Learning in Neural Networks: Lecture 3
Competitive Learning with Hehbian rules
Wulfram Gerstner

Introduction EPFL, Lausanne, Switzerland
Interacting neurons: weak linear interaction

Winner-take-all: strong inhibitory interaction
K-means clustering can be implemented by a Hebbian rule
Soft competition and representation learning

Development of Receptive fields



Previous slide.

The aim Is to show that several clustering algorithm (e.g. K-means) but also a variant of
Mixture Models can be implemented by Neural Networks that use Hebbian learning.

This Is a classic topic of Neural Network theory and Is covered In textbooks, such as the
Book of Simon Haykin or the book of Hertz-Krogh-Palmer



neihnian Learning (LIP)

Hebbian coactivation:
pre-post-post-post -

“If two neurons are active together, the connection
between those two neurons gets stronger.”

“another synapse (red) which does not receive
presynaptic spikes, does NOT increase”



Previous slide.

The joint activation of pre- and postsynaptic neuron induces a strengthening of

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic
neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of Hebbian learning, only the stimulated synapses (green)
IS strengthened, but not another synapses (red) onto the same neuron.



Rate-based Hebbian Learning
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Previous slide.
Let us formulate these insights mathematically.
() Local rule implies that the weight change Aw;; depends explicitly only on

th firing rate of the pre- and postsynaptic neuron. It can also depend on
the momentary value of the synaptic weight w;; itself. Finally, it could

also depend on other factors, for example on the presence or absence of
a neuromodulator such as dopamine, called MOD. At the moment we
assume that the value of MOD does not change so that we can disregard
It.

(i) The Hebbian rule says little about the function F. We assume that F
allows a Taylor expansion. We expand F with respect to the two firing
rates, but not with respect to the weight value itself. As a result we have
expansion coefficients that still carry the weight-dependence as an
argument.



2. Rate-based Hebbian Learning
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Previous slide.
The first three Hebbian rules are examples that we have seen previously.

The competitive rule at the end Is the one we use later today.



Functional Consequence of Hebbian Learning
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Hebbian Learning detects correlations in the input

So far: considered a single neuron at a time.
Now: Interacting neurons!

Weak Inhibitory interaction -> neurons decorrelate.
Strong Inhibitory interaction -2 neurons compete - winner.



Previous slide.

We saw that Hebbian learning can focus on correlated input, but so far we mostly
considered one single neuron at a time.

The question now Is: how can we ensure that different neurons focus on different
aspects of the input?

The answer Is by applying inhibitory connections between neurons.



| ] Neurons are nonlinear
| ] The total input to a neuron Is the weighted sum of individual inputs
| | The neuronal network in the brain Is feedforward: it has no
lateral connections
pre;

[ ] Hebb-rules are always linear In v] and ‘v

| ] 2-factor rules can always be written as a multlpllcation
of a ‘pre’-term with a ‘post’-term

‘ pOSt!



Previous slide.
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Previous slide.

We saw that Hebbian learning can focus on correlated input, but so far we mostly
considered one single neuron at a time.

The question now Is: how can we ensure that different neurons focus on different
aspects of the input?

The answer Is by applying inhibitory connections between neurons.

’



Summary from Lecture 1: Hebbian Learning for PCA
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- Hebbian learning detects correlations in the input
- linear neuron model and Oja plasticity rule

d _ . corr,,bost_pre pOSt~2
L WVij =42V VY —wii(v; )

- Hebbian learning aligns weight vector with first PC
of correlation matrix

- BUT: only one PC extracted




Previous slide.
PC = Principal component = eigenvector of correlation matrix with maximum
eigenvalue



Add Interactions: Hebbian Learning for multiple PCs
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Hebbian Learning detects multiple PCs

Weak inhibitory interaction -> neurons decorrelate.

. d corr. Post pre POSt~ 2
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dt
d neurons extract different PCs
B _ +alatv-pOSth05t
Hebb dt Lon - converges to PCA subspace

P. Foldiak, Adaptive network for optimal linear feature extraction, 1989



Previous slide.
We can add linear interactions between the (linear) neurons.

If these Interactions are negative (inhibitory), one neuron tells the others that they
should focus on different inputs.

Moreover, one can make the lateral inhibitory weights learn with an Hebbian learning
rule. Then the lateral weights grows to the subset of PCs that have the set of
maximum eigenvalues of the correlation matrix. Say, PC 1,2,. ... 5

As In lecture 1 we suppose that the data has mean zero. To understand how the
Interaction works imaging that

() Two output neurons are correlated. Then the lateral inhibition grows which makes
the neurons decorrelated.

(1) Two output neurons are anti-correlated (i.e. If one increases, the other one
decreases. Then the interactions first decrease and then change sign so that
correlation increases - which makes them decorrelated.

As a result of these Interactions the input weight vectors become orthogonal, so that

the output neurons are decorrelated and the lateral interactions are close to zero.



Summary from Lecture 2: Hebbian Learning for ICA

| | | nonlinear neuron

input data: | =
- Centered at zero L O / model

- Whitened A
i

- Hebbian learning detects independent components In the input
- non-linear neuron model and simple plasticity rule

d corr,, Dost_pre corr pre : . wnew
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- Hebbian learning aligns weight vector with first IC of data
- BUT: only one IC extracted




Previous slide.

|IC = Independent component = direction of maximal or minimal non-
Gaussianity of data distribution



Add Interactions: Hebbian Learning for multiple ICs
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Neurons become decorrelated

Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS Comput. Biol. .

Vogels et al. (2011), Inhibitory plasticity balances excitation andinhibition. Science



Previous slide.

We add linear interactions between the (nonlinear) neurons.

If these Interactions are negative (inhibitory), one neuron tells the others that they
should focus on different inputs. The lateral weights learn with an Hebbian learning
rule. Then the forward weight vectors grow to a set of orthogonal ICs.

As In lecture 2 we suppose that the data has mean zero and Is whitened. The

argument is as before. Imagine that that

() Two output neurons are correlated. This means that the input weight vectors are
not orthogonal but have an angle below 90 degree. Then the inhibition grows
which decreases correlation by turning the input weight vector. The growth stops
at 90 degree.

(1) Two output neurons are anti-correlated. This is only possible If one of the output
signhals driving learning can turn negative. Therefore subtract a running average
vP?%t Then angles of input weight vectors larger than 90 degree lead to a
reduction of the lateral interaction.

As a result of these Interactions the input weight vectors become orthogonal, so that

the output neurons are decorrelated.
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To extract multiple Independent Components (ICs)

| ] the forward weights can be learned with a standard
Hebb rule ‘pre times post’

| ] there Is no need to whiten the data

[ ] A Hebbian rule ‘pre times post’ for inhibitory later weights (red) works well
to ensure that different neurons extract different ICs

| ] After long enough training, different ICs always have nearly always weight
vectors that have an angle close to 45 degree to each other




Previous slide.
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Previous slide.
So far we assumed relatively weak lateral interactions.

Now we assume that inhibitory interactions are strong so that if one neuron Is
active It shuts down all other neurons.



post

- Nonlinear neurons with positive rate v, =0
- Strong inhibitory interactions 7ot = g(z Wi VP 2 B, v

- Activity of one neuron suppresses activity of all others

pre _ K Loop

j J inhibition 1 1) initialize vaSt 0
INnput - | |2) apply input X
pattern —— 3) Loop: run dynamics (*)
55“ for several steps At

=) | pdate dynamics’? - discrete time steps

(*) pOSt(t +At) =g (Zk Wik Vk " () = Xn Binv EOSt(t)) B]&c]rbo&r



Previous slide.
1. We assume that the nonlinear function g Is a saturating function which vanishes

below some threshold. The maximum output is 1.

2. We add strong inhibitory interactions B;,, > 1 between the (nonlinear) neurons.
Note that inhibition enters into the argument of the non-linearity.

3. We also add positive self-interactions of each neuron with each self. This can lead
to an instability that rapidly drives the activity of a neuron to Iits maximum.

4. However, the neurons that reaches the maximum first, inhibits the others so
strongly that it Is Impossible that more than one neuron Is active. The active neuron Is
called the winner.

5. The dynamics Is updated iteratively with fixed input:
vPOH(t + AL) = g(z Wi vy (£) — 2 Binvh ™™ (1)
k

6. The input consists of patterns ¥* so that v]pre = xj” for several time steps



Neuronal dynamics rapidly converges to ‘winner:
post _ 5. -k 1s winner
L LK -Only k is active

==) How can we update the weights ?
AWij — 1 (vlpost — yw;v 39051:>

-k IS winner
-Only k Is active

-> on-line update (one Input at a time)

Aw), = 77(95“ T Wk) -> updates only for winner (one neuron
at a time)



Previous slide. o
1. The input consists of patterns ¥ , hence vjp = xj”

2. After convergence of the network dynamics, a single neuron k is winner. The
winner has activity equal to 1, all other neurons have zero activity.

3. We apply Hebbian learning to ALL output neurons of the network. However, with the
proposed learning rule, only the winner adapts its weights because only the winner
has non-zero firing rate. The weights of the other neurons remain unchanged.

4. The weight vector of the winner moves towards the current pattern ¥ (see next
slide)



INnput - for winner:
>|nh|b|t|on

pattern
e %Q

Suppose all input pattern X have |#*]? =1 and 0 <v”"® = x*
Then =>|w|* = 1

AV_V)k — 77(9_5“ — V_V)k)




Previous slide.
Because of the normalization, all data points lie on the sphere.

The weight vector moves towards the data point. By assumption data lies on the
positive quadrant of the sphere. Therefore the weight vector will lie inside, but has Its

end point close to the surface of the sphere.



> U

maI?[tJetm %)inhibition several output neurons Kk,
F; %@ with input weight vectors wy,

Suppose all input pattern ¥* have |¥*|2 = 1 and |w,|? = 1.
Then:
> min{|¥" — W,|} equivalentto max{wix"}

Kk k
Blackboard 2



Previous slide.

One line calculation. (blackboard)

We assume that for data point x# the weight vector w,, with index k is the closest one

—> -

(1)  |w, — X% < |w; —x*| foralli

We square the equation (1) and multiply out all terms. Then with our assumptions
X" |? =1 and |w,|?> = 1 the statement

2 w,xt >w; x¥ for all |

follows.
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| ] To select a single winner via lateral interactions, lateral interactions should be
Inhibitory

[ ] For updating the weights, the learning rule can be applied to all neurons

[ ] Only the winning neuron updates its forward weights

| | a positive self-interaction loop is helpful, but not absolutely necessary




Feedback on competition by lateral interaction
| ] At least 60 percent of the material on competive networks was

new to me

For 80 percent of the material that we have seen In this part
| | | understood the concepts and got a good idea of the formalism
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Previous slide.

Now we connect the network dynamics and learning rule to a well-known
algorithm: k-means clustering.

Most students have seen this algorithm already In other classes.



Assume P data points x#with1 <u <P
1) Picka x* and find the closest prototype

W, — xH| < |w, — x#| foralli NETWORK
DYNAMICS
can do this

2) Change the weights of this prototypes by:
Aw, = —n(w. — ¥4 HEBBIAN
< (W ) LEARNING
Can do this
3) Reduce 1 and go back to 1 ‘developmental

Change’




Previous slide.
The classic k-means algo in its online version (one data point at a time).

This algorithm is found Iin many introductory textbooks of signal processing
and data science.

Based on the results of the previous sections, we now know that this

algorithm can be implemented by Hebbian learning and lateral neuronal
iInhibition.



Classification by nearest

prototype
Wi =X < Wi = %% gorani
. g
prototype N data //1/
. }

Voronol (or Dirichlet) tesselation



Previous slide.

In the space of data points (here a plane), the classification by nearest
prototype (nearest weight vector) induces a tessellation of the space.



K-means cClustering

Initialize: Prototypes wix

Take a Datapoint X
1) Determine winner Kk

— 17 for all 1

2) Update winner
Awy = n(xH* — wy)

Moves the prototypes In direction of data points!



Previous slide.
A geometric illustration of the algorithm



Example: MNIST data, clustering of digits with
Gompetitive Neural Network
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Previous slide.

Just a reminder of how the MINST data looks like.

Different writers have written several times the digits from 1 to 10. There are
different writing styles. The digits are black on white background and (nearly)
centered.



Hard Clustering/K-means clustering

Group of similar

J—' ° o points: cluster

1 5 9 13 17 21 25 28

28x28=7384 > ;
| Wi

PrOtOtype Wk  ‘represents group of data points’

Datapoint X
3133313 13]3] 3] | _ ; _ .
ranAnneere k winner: |w;, — x#*| < |w; — x*
HNERNBEEBHHNE

| for all i



Previous slide.
Each sample of MNIST data Is a point in the 784-dimensional space.
Images with similar configuration of images lie close to each other.

K-means clustering will move the weight vector (prototype) in the center of
mass of the cluster.

Note that images that look similar to the human eye but where the
handwritten digit is shifted by 3 pixels upwards or downwards look very
different in pixel space!



weight vector moves to the center of mass of ‘its’ cluster

Awy = —n(Wy —X*) Skj*y  online |
j* (1) =index of

Aw, = —1 z Sk (i) Wi — XH) batch winner
U

Rumelhard and Zipser (1985) Feature discovery by competitive learning, Cognitive Science



Previous slide.
The neural algorithm works best if the data points are represented by vectors

of unit length. In this case all data points lie on the sphere.

A general result of k-means clustering Is that the prototype (weight vector)
moves towards the center of ‘its’ cluster of data points.

This implies that each weight vector Is also (nearly) normalized to unit length.
As a result, nearest neighbor Is (nearly) equivalent to max scalar product.

See also exercises.



1) weight vector moves to the center of mass of ‘its’ cluster
2) A welight vector only moves if it the ‘winner
- Dead units possible

Dead units avoided by initializing weight vectors
with ramdonly chosen data points



Previous slide.

The picture also shows that it can happen that some weight vector (here the
blue vector) Is responsible for no point in the data cloud. It Is called a dead
unit.



Theorem: Minimal Reconstruction Error

Suppose each data point Is replaced by
Its closest prototype. Then k-means

clustering minimizes the mean quadratic
reconstruction error

Sum over all
data points

reconstruction error

Cluster (prototype) Samples in cluster k



Exercise: Derivation of the learning rule for k-means

E=Z E(W,{—fﬂ)z

UECK

mm)  Gradient descent on the error surface

Awy = —1 z (W — xH) bateh

Awy = n(x* — wy) on-line




Feedback on k-means clustering
'] At least 60 percent of the material on k-mans clustering

For 80 percent of the material that we have seen In this part
'] | understood the concepts and got a good idea of the formalism



Previous slide.
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Previous slide.



20 centers per digit after clustering
(compare Perry Moerland 1999, Mixture model approach)
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Previous slide.
In k-means clustering, a data point belongs exactly to one prototype (hard

clustering).

Gaussian Mixture Models GMMs can be interpreted as 'soft clustering’: Different
protypes can take over partial responsibility for explaining a data point.

Here Is a standard application. GMMs have been applied to model the distribution
of all the handwritten digits ‘4’. What is shown is the center of each of the 20
Gaussians interpreted as pixels. The same is repeated for ‘1" and '7".

We do not cover the theory of GMMs here. Rather the point of the following two
slides Is to show that neuronal models with Hebbian rules can do something very
similar to GMMs. If you are not familiar with GMMs you can forget this analogy and

focus just on the next few slides.



Weak competition caused hy shared inhibitory neurons
unspecific unit

g..u

Inhibitory neuron

Input:
MNIST 3 and 4.

synaptic plasticity (feedforward weights)

corrvpre post(vpost _19) ( post)

Aw;; = a3 f Gozel and Gerstner, 2021



Previous slide.

b) Real neurons in the brain are either excitatory (blue) or inhibitory (red). Therefore an
excitatory neuron cannot simply inhibit another neuron, but inhibition arises indirectly
via excitation of inhibitory neurons

c) The synaptic plasticity rule on the main slide Is a bit simplified; the real plasticity rule

is shown below. We can think of the term (vP?** )* as a generalized Oja-term.

e) MNIST images of 3 and 4 were applied at the input (black) while plasticity was on.
After learning neurons either specialized on a specific writing style of 3 or 4, or
remained unspecific. In the legend below, black neurons are called EC (entorhinal
cortex) blue cells DGC (Dentat Gyrus Cells). Red cells are called GABAergic.

Birth GABA-switch Fully mature
- o’ - ﬂ ﬂ 3
Fgla ®© —e . —o  —& Fig 1c Awj = n{yxjvilvi — 0] —axjy;|0 —vi| . — Bwyjvi — 0] 17 |
| | | | | | | | |
0 1 3 8 [weeks]

Figure 1. Network model and pretraining. (a) Integration of an adult-born DGC (blue) as a function of time: GABAergic synaptic input (red) switches
from excitatory (+) to inhibitory (—); strong connections to interneurons develop only later; glutamatergic synaptic input (black), interneuron (red). (b)
Network structure. EC neurons (black, rate x;) are fully connected with weights w;; to DGCs (blue, rate ;). The feedforward weight vector w; onto neuron

i is depicted in black. DGCs and interneurons (red, rate v;) are mutually connected with probability pjz and pg; and weights wi; and wi, respectively.

ik ¢
Connections with a triangular (round) end are glutamatergic (GABAergic). (c) Given presynaptic activity x;>0, the weight update Aw;j is shown as a
function of the firing rate »; of the postsynaptic DGC with LTD for »;<f and LTP for #<v;<p;. (d) Center of mass for three ensembles of patterns from the
MNIST data set, visualized as 12 x 12 pixel patterns. The two-dimensional arrangements and colors are for visualization only. (e) One hundred receptive
fields, each defined as the set of feedforward weights, are represented in a two-dimensional organization. After pretraining with patterns from MNIST
digits 3 and 4, 79 DGCs have receptive fields corresponding to threes and fours of different writing styles, while 21 remain unselective (highlighted by

red frames).



30it competition: Each pattern represented hy several neurons
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Present digits 3 and 4 and 5 in random order.

Initialize new neurons with small random weights.

Problem of ‘dead units’ avoided: Gozel and Gerstner. 2021
- Lateral interactions switch from excitation to inhibition



Previous slide.

The dentate gyrus (DG) Is one of the very few brain regions where neurons are born
during adulthood. It receives input from EC (entorhinal cortex) plus lateral input from
GABAergic cells. Importantly, shortly after birth the GABAergic cells EXCITE the
newborn neuron. As a consequence of this, they are not in competition with other
neurons but cooperate with other neurons. Therefore the feedforward plasticity of the
newborn neurons makes them respond to the ‘average’ stimulus that the other neurons
like.

a) In the model, previously unspecific neurons have died and are replace by newborn
neurons. After stimulation with digits 3 and 4 and 5, the newborn neurons respond at
the end of this early phase to the ‘average stimulus’. B) Later the GABAergic cells
become Inhibitory. In this late phase, the newborn cells are in competition with the
existing cells. Therefore they specialize on different writing styles of 5.

Figure 2. Newborn DGCs become selective for novel patterns during maturation. (a) Unselective neurons are replaced by newborn DGCs, which learn

(a, b)) their feedforward weights while patterns from digits 3, 4, and 5 are presented. At the end of the early phase of maturation, the receptive fields of all
newborn DGCs (red frames) show mixed selectivity. (b) At the end of the late phase of maturation, newborn DGCs are selective for patterns from the
novel digit 5, with different writing styles.

At the end of the late phase of maturation, three difterent patterns of digit 5 applied to EC neurons (top) cause different tiring rate patterns ot the 100
(g) DGCs arranged in a matrix of 10-by-10 cells (middle). DGCs with a receptive field (see b) similar to a presented EC activation pattern respond more
strongly than the others. Bottom: Firing rates of the DGCs with indices sorted from highest to lowest firing rate in response to the first pattern. All three

patterns shown come from the testing set, and are correctly classified using our readout network.



simmary: Lateral interactions and competitive learning

Interaction type:

- linear inhibitory interaction with Hebbian rule:
- PCA with several components
- ICA/sparse coding with several components
- winner-take all: strong (fixed) inhibitory interaction
- k-means clustering
—> a single neuron wins the competition
-> Hebbian learning for all neurons, but only winner changes
-soft winner take all
- a combination of several neurons gets active (‘wins’)
-> similar to sparse coding with several components
- Interpolation between ‘prototypes’
-> similar to Gaussian mixture models



Previous slide. Summary

Literature:
Dentate gyrus: https://en.wikipedia.org/wiki/Dentate gyrus

Hyvarinen and Oja (2000) Independent Component Analysis:
Algorithms and Applications, Neural Networks
Hyvarinen and Oja (1998), Independent Component Analysis by
general nonlinear Hebbian rules, Signal Processing.
Gozel and Gerstner (2021) A functional model of the adult dentate gyrus. eLife. oo https://doi.org/10.7554/elife. 66463 1 of

Brito and Gerstner (2016), Nonlinear Hebbian learning as a
unifying principle, PLOS Comput. Biol. poi:10.1371/ournal.pcbi. 1005070

The end
of this part
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Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS
Comput. Biol. DOI:10.1371/journal.pchbi.1005070

Hu
N t
Wil

nel and Wiesel (1962) , Receptive fields, binocular interaction and functional architecture
ne cat's visual cortex J. Physiol. doi: 10.1113/jphysiol.1962.5p006837

shaw and von der Malsburg (1976) How patterned neural connections can be set up by

self-organization, Proc. Roy. Soc. Lond. B. https://doi.org/10.1098/rspb.1976.0087



https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1098/rspb.1976.0087

Suppose that we have sequence of data points x(t,), x(t,), x(t3), ... .

[ ] Spatial ICA requires data with a non-Gaussian distribution

[ ] Optimization of non-Gaussianity leads to different ICA rules,
depending on the criterion of ‘non-Gaussianity’

| ] A Hebb-rule is an example of online rule

| ] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F

| ] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F’

[ ] FastiICA implements an approximate Newton step for optimization

_ | ] FastICA Is a second-order gradient descent/ascent algorithm

(I1.e. Includes curvature information of the loss/optimality criterion)




Review of lecture 2: IGA with Hebbian rules
Hebbian learning (2-factor rules) can be nonlinear

PCA can be derived from a maximization priciple

ICA and Blind Source Separation:
temporal and spatial ICA have different conditions

Optimization of Non-Gaussianity yields ICA via Hebbian rule
after transition from batch to online

ICA Algorithm FAST-ICA implements approximate Newton step



Previous slide.
In this section we ask two closely related guestions:
1) What are the independent components of Iimages?

2) What are receptive fields in visual cortex and how do they develop after birth?



What are the independent components of Images?

Apply ICA algo
on Image patches




Previous slide.
1) What are the independent components of Iimages?

A common idea Is that iImages are composed of objects and individual objects are

composed of ‘image elements’. For example, a picture of a building is composed of
many straight bars.

To find these image elements we apply ICA to thousands of image patches.



Figure 4: Basis functions in ICA of natural images. The input window size was 16 X 16 pixels.
These basis functions can be considered as the independent features of images.

From: Hyvarinen and Oja, 2000;
See also: Bell and Sejnowski, 1997



Previous slide.

|ICA vyields indeed many ‘bar-like’ elements.
On the left, a single independent component is shown. Below several.

These independent components can be interpreted as edge-detectors. Different
‘Independent components’ correspond to edge detectors at different locations and with

different orientations.
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Selected decorrelating filters and their basis functions
extracted from natural scene data. Each type of
decorrelating filter yielded 144 12 X 12 filters. |

Bell and Sejnowksi,

Vision Research, 1997

The “Independent components” of
natural scenes are edge filters




Previous slide.
Compared to ICA, PCA typically yields more global components where each has

structure that extends across the whole image patch. You can think of PCA as
Fouriermodes of the two-dimensional patches. ICA, however, gives localized edge

detectors.



Intermediate summary: ICA on image patches

1) What are the independent components of images?

- ICA vyields localized ‘edge detectors’.

2) How Is this related to receptive fields?

3) And how do receptive fields develop?



Previous slide.
First finding: ICA applied on image patches yields localized ‘edge detectors’

The second guestion now Is:

How Is this related to receptive fields? And how do receptive fields develop?
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In visual cortex

have similar preferred
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Previous slides.
Receptive fields of visual cells (in visual cortex area V1) are found as follows.

1.

2.
3.

Insert an electrode close to one neuron. Put the electrical signal from the electrode
on a loudspeaker.

Apply a single light dot at randomly selected locations on a gray visual screen.
The area of the visual screen on which a light dot causes electrical pulses
(perceptible as tok-tok-tok from the speaker) is the visual receptive field of the cell.
You can test also with dark dots of light on the grey background; or by applying a
prolonged light signal that Is turned off after some time.



Ry DEEI I

DPTOA visual
cortex

cortex

retina fovea .

fovea

1. Neighboring cells
In visual cortex
have similar preferred

left visual Surtace of nght . i

field visual cortex V1| center of receptive field
Hubel and Wiesel (1962) , Receptive fields, binocular 2. Globally a ‘spatial map’
Interaction and functional architecture in the cat's visual Of outside W0r|d across V1

cortex J. Physiol. doi: 10.1113/jphysi0l.1962.sp006837


https://doi.org/10.1113/jphysiol.1962.sp006837

Previous slide.
Moreover, neighboring cells have similar receptive fields. Thus we have a map from

screen location to location of neuron on the folded sheet of cortex. The map Is distorted
because the fovea takes much more space.



Receptive fields: Receptive fields:
Retina, LGN visual cortex V1

Orientation
selective



Previous slide.
From the retina to cortex, signal transmission Is recoded at an intermediate nucleus

called LGN (lateral geniculate nucleus).
Cells in the LGN have circular receptive fields whereas cells in visual cortex V1 have

elongated receptive fields. They are called orientation selective RFs (receptive fields).



Visual Gortex W1 Receptive fields show Orientation Tuning

Receptive fields:
visual cortex V1

Orientation selective



Previous slide.

Alternatively to a single light spot you can also stimulate with a slowly moving light bar.
You get maximal excitation of the neuron if the bar Is aligned with the positive part (red)
of the receptive field.

@




Receptive fields with Orientation Tuning

oW o
‘e(\@“ Receptive fields:
o3 ot visual cortex V1
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Stimulus orientation



Previous slide.
The term orientation selective arises because If you change the orientation of the light
bar, there Is a preferred orientation at which the neuron maximally responds.



_
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2 s Y visual

Neighboring cells In visual cortex
Have similar preferred orientation:
cortical orientation map

Hubel and Wiesel 1968: Bonhoeffer&Grinvald, 1991
Bressloff&Cowan, 2002: Kaschube et al. 2010



Previous slide.
Neighboring cells in cortex of cats and monkey also have similar preferred orientation.
The result I1s a cortical orientation map.



Receptive fields:
Retina, LGN

©

©

Receptive fields:
visual cortex V1

rotational
symmetry
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orientation
selective




Previous slide.
From the retina to the LGN and then to cortex, information Is preprocessed or ‘recoded’

as Indicated by the different shapes of receptive fields. The elongated receptive fields
with preferred orientation are useful as ‘edge detectors’ in V1 and in that sense

potentially a ‘better code'.

The gquestion then arises how this recoding arises.



What makes cells Orientation selective? — connectivity!

Receptive fields: Receptive fields:
IN LGN visual cortex V1

&

Precise wiring necessary — how done?

Hubel and Wiesel (1962) , J. Physiol.
Willshaw and von der Malsburg (1976) Proc. Roy. Soc. Lond. B.



Previous slide.
The study of receptive fields in visual cortex of mammals by Hubel and Wiesel has been

very influential. They proposed that the elongated receptive fields (edge detectors) arise
by appropriate wiring of the connections to V1 arriving from LGN (the intermediate stop

from the retina to cortex) .

But then the question arises, how such a precise wiring can develop.

In particular, the wiring Is not fixed but depends on the stimulation.
If young animals see only vertical stripes, they develop more edge detectors for vertical

than for horizontal orientation.

From this and many other experiments can be concluded that the connections are not
genetically encoded, but that the wiring depends on the statistics of stimulation. Now,

this sounds like Hebbian learning could help to set up the wiring!

There have been many theoretical studies to illustrate how Hebbian learning could be
used. The ideas can traced back at least to Willshaw and von der Malsburg (1976).



Apply nonlinear Hebbian learning rules/nonlinear neuron model

VP = Q(Z Wi Vi) — Z B, vPOs"
-
—0

-Inhibitory lateral interactions
that learn with Hebbian rule

- 3 different types of nonlinearity g

All three nonlineatrities lead
to Gabor-like receptive fields!

C 50 neurons
20.0

Length

0.5 i : 0.5 Width 5.0

Length

NEERE B E R
N,

: 0.5 0.5
0.5 Width 5.0 0.5 Width 5.0 0.5 Width 5.0

Brito and Gerstner, 2016, PLOS comput. Biol.



Previous slide. Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS Comput. Biol. .
We focus on a recent study. It exploits that ICA arises from Hebbian learning in

nonlinear neurons with gain function g. There are weak inhibitory interactions between
visual cortex neurons (yellow). These interactions change according to the Hebbian

learning rule that we have seen before. p
EBin — _|_alat(vil905t_vipost V,,I,ZOSt

The forward connections change according to the Hebb-rule combined with
normalization. After presentation of pre-whitened image patches, learning results In
elongated receptive fields (inset: schematic of Gabor filter) of each neuron. Different
neurons have different RFs (5 samples shown). The diversity of RFs Is shown as
distribution of dots (one dot per neuron) indicating the width and length of the RF.
Three different non-linearities (a,b,c) give very similar results.

Fig 4. Optimal receptive field shapes in model networks induce diversity. (a-f) Gray level indicates the

optimization value for different lengths and widths (see inset in a) of oriented receptive fields for natural
images, for the quadratic rectifier (left, see Fig 2a), linear rectifier (center) and Ly sparse coding (right).

Optima marked with a black cross. (a-c) Colored circles indicate the receptive fields of different shapes
developed in a network of 50 neurons with lateral inhibitory connections. Insets on the right show example

receptive fields developed during simulation. (d-f) Same for a network of 1000 neurons.

doi:10.1371/journal.pcbi.1005070.g004




The receptive field of a visual neuron refers to

I '] The localized region of space to which it Is sensitive
| | The orientation of a light bar to which it Is sensitive

| | The set of all stimulus features to which it Is sensitive

The receptive field of a auditory neuron refers to
| | The set of all stimulus features to which it Is sensitive
| | The range of frequencies to which It Is sensitive

The receptive field of a somatosensory neuron refers to
| | The set of all stimulus features to which it Is sensitive
[ ] The region of body surface to which it is sensitive



Previous slide.
The term ‘receptive field’ is also used outside vision.



summary: ICA and Receptive Field Development

Edge detectors are the independent component of Image patches
Edge detectors are typical for receptive fields in visual cortex V1
ICA can be implemented by a nonlinear Hebbian learning rule

Hebblan learning can explain the development of receptive fields In
visual cortex V1 (and similarly in other primary sensory cortical areas)



simmary: the power of 2-factor rules

2-factor rules are Hebbian rules (‘pre’ and ‘post’).
Hebbian rules have strong experimental support.
2-factor rules explain receptive field development
2-factor rules can implement PCA

2-factor rules can implement ICA

2-factor rules can implement k-means clustering.

2-factor rules can implement compressed
representation for linear readout

2-factor rules can implement autoencoders
BUT nearly always limited to 1 hidden layer

Representation learning across multiple
layers Is nearly impossible with Hebb rule -~




The end
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