre- (green) and postsynaptic
(orange) neuron (top);

Or spikes of a presynaptic neuron combined with a weak voltage increase In the
postsynaptic neuron (middle).

Bottom: three-factor rule only If a neuromodulatory signal M arrives before the
eligibility trace has decayed to zero, an actual change of the weight Is
Implemented. The neuromodulater arrives through the branches

The ideas of three-factor rules can be traced back over several decades.

Early papers were Crow 1968, Barto, 1983/1985, Schultz 1997,
First experimental papers Schultz 1997



~ Three-factor rules: synaptic flags and delayed reward (mod}
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Previous slide.

Specificity of three-factor learning rules.

(1) Presynaptic input spikes (green) arrive at two different neurons, but only one
of these also shows postsynaptic activity (orange spikes).

(1) A synaptic flag is set only at the synapse with a Hebbian co-activation of

pre- and postsynaptic factors; the synapse become then eligible to interact with

the third factor (blue). Spontaneous spikes of other neurons do not interfere.

(1) The Interaction of the synaptic flag (eligibility trace) with the third factor leads

to a strengthening of the synapse (green).

Fig caption: Gerstner et al. 2018



J. Recent experiments for Three-factor rules

Neuromodulators for reward; interestingness; surprise;
attention; novelty

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

Step 3: (delayed) neuromodulator:
eligibility trace translated into weight change



Previous slide.
three-factor learning rules are a theoretical concept.

But are there any experiments? Only quite recently, a few experimental results
were published that directly address this question.



- Three-factor ruies in striatum: eligibility trace and delayed DA
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3. Three-factor rules in striatum: eligibility trace and delayed Da

Yagishita et al. 2014

In striatum medial spiny cells, stimulation of presynaptic glutamatergic fibers
(green) followed by three postsynaptic action potentials (STDP

with pre-post-post-post at +10ms) repeated 10 times at 10Hz yields LTP If
dopamine (DA) fibers are stimulated during the presentation (d < 0) or shortly
afterward (d = Os or d = 1s) but not if dopamine Is given with a delay d = 4s;
redrawn after Fig. 1 of (Yagishita et al., 2014), with

— | delay d defined as time since end of STDP protocol.

nm .. B A Lower left: the image from the beginning of this lecture comes from this
| | experiment of Yagishita. This image demonstrates the Long-Term Stabllity
over at least 50 min

1s

Before 2 min 20 min 50 min

D457 nm, 30 Hz x 10




Three-factor rules in cortex: eligibility trace and delayed NE

He et al., 2015, NEURON
Kirkwood lab.

NE = norepinephrine
S5HT=serotonin




In cortical pyramidal cells, stimulation of two independent
presynaptic pathways (green and red) from layer 4 to layer 2/3 by
a single pulse is paired with a burst of four postsynaptic spikes
(orange).

If the pre-before-post stimulation was combined with a pulse of
norepinephrine (NE) receptor agonist isoproterenol
with a delay of O or 5s, the protocol gave LTP (blue trace).

If the post-before-pre stimulation
was combined with a pulse of serotonin (5-HT) of a delay of O or
2.5s, the protocol gave LTD (red trace).

(He et al., 2015).



- Three-factor rules: summary

Three factors are needed for synaptic changes:
- Presynaptic factor = spikes of presynaptic neuron
or the effect of spike arrival at the synapse

- Postsynaptic factor = spikes of postsynaptic neuron
or Increased voltage or a function of both

- Third factor = Neuromodulator such as dopamine



Previous slide.

three-factor learning rules are a theoretical concept.

But recent experiments show that the brain really can implement three-factor
rules. Importantly, the third factor (neuromodulator) can come with a delay of one
or two seconds after the Hebbian induction protocol that sets the eligibility trace.

Minimal delays work better than longer delays.



Quiz. Synaptic Plasticity and Learning Rules

Learning rules in the brain

[ ] Hebbian learning depends on presynaptic activity
AND on state of postsynaptic neuron

| ] Reinforcement learning depends on neuromodulators
such as dopamine indicating reward (or ‘success’) [ ]

Three-factor rule: presynaptic signal, postsynaptic

sighal, and neuromodulator signal (e.g., DA) MUST
| arrive at the same time.
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Wulfram Gerstner
EPFL, Lausanne, Switzerland

Reinforcement Learning Lecture 1
Reinforcement Learning and SARSA

Part 1. Examples of Reward-based Learning

Objectives for Lecture RL1 (Part 1-3)

- Reinforcement Learning (RL) Is learning by rewards
- Agents and actions, states and rewards

- Convergence In expectation, online and batch.

Reading:
Sutton and Barto, Reinforcement Learning
(MIT Press, 2"9 edition 2018)

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2"d edition 2018, also online)

Chapters: 1.1-1.4; 2.1-2.6; 3.1-3.5; 6.4

Video for most of this lecture:

RL Lecture 1 on https://lcnwww.epfl.ch/gerstner/Videol ecturesRL-Gerstner.html

Parts 1-3.

Background reading:

Silver et al. 2017,

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

34


https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

REPETITION: Artificial Neural Networks for action learning

No labeled data?

Replaced by:

‘Value of action’

- 'goodie’ for dog

- ‘'success’

- ‘compliment’

BUT:

Reward Is rare:
'sparse feedback’ after
a long action seguence




Previous slide. (already shown before the break)

How does a human learn to play table tennis: How does a child learn to play the
piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the
players during the learning phase. Rather the player ‘discovers’ good movements
by rather coarse feedback. For example, the ball in table tennis does not land on
the table as it should. That is bad (negative feedback). The ball has a great spin
so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog's behavior
by giving a ‘goodie’ at the moment when it spontaneously performs a nice action,
then It can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the
goodie for the dog, or just the feeling ‘now | did well’ for humans.



Neuromodulator dopamine;
Signals “reward minus expected reward”

Schultz et al., 1997,
Waeltl et al., 2001
Schultz, 2002

Dopamine

'success signal’




Previous slide.

Inside the brain, reward information Is transmitted by the neuromodulator
dopamine. Neurons that use dopamine as their chemical transmission signal are
situated in nuclel below the cortex and have cables (axons) that reach out to vast

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator
dopamine transmit a generic success signal that is not just reward, but something
like ‘reward minus expected reward'.

To conclude, reward information is available throughout the brain.



Middle bar: shifted left or shifted right?
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Previous slide (This example Is not shown In class)

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern
with three bars. The task is to distinguish cases where the middle bar is shifted to
the left from those where It is shifted to the right.

Bottom right:

The minimal shift that Is just recognizable decreases over time (1 block = 1
practice session) indicating learning.

The feedback signal Is just right or wrong.






Previous slide. (already shown before the break)

If you put a rat into an environment it will wander around. Suppose that, at some
place, it discovers a food source hidden below the sand of the surface.

After a couple of trials it will go straight to the location of the food source which
iImplies that it has learned the appropriate sequence of actions in the environment
to find the food source.



Morris Water Maze
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Previous slide. (This example Is not shown In class)

Actual experiments for location learning are often performed in a Morris water
maze. In the maze, there are 4 starting points and one target location which is a
platform hidden (in milky water) just below the water surface. The rat does not like

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.
Bottom right: the time to reach the platform decreases over trials, indicating

learning.



REPETITION: Deep reinforcement learning

Chess Artificial neural network
(AlphaZero) discovers different
strategies by playing against itself.
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Previous slide.

In chess a neural network trained by reinforcement learning discovers winning

strategies by playing against itself. Similarly, a neural network playing Go against
itself learns to play at a level so as to beat one of the world champions.

The aim of the class Is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and
iIn May we will turn to Deep RL.
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Previous slide. (already shown before the break)

At the end of this semester, you will be able to understand the algorithms and
network structure used to achieve these astonishing performances. Important are

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we
can loosely define the value as the probability to win, or the ‘average reward’ that
you can get starting from this state.

The input Is a representation of the present state of the game.

Detalls will become clear toward the end of the semester: at the moment the aim
IS just to give you a flavor of the high-level concepts.



Deep Reinforcement Learning:

Control a dynamic system [(example of past minproject}
actions Example: Play Pong (Atari game)
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Previous slide.

In one of the miniprojects training will be based on reward: successful behavior
of the simulated agent will give positive rewards.



. | ] Reinforcement learning Is based on rewards

| | Reinforcement learning aims at optimal action choices

| ] In chess, the player gets an external reward after every move

[ ] In table tennis, the player gets a reward when he makes a point
[ ] Adog can learn to do tricks If you give it rewards at appropriate
moments




Previous slide. Your notes (already shown before the break)



Wulfram Gerstner

Reinforcement Learning Lecture 1 SPEL Lousanne. Sitzerant
Reinforcement Learning and SARSA

Part 2. Elements of Reinforcement Learning

- Examples of Reward-based Learning
- Elements of Reinforcement Learning



Previous slide.
We now start with the formalization of reinforcement learning



Elements of Reinforcement Learning:

-states
-actions
-rewards



Previous slide.

Reinforcement learning needs states, actions, and rewards.



Elements of Reinforcement Learning:

- discrete states
- discrete actions

- sparse rewards




Previous slide (already shown before the break)

Note that, for standard formulations of Reinforcement Learning Theories this
(normally) implies discretizing space and actions.

We will study continuous-space formulations only next week.



- discrete states: ",
old state S Q Q

/
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new state S

- current state: St

- discrete actions: ay, a; ... ay
- current action: a;

- current reward:

- Mean rewards for transitions:
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Previous slide.

The elementary step Is:

The agent starts In state s.

It takes action a

It arrives Iin a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the
transition (capital R with indices identifying the transition) from the actual reward
(lower-case r with index t) that Is recelved at time t on a transition.

Note that iIn many practical situations most transitions or states have zero
rewards, except a single ‘goal’ state at the end.



REPETITION: States In Reinforcement Learning:

- discrete states: a
starting state s Q Q

S S’

arrival state s’
- current state: s:

state = current configuration/well-defined situation
= generalized ‘location’ of actor in environment



Previous slide.

What are these discrete states?
Loosely speaking a state Is the current configuration that uniquely describes the

momentary situation. We can think of the generalized ‘location’ of the actor in the
environment

To get acquainted with this, let us look at an example.



3 actions:| a; | = no torque,
a.| =torque +1 at elbow,

States? L a:| = torque -1 at elbow reward if tip above line

- discretize!

Suppose 5 states per dimension,
How many states in total?
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From Book:
. Sutton and Barto
Figure 11.4 The acrobot.




Previous slide.
The aim of the acrobat is to move the tip above the blue line. To achieve this
torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.
But what are the states? How many states do we have?



Reinforcement Learning: Example Acrohot
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Previous slide.

An episode finishes If the target Is reached. Over time episodes get shorter and
shorter indicating that the acrobat has discovered (via reinforcement learning) a

smart sequence of actions so as to reach the target (i.e., move the tip above the
reference line)



Reinforcement Learning: Example Acrohot

274 Case Studies a-fter 400 ep|SOdeS

Figure 11.7 A typical learned behavior of the acrobot. Each group is a series of consecutive From Book:
positions, the thicker line being the first. The arrow indicates the torque applied at the second Sutton and Barto
joint.



Previous slide.
One example of an action sequence, after learning, i1s shown.



simmary: Elements of Reinforcement Learning

There can be MANY states Q@ff >
Often need to discretize first s g
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- discrete actions: a
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Previous slide.
Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we
also think of the states as discrete (but next week we will go to continuous state

space)



Case Studies

<

Game position =
white pieces move -
counterclockwise discrete states!

24 23 22 21 20 19 18 17 16 15 14 13

Suppose 2 pieces per player,
How many states In total?
s T
move clockwise [ ] 500<n<5000
Figure 11.1 A backgammon position. [ ] 5 OOO<H<5O OOO
[ ] n>50 000

From Book:
Sutton and Barto




Previous slide.

Backgammon game. There are 24 fields on the board. Players have several
pieces. Pleces are protected If there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.
How many different states are there in total?



Wulfram Gerstner

Reinforcement Learning and the Brain: EPFL. Lausanne, Switzerland

Coarse Brain Anatomy and Reinforcement Learning




Previous slide.

Before we can make a link to Reinforcement Learning we need to know a bit
more about the brain.

For most of the RL part, | also have videos on this page:
https://Icnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

Video for this section:

https://www.youtube.com/watch?v=16d6XEQ7sHY
Which Is part 2 of lecture:

Reinforcement Learning and the Brain: 3-factor rules and brain-style computing

on
https://lcnwww.epfl.ch/gerstner/VideolLecturesRL-Gerstner.nhtml



https://www.youtube.com/watch?v=16d6XEO7sHY

Goarse Brain Anatomy and Reinforcement Learning

Reinforcement learning needs:

- states / sensory representation

- where are states encoded In the brain?
- action selection

- where IS action selection encoded In the brain?
- reward signals

-2 how Is reward encoded in the brain?

- I1s a 'TD-error’ signal implemented in the brain?



Previous slide.

In reinforcement learning, the essential variables that define the update step of
the learning rule are the states (defined by sensory representation), a policy for

action selection, the actions themselves, and the rewards given by the
environment.

If we want to link reinforcement learning to the brain, we will have to search for
corresponding substrates and functions in the brain.

Therefore we now take a rather coarse and simplified look at the anatomy of the
brain.

The Wikipedia articles give more information for those who are interested.



GCoarse Brain Anatomy: Gortex
Sensory representation In visual/somatosensory/auditory cortex

Motor and Sensory Regions of the Cerebral Cortex
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Wernicke’s area

au d |t| O N Auditory cortex (understand speech)

temporal
cortex

fig: Wikipedia



Previous slide.
Left: Anatomy. The Cortex is the part of the brain directly below the skull. It Is

a folded sheet of densely packed neurons. The biggest folds separate the
four main parts of cortex (frontal, parietal, occipital, and temporal cortex)

Right: Functional assignments. Different parts of the brain are involved In
different tasks. For example there several areas involved In processing visual
stimuli (called primary and secondary visual cortex). Other areas are
iInvolved In audition (auditory cortex) or the presentation of the body surface
(somatosensory cortex). Yet other areas are prepared in the preparation of
motor commands for e.g., arm movement (primary motor cortex)



Goarse Brain Anatomy

- many different cortical areas

- but also several brain nuclel sitting below the cortex
- Some of these nuclel send dopamine signals

- _Dopamine sent from: VTA and substantia nigra

- Dopamine Is related to reward, surprise, and pleasure
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Previous slide.
Left: Anatomy. View on the folds of the cortex, and main cortical areas in
different color.

Right: Below the cortex sit different nuclel. Some of these nuclel use
dopamine as their signaling molecule. Important nuclei for dopamine are the
Ventral Tegmental Area (VTA) and the Substantia Nigra pars compacte
(SNc). These dopamine neurons send their signals to large areas of the
cortex as well as to the striatum (and nucleus accumbens).

Since dopamine is involved in reward, these dopamine neurons will play a
role in this lecture that links reinforcement learning and the brain.

Frontal Cortex Is also involved In many aspects related to Reinforcement
Learning.

In the next slides we will focus on striatum and hippocampus.



Coarse Brain Anatomy: Striatum |
- Striatum sits below cortex Striatum consists of

- Part of the ‘basal gang”a’ - Caudate (dOrsaI Striatum)

- Dorsal striatum involved in | - Putamen (dorsal striatum)
action selection. decisions https://en.wikipedia.org/wiki/Striatum

Nucleus Accumbens IS

striatum -
thalamus part of ventral striatum fig: Wikipedia



Previous slide.

Left: Sketch of the Anatomical location of striatum and thalamus.

Right: the striatum lies also below the cortex. Since the striatum is involved In
action selection it will play an important role in this lecture.

From Wikipedia:

The striatum Is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the
forebrain. The striatum Is a critical component of the motor and reward systems; receives
glutamatergic and dopaminergic inputs from different sources; and serves as the primary
iInput to the rest of the basal ganglia.

Functionally, the striatum coordinates multiple aspects of cognition, including both motor
and action planning, decision-making, motivation, reinforcement, and reward
perception.The striatum Is made up of the caudate nucleus and the lentiform nucleus. The
lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus.

In primates, the striatum is divided into a ventral striatum, and a dorsal striatum,
subdivisions that are based upon function and connections. The ventral striatum consists
of the nucleus accumbens and the olfactory tubercle. The dorsal striatum consists of the
caudate nucleus and the putamen. A white matter, nerve tract (the internal capsule) in the
dorsal striatum separates the caudate nucleus and the putamen.!4! Anatomically, the term
striatum describes its striped (striated) appearance of grey-and-white matter



https://en.wikipedia.org/wiki/Nucleus_(neuroanatomy)
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Basal_ganglia
https://en.wikipedia.org/wiki/Forebrain
https://en.wikipedia.org/wiki/Motor_system
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Glutamate_(neurotransmitter)
https://en.wikipedia.org/wiki/Dopaminergic
https://en.wikipedia.org/wiki/Cognition
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Decision-making
https://en.wikipedia.org/wiki/Motivation
https://en.wikipedia.org/wiki/Reinforcement
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Lentiform_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Globus_pallidus
https://en.wikipedia.org/wiki/Primate
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Nucleus_accumbens
https://en.wikipedia.org/wiki/Olfactory_tubercle
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/White_matter
https://en.wikipedia.org/wiki/Nerve_tract
https://en.wikipedia.org/wiki/Internal_capsule
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Striatum#cite_note-FERRE2010-4

Goarse Brain Anatomy: hippocampus

Henry Gray (1918) Anatomy of the Human Body
fig: Wikipedia

Hippocampus
- sits below/part of temporal cortex P G e
- involved in memory E 7 Ay L)
- Involved In spatial memory

AR

Spatial memory: & 7
Knowing where you are, A
kKnowing how to navigate in an envwonment

Hippocampus

Hippocampus Involved In spatial memory

— ‘state representation’



https://en.wikipedia.org/wiki/Henry_Gray

Previous slide.
From Wikipedia:

The hippocampus (named after its resemblance to the seahorse, from the Greek
ITTTITOKAPTTOC, "seahorse" from ITTTTo¢ hippos, "horse" and kauTro¢ kampos, "sea monster")
IS a major component of the brains of humans and other vertebrates. Humans and other
mammals have two hippocampuses, one in each side of the brain. The hippocampus
belongs to the limbic system and plays important roles in the consolidation of information
from short-term memory to long-term memory, and in spatial memory that enables

navigation. The hippocampus is located under the cerebral cortex (allocortical)2!2lsl and in
primates in the medial temporal lobe.



https://en.wikipedia.org/wiki/Seahorse
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Vertebrates
https://en.wikipedia.org/wiki/Cerebral_hemisphere
https://en.wikipedia.org/wiki/Limbic_system
https://en.wikipedia.org/wiki/Short-term_memory
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Spatial_memory
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Allocortex
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Martin2003-1
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Amaral2007-1a-2
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Amaral2007-1b-3
https://en.wikipedia.org/wiki/Medial_temporal_lobe
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Previous slide.

The upper left figure shows the rat brain with the hippocampus highlighted. Rats
are animals that walk around a lot in their environment and have a large

hippocampus. The next two Images are a slice of hippocampus with three regions
marked: Dentate Girus (DT), area CA3, and area CAl.

In CA 3 and CA1 it is common to find place cells, I.e., cells that respond only Iin a
small region of the environment.



~ Hippocampal placecels

Main property: encoding the animal’s location




Previous slide.
In a large 2D environment, the place cells show activity in a localized region

(place field). Importantly, this activity Is mostly independent of the direction of the
head or the walking direction. In that sense, the place cell is really a location In
the environment, as opposed a certain configuration of visual cues on the retina.

It Is known that the place field depends on (highly processed) visual input as well
as self-motion information (path integration).



Goarse Brain Anatomy and Reinforcement Learning

Reinforcement learning needs:

- representation of states / sensory input / ‘where’
- hippocampus? / sensory cortex?

- action selection - striatum?, motor cortex?

- reward signals -> dopamine?

- Candidate brain areas and brain signals!



Previous slide.

In reinforcement learning, the essential variables are the states (defined by
sensory representation), a policy for action selection, the actions themselves, and

the rewards given by the environment.

If we want to link reinforcement learning to the brain, we will have to search for
corresponding substrates and functions in the brain.

The potential relations show candidate brain region for a mapping to state,
actions, and reward. The above rough ideas need to be defined during the rest of

this lecture.



Action Learning reconsidered

Image: Fremaux and Gerstner, Front. Neur. Circ., 2015

A B
motor se0e0se e
cortex s f ]
Eligibility trace: action plan '—Q’Q_’Q @oe-|  dorsal striatum
Synapse keeps memory \\/'\ ________

) U place 0008008000 Hippocampal
of pre-post coincidences ' @ = aotive Slnce calls
over a few seconds * O = inactive

C
Dopamine: post O L 11
Reward/success prec/ I
neural activity
Schultz et al. 1997; Waelti et al., 2001; 4 tme

> Reinforcement learning:Success = rewartd — (expected reward)

TD-learning, SARSA, Policy gradient (book: Sutton and Barto, 2018)



Previous slide (repetition).

Hebbian learning as it stands Is not sufficient to describe learning In a setting were
rewards play a role. If joint activity of pre- and post causes stronger synapses, the rat Is
likely to repeat the same unrewarded action a second time. A three-factor rule adds the
iInfluence of a neuromodulator (e.g., dopamine): reward-modulate plasticity.

Hypothetical functional role of neuromodulated synaptic plasticity.

(A) Schematic reward-based learning experiment. An animal learns to perform a desired
seguence of actions (e.g.,move straight,then turn left) in a T-maze through trial-and-error
with rewards (cheese).

(B) The current position (“place™) of the animal in the environment Is represented by an
assembly of active cells in the hippocampus, called place cells. These cells connect to
neurons (e.g.,in the dorsal striatum) which code for high-level actions at the decision
point, e.g., “turn left” or “turn right.” These neurons in turn project to motorcortex neurons,
responsible for the detailed implementation of actions. Connections between neurons that
are active together are marked (flag/eligibility trace).

(C) Neuromodulator timing. While spikes occur on the time scale of milliseconds, the
success signal (green arrows/shaded) may come a few seconds later.



1. Quiz: Coarse Functional Brain anatomy

| | the brain = the cortex (synonyms)

| | the cortex consists of several areas

| ] some areas are more involved in controlling motor output,
- others In the representation of the body surface

| | below the cortex there are groups (clusters) of neurons

| | Hippocampus sends out dopamine signhals

| ] VTA sends out dopamine signals

' | | dopamine is linked to reward, pleasure, surprise
| | striatum Is Involved In action selection
[ ] hippocampus is involved in the representation of ' WHEREFE’



Previous slide. Your comments



Wulfram Gerstner

Reinforcement Learning Lecture 1 SPEL Lousanne. Sitzerant
Reinforcement Learning and SARSA

Part 3: One-step horizon (bandit problems)

- Examples of Reward-based Learning
- Elements of Reinforcement Learning
- One-step horizon (bandit problems)



Previous slide.

We start with the simplest discrete example: the agent takes an action.
Immediately afterwards, the game is over and reward Is given. | call this a one-
step scenario or 1-step horizon.

Video for most of this lecture:

RL Lecture 1 on https://lcnwww.epfl.ch/gerstner/Videol ecturesRL-Gerstner.html
Parts 1-3.



https://lcnwww.epfl.ch/gerstner/VideoLecturesRL-Gerstner.html

action=Dbutton press

buttons

COoINS

Slot Machine
3-armed bandid



Previous slide.

The standard example I1s a multi-armed bandit, or slot machine: you have to
choose between a few actions, and once you have pressed the button you can
just walit and see whether you get reward or not.



0“0'3‘0“ |IﬂI'IZIIII !Iillllﬂs S Blackboard1:

Q-value: Q(s,a) Q-values
Expected reward for
action a starting from s




Previous slide.

One of the most central notion in reinforcement learning is the Q-value.

Q(s,a) has two Indices: you start in state s and take action a.
The Q-value Q(s,a) Is (an estimate of) the mean expected reward that you will get

If you take action a starting from state s.



Blackboardl:
Q-values



Your notes.



One-step horizon games: 0-value
Q-value Q(s,a)

Expected reward for
action a starting from s

S/

Reminder:
R =E(r‘s’,a,s )

S—S

Similarly: |
O(s,a) =E(r|s,a) s’ S

Now we know the Q-values: which action should you choose?



Previous slide.

PSa_l)S, is the probability that you end up in a specific state s’ if you take action
al In state s.
We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a) Is attached to the branches linking the state s with the actions.
actions are indicated by green boxes; states are indicated by black circles.

The mean reward R_ . is defined as the expected reward given that you start in

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, It IS easy to calculate the Q-
values (Blackboard 1).



Optimal policy (greedy]

Suppose all Q-values are known:

take action a* with

Q(s.a*) = Q(S,?j)

other actions

optimal action:

a”=argmaxa [Q(s,a)f 00O 0O00C

Optimal policy is also called ‘greedy policy’



Previous slide.
And once you have the Q-values It Is easy to choose the optimal action:
Just take the one with maximal Q-value.



Q-value = expected reward for state-action pair

If Q-value I1s known, choice of action Is simple
-> take action with highest Q-value

BUT: we normally do not know the Q-values
-> estimate by trial and error




Previous slide.
The only remaining problem is that we do not know the Q-values, because the
casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out Is by trial and error (that is, by playing many times
— the casino will love this!).



Teaching monitoring — monitoring of understanding

| | today, up to here, at least 60% of material was new to me.

[ ] up to here, | have the feeling that | have been able to follow
(at least) 80% of the lecture.



Previous slide.
Teaching monitoring — feedback for the teacher.



Exercise 1(Exercise sessionl

S/

Show that empirical averaging over k trials gives an update rule

AQ(s,a) = n[re — Q(s,a)]




Exercise 10in class!}

Exercise 1. Iterative update (in class)

We consider an empirical evaluation of (Q(s,a) by averaging the rewards for action a over the first k

trials:
k

Qr = % ZTE*

1—1

We now include an additional trial and average over all £ + 1 trials.

a. bhow that this procedure leads to an iterative update rule of the form

&Qﬁ: — H(T'Ii: o Q.‘ﬂ—l)u
(assuming Qg = 0).
b. What is the value of n?

c. Give an intuitive explanation of the update rule. Hint: Think of the following: If the actual
reward 18 larger then my estimate, then I should ...

‘ ®™ B - m - I Y W | A



One-step horizon: Proposition
Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple 2
- take action with highest Q-value
If Q-value not known:

- estimate 0 by trial and error
-> update with rule ;

AQ(s,a) =n[r,—Q(s,a)] (1)

—>Let learning rate n decrease over time







GConvergence in Expectation
After taking action a In state s, we update with

AQ(s,a) =m [r; — Q(s,a)] (1)

(1) If (1) has converged In expectation given (s,a), then
0(s,a) has a value,

Q(s,a) = E [Q(s,a)ls,al = Q(s, @) = ) pe, R2,

(1) If the learning rate 1 decreases,
fluctuations around the empirical mean

(Q(s, a))t‘sa decrease. If (Q(s, a))

converges for fixed n, then the empirical
mean approaches Q(s,a) .

t|s,a




Previous slide.
When evaluating the expectation value given (s,a), the learning rate drops out since we set the left-
hand-side to zero. The exact value of n Is not relevant, as discussed in the theorem. Part (i) of the
theorem states that the expectation value of 0 (s, a) is the correct Q-value. For a quick proof of
EQ(s,a)ls,al = Q(s,a) see the video. On the blackboard a stronger statement was shown:

Q(s,a) = Q(s, a).
Convergence In expectation is equivalent to imagining that you start millions of trials with the same
value 0 (s, a) without any intermediate update. So in that sense it is like an infinite ‘batch’ of
examples. The stochastic variables are the next state s’ and the received reward ;. The value of
0 (s, a) is not stochastic but ‘frozen’. Therefore (trivially) E [0 (s, a)|s,al= O(s, a) .
In practice, we do not have expectations but online updates with fluctuations. It is important
that n 1s small at the end of learning so as to limit the amount of fluctuations. Part (i) states that
online mean for small learning rate also goes to the correct Q-value.
Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the calculation of part
(1) apply analogously to the long-term empirical temporal average (denoted by angular brackets). The
average Is across all those time steps where action ¢ was chosen In state s, denoted as

(Q(s,a)) . We assume convergence, hence our hypothesis reads

(AQ(S, a)) =1 (rt o 6(5» a)> = 0.

t|s,a
The specific result (Q(s, a)) = Q(s,a) is based on linearity and is not true for the multi-step

t|s,a
t|s,a

t|s,a
horizon that we discuss later.



After taking action a in state s, we update with Proof of (1)

AQ(s,a) =m [r; — Q(s,a)] (1)

(1) If (1) has converged In expectation, then
0(s,a) has an expectation value,

E [@ (s, a)] = @(s, a) = z P& R, =0Q(s,a)

(2)

Note: the expectation is over all possible ‘futures’. For the bandit problem
the future Is defined by the possible next states and possible rewards.



Your notes.



Part (i) of Theorem Blackboard?

converged in expectation > E(AQ(s,a)|s,a)=0

| \

expectation of all I |
possible futures with we always start in
(s,a) while the

correct statistical o
weight system Is frozen

Perspective similar to a batch mode:
update only after (infinitely) many trials that
all start in (s,a) with the same value Q(s, a)

update the expectation over all possibilities
that may occur In the next time step.



Previous slide:
Q (s, a) denotes the current estimate of the Q-value. Claim: If Q no longer
changes (In expectation) then it must be the correct Q-value.

There are different views on how to interpret the ‘expectation;:

- Formally from a mathematical point of view: average over all possible outcomes
of the next time step given (s,a).

- In a simulation this would correspond to the following sampling procedure:

You freeze the value of Q(s,a) and run MANY times (N to infinity) a test with the
state-action pair (s,a) as a starting condition. Then you evaluate the resulting
‘batch update’ averaged across all these examples. If the batch update with
millions of examples is zero, that implies that you have converged to the correct

value.
In the coples of the blackboard notes, there are two versions of the proof:

First, on page 2, top half of page a SIMPLE proof. £ [5(5, a)ls, al=Q(s,a) = z Pl R,
Second, on page 4 (final page), the stronger proof with more in-between steps *

showing Q(s,a) = E [Q(s,a)|s,al = Q(s, @) = 2 P, R®,



Part (ii) of Theorem: Blackboard3

We work with the online update AQ (s, @) . With finite learning
rate, the value of 0Q,(s,a) fluctuates around a mean

(Q(s, @), ,

Qt(sr Cl) ! N
- B (Q(s, a))

— - —_— _ t|s,a

“t|s,a

Under the hypothesis of the theorem (i.e., the mean converges),
then the mean is equal to the ‘correct’ Q-value.



Notes.
Proof of part (i) of the theorem is in the Blackboard notes on page 3 — think

about I1t. The proof works because of linearity.

More information regarding the philosophy of different averaging procedures also
In Exercise 3 this week and beginning of the lecture of next week.



One-step horizon: summary
Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple 2
- take action with highest Q-value
If Q-value not known:

- estimate 0 by trial and error
-> update with rule ;

AQ(s,a) =n[r,—Q(s,a)] (1)

—>Let learning rate n decrease over time

lterative algorithm (1) converges in expectation



Previous slide.
Let us distinguish the ESTIMATE Q(s,a) from the real Q-value Q(s, a)

The update rule can be interpreted as follows:

If the actual reward Is larger than (my estimate of) the expected reward, then |
should increase (a little bit) my expectations.

The learning rate n :

In exercise 1, we found a rather specific scheme for how to reduce the learning
rate over time. But many other schemes also work in practice. For example you
keep n constant for a block of time, and then you decrease it for the next block.

Note: In later lectures | will often use the symbol a instead of n

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.



Teaching monitoring — monitoring of understanding

| ] today, at least 60% of material was new to me.

[ ] 1 have the feeling that | have been able to follow
(at least) 80% of the lecture.



Previous slide.
Teaching monitoring — feedback for the teacher.
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