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Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction 

Winner-take-all: strong inhibitory interaction

K-means clustering can be implemented by a Hebbian rule

Soft competition and representation learning

Development of Receptive fields



Previous slide.

The aim is to show that several clustering algorithm (e.g. K-means) but also a variant of

Mixture Models can be implemented by Neural Networks that use Hebbian learning.

This is a classic topic of Neural Network theory and is covered in textbooks, such as the 

Book of Simon Haykin or the book of Hertz-Krogh-Palmer



Hebbian Learning (LTP)

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s

“if two neurons are active together, the connection 

between those two neurons gets stronger.”

“another synapse (red) which does not receive 

presynaptic spikes, does NOT increase” 



Previous slide. 

The joint activation of pre- and postsynaptic neuron induces a strengthening of 

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic 

neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of  Hebbian learning, only the stimulated synapses (green) 

is strengthened, but not another synapses (red) onto the same neuron.



Rate-based Hebbian Learning

Δ𝑤𝑖𝑗= 𝐹(𝑤𝑖𝑗 , 𝑀𝑂𝐷; 𝜈𝑗
𝑝𝑟𝑒

, 𝜈𝑖
𝑝𝑜𝑠𝑡

)

Δ𝑤𝑖𝑗 = 𝑎0 + 𝑎1
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

+ 𝑎1
𝑝𝑜𝑠𝑡

𝜈𝑖
𝑝𝑜𝑠𝑡

+ 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
+ 𝑎2

𝑝𝑜𝑠𝑡
𝜈𝑖

𝑝𝑜𝑠𝑡 2
+ 𝑎2

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑟𝑒 2
. . .

a = a(wij)

a(wij) wij

Blackboard1

pre               

j

post
i

𝑤𝑖𝑗

Local rule:

Taylor expansion:
Modulator MOD=const
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Let us formulate these insights mathematically.

(i) Local rule implies that the weight change Δ𝑤𝑖𝑗 depends explicitly only on 

th firing rate of the pre- and postsynaptic neuron. It can also depend on 

the momentary value of the synaptic weight 𝑤𝑖𝑗 itself. Finally, it could 

also depend on other factors, for example on the presence or absence of 

a neuromodulator such as dopamine, called MOD. At the moment we 

assume that the value of MOD does not change so that we can disregard 

it.

(ii) The Hebbian rule says little about the function F. We assume that F 

allows a Taylor expansion. We expand F with respect to the two firing 

rates, but not with respect to the weight value itself. As a result we have 

expansion coefficients that still carry the weight-dependence as an 

argument.



Δ𝑤𝑖𝑗  = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝑤𝑖𝑗 𝜈𝑖

𝑝𝑜𝑠𝑡 2

Δ𝑤𝑖𝑗  = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡 𝜈𝑖
𝑝𝑜𝑠𝑡 − 𝜗

Δ𝑤𝑖𝑗  = 𝑎2
𝑐𝑜𝑟𝑟(𝜈𝑗

𝑝𝑟𝑒
− 𝜗)(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)

pre              
post

2. Rate-based Hebbian Learning

pre               

j

post
i

𝑤𝑖𝑗

k

Oja-rule (for linear neurons)

BCM-rule

covariance-rule

Δ𝑤𝑖𝑗  = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝑤𝑖𝑗 𝜈𝑖

𝑝𝑜𝑠𝑡
competitive-rule 

(for non-linear neurons)
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The first three Hebbian rules are examples that we have seen previously.

The competitive rule at the end is the one we use later today.



Hebbian Learning detects correlations in the input

Jointly variing rate

Jointly variing rate

{

{

Functional Consequence of Hebbian Learning 

So far: considered a single neuron at a time.

Now:    interacting neurons!

Weak inhibitory interaction  → neurons decorrelate. 

Strong inhibitory interaction  → neurons compete → winner. 



Previous slide.

We saw that Hebbian learning can focus on correlated input, but so far we mostly 

considered one single neuron at a time.

The question now is: how can we ensure that different neurons focus on different 

aspects of the input? 

The answer is by applying inhibitory connections between neurons.



Quiz: biological neural networks 

[ ] Neurons are nonlinear 

[ ] The total input to a neuron is the weighted sum of individual inputs

[ ] The neuronal network in the brain is feedforward: it has no 

lateral  connections

[ ] Hebb-rules are always linear in ‘𝜈𝑗
𝑝𝑟𝑒

’ and ‘𝜈𝑖
𝑝𝑜𝑠𝑡

’

[ ]   2-factor rules can always be written as  a multiplication 

of a ‘pre’-term with a ‘post’-term

[x]

[x]

[ ]

[ ]

[ ]
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Previous slide.

We saw that Hebbian learning can focus on correlated input, but so far we mostly 

considered one single neuron at a time.

The question now is: how can we ensure that different neurons focus on different 

aspects of the input? 

The answer is by applying inhibitory connections between neurons.

’



- Hebbian learning detects correlations in the input

-  linear neuron model and Oja plasticity rule

 -   Hebbian learning aligns weight vector with first PC

    of correlation matrix

-  BUT: only one PC extracted

Fixed rate

Jointly variing rate

linear neuron

 model

Summary from Lecture 1: Hebbian Learning for PCA

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

− 𝑤𝑖𝑗(𝜈𝑖
𝑝𝑜𝑠𝑡

)2



Previous slide.

PC = Principal component = eigenvector of correlation matrix with maximum 

eigenvalue



Hebbian Learning detects multiple PCs

Jointly variing rate

Jointly variing rate

{

{

Add interactions: Hebbian Learning for multiple PCs 

Weak inhibitory interaction  → neurons decorrelate. 

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

− 𝑤𝑖𝑗(𝜈𝑖
𝑝𝑜𝑠𝑡

)2

𝜈𝑖
𝑝𝑜𝑠𝑡

= ෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

− ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

𝑑

𝑑𝑡
𝐵𝑖𝑛 = +𝑎𝑙𝑎𝑡𝜈𝑖

𝑝𝑜𝑠𝑡
𝜈𝑛

𝑝𝑜𝑠𝑡

Hebb/Oja

Hebb
neurons extract different PCs

→ converges to PCA subspace

P. Foldiak, Adaptive network for optimal linear feature extraction, 1989

inhibitory
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We can add linear interactions between the (linear) neurons. 

If these interactions are negative (inhibitory), one neuron tells the others that they 

should focus on different inputs.

Moreover, one can make the lateral inhibitory weights learn with an Hebbian learning 

rule.   Then the lateral weights grows to the subset of PCs that have the set of

maximum eigenvalues of the correlation matrix. Say, PC 1,2,. … 5 

As in lecture 1  we suppose that the data has mean zero. To understand how the 

interaction works imaging that

(i) Two output neurons are correlated. Then the lateral inhibition grows which makes 

the neurons decorrelated.

(ii) Two output neurons are anti-correlated (i.e. if one increases, the other one 

decreases. Then the interactions first decrease and then change sign so that 

correlation increases - which makes them decorrelated.

As a result of these interactions the input weight vectors become orthogonal, so that 

the output neurons are decorrelated and the lateral interactions are close to zero.



- Hebbian learning detects independent components in the input

-  non-linear neuron model and simple  plasticity rule

 -   Hebbian learning aligns weight vector with first IC of data

 -  BUT: only one IC extracted

input data:

- Centered at zero

- Whitened

nonlinear neuron

 model

Summary from Lecture 2: Hebbian Learning for ICA

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

= 𝑎2
𝑐𝑜𝑟𝑟𝑔𝑖(෍

𝑘

𝑤𝑖𝑘 𝑥𝑘)𝜈𝑗
𝑝𝑟𝑒

+ renormalize 𝑤 =
𝑤𝑛𝑒𝑤

𝑤𝑛𝑒𝑤



Previous slide.

IC = independent component = direction of maximal or minimal non-

Gaussianity of data distribution



Hebbian Learning detects orthogonal ICs

Add interactions: Hebbian Learning for multiple ICs 

Weak inhibitory interaction  → output neurons decorrelate. 

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

) − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

𝑑

𝑑𝑡
𝐵𝑖𝑛 = +𝑎𝑙𝑎𝑡(𝜈𝑖

𝑝𝑜𝑠𝑡
−𝜈𝑖

𝑝𝑜𝑠𝑡
)𝜈𝑛

𝑝𝑜𝑠𝑡

Hebb

Hebb Neurons become decorrelated

Gerstner and Brito (2016),  Nonlinear Hebbian learning as a unifying principle,  PLOS Comput. Biol.   . 

Vogels et al. (2011), Inhibitory plasticity balances excitation andinhibition. Science

inhibitory

𝑥1
′

𝑥2
′

𝑦1

𝑦2
input data:

- mean zero

- whitened

+ renormalize 𝑤 =
𝑤𝑛𝑒𝑤

𝑤𝑛𝑒𝑤
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We  add linear interactions between the (nonlinear) neurons. 

If these interactions are negative (inhibitory), one neuron tells the others that they 

should focus on different inputs. The lateral weights learn with an Hebbian learning 

rule. Then the forward weight vectors grow to a set of orthogonal ICs. 

As in lecture 2  we suppose that the data has mean zero and is whitened.  The 

argument is as before. Imagine that that

(i) Two output neurons are correlated. This means that the input weight vectors are 

not orthogonal but have an angle below 90 degree. Then the inhibition grows 

which decreases correlation by turning the input weight vector. The growth stops 

at 90 degree. 

(ii) Two output neurons are anti-correlated. This is only possible if one of the output 

signals driving learning can turn negative.  Therefore subtract a running average 

𝜈𝑖
𝑝𝑜𝑠𝑡

. Then  angles of input weight vectors larger than 90 degree lead to a 

reduction of  the lateral interaction.

As a result of these interactions the input weight vectors become orthogonal, so that 

the output neurons are decorrelated.  



Quiz:

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

) − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

To extract multiple Independent Components (ICs)

[ ] the forward weights can be learned with a standard 

Hebb rule ‘pre times post’

[ ] there is no need to whiten the data

[ ] A Hebbian rule ‘pre times post’  for inhibitory later weights (red) works well

to ensure that different neurons extract different  ICs

[ ] After long enough training, different ICs always have nearly always weight  

vectors that have an angle close to 45 degree to each other

[x]

[ ]

[x]

[ ]
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So far we assumed relatively weak lateral interactions.

Now we assume that inhibitory interactions are strong so that if one neuron is 

active it shuts down all other neurons.



Winner-take-all circuit: strong lateral inhibition 

Blackboard

update dynamics? - discrete time steps

inhibition

- Nonlinear neurons with positive rate     

- Strong inhibitory interactions

- Activity of one neuron suppresses activity of all others 

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

− ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

)

𝜈𝑖
𝑝𝑜𝑠𝑡

≥ 0

∗ 𝜈𝑖
𝑝𝑜𝑠𝑡

𝑡 + Δ𝑡 = 𝑔൫σ𝑘 𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

𝑡 − ൯σ𝑛 𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

(𝑡)   

𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇

input 

pattern

Ԧ𝑥
𝜇

Loop

1) initialize 𝜈𝑖
𝑝𝑜𝑠𝑡

= 0

2) apply input Ԧ𝑥
𝜇

3) Loop: run dynamics (*) 

 for several steps Δt



Previous slide.

1. We assume that the nonlinear function g   is a saturating function which vanishes 

below some threshold. The maximum output is 1.

2. We  add strong inhibitory  interactions 𝐵𝑖𝑛 > 1 between the (nonlinear) neurons. 

Note that inhibition enters into the argument of the non-linearity.

3. We also add positive self-interactions of each neuron with each self. This can lead 

to an instability that rapidly drives the activity of a neuron to its maximum.

4. However, the neurons that reaches the maximum first, inhibits the others so 

strongly that it is impossible that more than one neuron is active. The active neuron is 

called the winner.

5. The dynamics is updated iteratively with fixed input:

6. The input consists of patterns Ԧ𝑥
𝜇

so that                        for several time steps 

𝜈𝑖
𝑝𝑜𝑠𝑡

𝑡 + Δ𝑡 = 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

𝑡 − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

(𝑡))

𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇



Hebbian  learning rule

Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑖
𝑝𝑜𝑠𝑡

𝑥𝑗
𝜇

− 𝛾𝑤𝑖𝑗𝜈𝑖
𝑝𝑜𝑠𝑡

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘

→ on-line update (one input at a time)

→ updates only for winner (one neuron 

at a time)

-k is winner

-Only k is active

How can we update the weights ?

Neuronal dynamics rapidly converges to ‘winner’: 

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝛿𝑖𝑘
-k is winner

-Only k is active



Previous slide.

1. The input consists of patterns Ԧ𝑥
𝜇

, hence

2. After convergence of the network dynamics, a single neuron k is winner. The 

winner has activity equal to 1, all other neurons have zero activity.

3. We apply Hebbian learning to ALL output neurons of the network. However, with the 

proposed learning rule, only the winner adapts its weights because only the winner 

has non-zero firing rate. The weights of the other neurons remain unchanged.

4. The weight vector of the winner moves towards the current pattern Ԧ𝑥
𝜇

(see next 

slide)

𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇



Winner-take-all circuit: strong lateral inhibition 

inhibition
input 

pattern

Ԧ𝑥
𝜇

Suppose all input pattern Ԧ𝑥
𝜇

 have | Ԧ𝑥
𝜇 |2 = 1 and 

Then  → 𝑤 2 ≈ 1
x

x
x
x

0 < 𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇

.

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘

for winner:

Ԧ𝑥
𝜇

𝑤𝑘

Δ𝑤𝑘
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Because of the normalization,  all data points lie on the sphere.

The weight vector moves towards the data point. By assumption data lies on the 

positive quadrant of the sphere. Therefore the weight vector will lie inside, but  has its 

end  point close to the surface of the sphere. 



Winner-take-all circuit: strong lateral inhibition 

inhibition
input 

pattern

Ԧ𝑥
𝜇

Suppose all input pattern Ԧ𝑥
𝜇

 have | Ԧ𝑥
𝜇 |2 = 1 and 𝑤𝑘

2 = 1.

Then:

→   min
𝑘

{ | Ԧ𝑥
𝜇

− 𝑤𝑘|}     equivalent to   max
k

{𝑤𝑘
𝑇 Ԧ𝑥

𝜇
}

several output neurons k,

with input weight vectors 𝑤𝑘

Blackboard 2
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One line calculation. (blackboard)

We assume that for data point Ԧ𝑥𝜇 the weight vector 𝑤𝑘 with index k is the closest one

We square the equation (1) and multiply out all terms. Then with our assumptions   

| Ԧ𝑥
𝜇 |2 = 1 and 𝑤𝑘

2 = 1  the statement

follows.

𝑤𝑘
T Ԧ𝑥𝜇 ≥ 𝑤𝑖

T Ԧ𝑥𝜇 for all i(2)

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇 for all i(1)



Quiz:

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

− ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

)

[ ] To select a single winner via lateral interactions, lateral interactions should be 

inhibitory

[ ] For updating the weights, the learning rule can be applied to all neurons

[ ] Only the winning neuron updates its forward weights

[ ] a positive self-interaction loop is helpful, but not absolutely necessary

[x]

[x]

[x]



Feedback on competition by lateral interaction

[ ]  At least 60 percent of the material on competive networks was 

new to me

For 80 percent of the material that we have seen in this part

[ ]  I understood the concepts and got a good idea of the formalism
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Now we connect the network dynamics and learning rule to a well-known 

algorithm: k-means clustering.

Most students have seen this algorithm already in other classes. 



k-means clustering:  “online” version has neuronal interpretation

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇 for all i

Ԧ𝑥𝜇 and find the closest prototype

2) Change the weights of this prototypes by:

Δ𝑤𝑘 = −𝜂 𝑤𝑘 − Ԧ𝑥𝜇

3) Reduce      and go back to 1𝜂

NETWORK 

DYNAMICS

can do this

HEBBIAN

LEARNING

Can do this

‘developmental 

Change’

Assume 𝑃 data points Ԧ𝑥𝜇 with 1 ≤ 𝜇 ≤ 𝑃

1) Pick a
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The classic k-means algo in its online version (one data point at a time).

This algorithm is found in many introductory textbooks of signal processing 

and data science.

Based on the results of the previous sections, we now know that this 

algorithm can be implemented by Hebbian learning and lateral neuronal 

inhibition.



Classification by nearest 
prototype

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇
for all i

prototype data

Voronoi (or Dirichlet) tesselation



Previous slide.

In the space of data points (here a plane), the classification by nearest 

prototype (nearest weight vector) induces a tessellation of the space.



k-means cClustering

wi

wk

Initialize: Prototypes   wk

Take a Datapoint    x

x

𝑥1, 𝑥2, 𝑥3,

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇
for all i

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘

2) Update winner

1) Determine winner k

Moves the prototypes  in direction of  data points!



Previous slide.

A geometric illustration of the algorithm



Example:  MNIST data,  clustering of digits with 

Competitive Neural Network

1 5 9 13 17 21 25 28

1

5

9

13

17

21

25

28

28x28=784



Previous slide.

Just a reminder of how the MINST data looks like.

Different writers have written several times the digits from 1 to 10. There are 

different writing styles. The digits are black on white background and (nearly) 

centered.



Hard Clustering/K-means clustering

1 5 9 13 17 21 25 28

1

5

9

13

17

21

25

28

28x28=784

wi

wk

Prototype   wk       ‘represents group of data points’

Datapoint    x

x

𝑥1, 𝑥2, 𝑥3,

Group of similar

points: cluster

k winner: 𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇 for all i



Previous slide.

Each sample of MNIST data is a point in the 784-dimensional space.

Images with similar configuration of images lie close to each other. 

K-means clustering will move the weight vector (prototype) in the center of 

mass of the cluster.

Note that images  that look similar to the human eye but where the 

handwritten digit is shifted by 3 pixels upwards or downwards look very 

different in pixel space!



𝑤𝑘

𝑤𝑛

Rumelhard and Zipser (1985) Feature discovery by competitive learning, Cognitive Science

weight vector moves to the center of mass of ‘its’ cluster

Δ𝑤𝑘 = −𝜂 𝑤𝑘 − Ԧ𝑥𝜇  𝛿𝑘𝑗∗(𝜇) online

batchΔ𝑤𝑘 = −𝜂 ෍

𝜇

𝛿𝑘𝑗∗(𝜇) 𝑤𝑘 − Ԧ𝑥𝜇

𝑗∗ 𝜇 =index of 

winner

Clustering of data on a sphere



Previous slide.

The neural algorithm works best if the data points are represented by vectors 

of unit length. In this case all data points lie on the sphere.

A general result of k-means clustering is that the prototype (weight vector) 

moves towards the center of ‘its’ cluster of data points.

This implies that each weight vector is also (nearly) normalized to unit length. 

As a result, nearest neighbor is (nearly) equivalent to max scalar product.

See also exercises.



Dead unit
𝑤1

𝑤𝑛

1) weight vector moves to the center of mass of ‘its’ cluster

2) A weight vector only moves if it the ‘winner’

→ Dead units possible

xx

x

x

.
𝑤𝑘

x

x
x
x

x
x

Dead units avoided by initializing  weight vectors 

with ramdonly chosen data points



Previous slide.

The picture also shows that it can happen that some weight vector (here the 

blue vector)  is responsible for no point in the data cloud. It is called a  dead 

unit.



Theorem: Minimal Reconstruction Error

reconstruction error 
𝐸 = ෍

𝑘

෍

𝜇∈𝐶𝑘

𝑤𝑘 − Ԧ𝑥𝜇 2

Cluster (prototype) Samples in cluster k

Sum over all 

data points wi

wk Ԧ𝑥𝜇

Suppose each data point is replaced by 

its closest prototype. Then k-means 

clustering minimizes the mean quadratic 

reconstruction error 



Exercise: Derivation of the learning rule for k-means

𝐸 = ෍

𝑘

෍

𝜇∈𝐶𝑘

𝑤𝑘 − Ԧ𝑥𝜇 2

Gradient descent on the error surface

Δ𝑤𝑘 = −𝜂 ෍

𝜇∈𝐶𝑘

𝑤𝑘 − Ԧ𝑥𝜇 batch

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘 on-line



Feedback on k-means clustering

[ ]  At least 60 percent of the material on k-mans clustering

For 80 percent of the material that we have seen in this part

[ ]  I understood the concepts and got a good idea of the formalism



Previous slide.



Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction 

Interacting neurons: Winner-take-all

K-means clustering

Soft competition and Soft clustering

Grossberg (1976) Adaptive Pattern Classification and Universal Recoding:

I. Parallel Development and Coding of Neural Feature Detectors, Biol, Cybern.

Rumelhard and Zipser (1985) Feature discovery by competitive learning, Cognitive Science

Hertz-Krogh-Palmer (1991) Introduction to the theory of neural networks (Addison-Wesley)

Simon Haykin (1999) Neural Networks, 2nd edition (Prentice Hall)



Previous slide.



Soft clustering/Mixture model  
20 centers per digit after clustering
(compare Perry Moerland 1999, Mixture model approach)

Soft clustering: Gaussian Mixture Model



Previous slide.

In k-means clustering, a data point belongs exactly to one prototype (hard 

clustering).

Gaussian Mixture Models GMMs can be interpreted as ‘soft clustering’: Different 

protypes can take over partial responsibility for explaining a data point.

Here is a standard application:  GMMs have been applied to model the distribution 

of all the handwritten digits ‘4’. What is shown is the center of each of the 20 

Gaussians interpreted as pixels. The same is repeated for ‘1’ and ‘7’.

We do not cover the theory of GMMs here. Rather the point of the following two 

slides is to show that neuronal models with Hebbian rules can do something very 

similar to GMMs. If you are not familiar with GMMs you can forget this analogy and 

focus just on the next few slides.



Gozel and Gerstner, 2021

Weak competition caused by shared inhibitory neurons

inhibitory neuron

Input:

MNIST 3 and 4. 

synaptic plasticity (feedforward weights)

Δ𝑤𝑖𝑗  = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡 𝜈𝑖
𝑝𝑜𝑠𝑡 − 𝜗 - (𝜈𝑖

𝑝𝑜𝑠𝑡
)4

unspecific unit



Previous slide.

b) Real neurons in the brain are either excitatory (blue) or inhibitory (red). Therefore an 

excitatory neuron cannot simply inhibit another neuron, but inhibition arises indirectly 

via excitation of inhibitory neurons

c) The synaptic plasticity rule on the main slide is a bit simplified; the real plasticity rule 

is shown below. We can think of the term (𝜈𝑖
𝑝𝑜𝑠𝑡

)4 as a generalized Oja-term.

e) MNIST images of 3 and 4 were applied at the input (black) while plasticity was on.

After learning neurons either specialized on a specific writing style of 3 or 4, or

remained unspecific. In the legend below, black neurons are called EC (entorhinal 

cortex) blue cells DGC (Dentat Gyrus Cells).  Red cells are called GABAergic.  

Fig 1a Fig 1c



Gozel and Gerstner, 2021

Add Input: MNIST 5, 

Present digits 3 and 4 and 5 in random order.

Initialize new neurons with small random weights.

Problem of ‘dead units’ avoided:

- Lateral interactions switch from excitation to inhibition

Soft competition: Each pattern represented by several neurons



(g)

(a,b))

Previous slide.

The dentate gyrus (DG) is one of the very few brain regions where neurons are born 

during adulthood. It receives input from EC (entorhinal cortex) plus lateral input from 

GABAergic cells. Importantly, shortly after birth the GABAergic cells EXCITE the 

newborn neuron. As a consequence of this, they are not in competition with other 

neurons but cooperate with other neurons. Therefore the feedforward plasticity of the 

newborn neurons makes them respond to the ‘average’ stimulus that the other neurons 

like. 

a) In the model, previously unspecific neurons have died and are replace by newborn 

neurons. After stimulation with digits 3 and 4 and 5, the newborn neurons respond at

the end of this early phase to the ‘average stimulus’. B) Later the GABAergic cells 

become inhibitory. In this late phase, the newborn cells are in competition with the 

existing cells. Therefore they specialize on different writing styles of 5.



Interaction type: 

- linear inhibitory interaction with Hebbian rule:

→ PCA with several components

→ ICA/sparse coding with several components

- winner-take all: strong (fixed) inhibitory interaction

→ k-means clustering

→ a single neuron wins the competition 

→ Hebbian learning for all neurons, but only winner changes

-soft winner take all

→ a combination of several neurons gets active (‘wins’)

→ similar to sparse coding with several components

→ interpolation between ‘prototypes’

→ similar to Gaussian mixture models

Summary: Lateral interactions and competitive learning



Previous slide. Summary

Literature:

Dentate gyrus: https://en.wikipedia.org/wiki/Dentate_gyrus

The end

of this part

Hyvarinen and Oja (2000) Independent Component Analysis:

Algorithms and Applications, Neural Networks 

Hyvarinen and Oja (1998), Independent Component Analysis by  

general nonlinear Hebbian rules, Signal Processing.

Gozel and Gerstner (2021) A functional model of the adult dentate gyrus. eLife. DOI: https://doi.org/10.7554/eLife.66463 1 of

Brito and Gerstner (2016),  Nonlinear Hebbian learning as a 

unifying principle,  PLOS Comput. Biol. DOI:10.1371/journal.pcbi.1005070



Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3B

Receptive fields,  Hebbian rules and ICA of image patches

ICA on image patches

Receptive fields in neuroscience

Development of receptive fields by Hebbian learning

Bell and Sejnowski, 1997, The “independent components” of natural scenes are edge filters , 

Vision research

Hyvarinen and Oja (2000) Independent Component Analysis: Algorithms and Applications, 

Neural Networks 

Hyvarinen and Oja (1998), Independent Component Analysis by  general nonlinear Hebbian 

rules, Signal Processing.

Gerstner and Brito (2016),  Nonlinear Hebbian learning as a unifying principle,  PLOS 

Comput. Biol. DOI:10.1371/journal.pcbi.1005070 

Hubel and Wiesel (1962) , Receptive fields, binocular interaction and functional architecture 

in the cat's visual cortex J. Physiol. doi: 10.1113/jphysiol.1962.sp006837

Willshaw and von der Malsburg (1976) How patterned neural connections can be set up by 

self-organization, Proc. Roy. Soc. Lond. B. https://doi.org/10.1098/rspb.1976.0087

https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1098/rspb.1976.0087


Quiz:  ICA. Learning in  neural networks 

Suppose that we have sequence of data points Ԧ𝑥(𝑡1), Ԧ𝑥(𝑡2), Ԧ𝑥(𝑡3), … .

[ ]  Spatial ICA requires data with a non-Gaussian distribution

[ ] Optimization of non-Gaussianity leads to different ICA rules,

depending on the criterion of ‘non-Gaussianity’

[ ]  A Hebb-rule is an example of online rule

[ ] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F

[ ] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F’

[ ] FastICA implements an approximate Newton step for optimization

[ ] FastICA is a second-order gradient descent/ascent algorithm 

(i.e. includes curvature information of the loss/optimality criterion)

[x]

[x]

[x]

[ ]

[x]

[x]

[x]



Review of lecture 2: ICA with Hebbian rules

Hebbian learning (2-factor rules) can be nonlinear

PCA can be derived from a  maximization priciple

ICA and Blind Source Separation: 

temporal and spatial ICA have different conditions 

Optimization of Non-Gaussianity yields ICA via Hebbian rule

after transition from batch to online

ICA Algorithm FAST-ICA implements approximate Newton step



Previous slide.

In this section we ask two closely related questions:

1) What are the independent components of images?

2)  What are receptive fields in visual cortex and how do they develop after birth?



What are the independent components of images?

Apply ICA algo

on image patches



Previous slide.

1) What are the independent components of images?

A common idea is that images are composed of objects and individual objects are 

composed of ‘image elements’.  For example, a picture of a building is composed of 

many straight bars.

To find these image elements we apply ICA to thousands of image patches.



Figure 4: Basis functions in ICA of natural images. The input window size was 16×16 pixels. 

These basis functions can be considered as the independent features of images.

From: Hyvarinen and Oja, 2000;

See also: Bell and Sejnowski, 1997



Previous slide.

ICA yields indeed many ‘bar-like’ elements. 

On the left, a single independent component is shown. Below several.

These independent components can be interpreted as edge-detectors.  Different 

‘independent components’ correspond to edge detectors at different locations and with 

different orientations.  



Selected decorrelating filters and their basis functions 

extracted from natural scene data. Each type of 

decorrelating filter yielded 144 12 × 12 filters. (a) PCA (b) 

ZCA (Wz): The first six entries in this column show the 1-

pixel wide centre-surround filter which whitens while 

preserving the phase spectrum. All are identical, but

shifted. The lower six entries (37, 60… 144) show the 

basis functions instead, which are the columns of the 

inverse of the Wz matrix. (c) W: the weights learnt by the 

ICA network trained on Wz-whitened data, showing (in 

descending order) the DC filter, localized oriented filters, 

and localized checkerboard filters. (d) WI: The 

corresponding ICA filters, calculated according to WI = 

WWz, looking like whitened versions of the W-filters. (e) A: 

the corresponding basis functions, or columns of . These 

are the patterns which optimally stimulate their 

corresponding ICA filters, while not stimulating any other 

ICA filter, so that WIA = I.

Bell and Sejnowksi,

Vision Research, 1997

The “independent components” of

natural scenes are edge filters

Independent components of images



Previous slide.

Compared to ICA, PCA typically yields more global components where each has 

structure that extends across the whole image patch. You can think of PCA as 

Fouriermodes of the two-dimensional patches. ICA, however, gives localized edge 

detectors.



1) What are the independent components of images?

→ ICA  yields localized ‘edge detectors’.

2) How is this related to receptive fields?  

3) And how do receptive fields develop? 

Intermediate summary:  ICA on image patches



Previous slide.

First finding: ICA applied on image patches yields localized ‘edge detectors’

The second question now is:

How is this related to receptive fields?  And how do receptive fields develop? 



visual 

cortex

electrode

Receptive fields 

tok-tok-tok
tok-tok-tok



visual 

cortex

electrode

Receptive fields 



visual 

cortex

Neighboring cells 

in visual cortex

have similar preferred

 center of receptive field

Receptive fields and Retinotopic Map 



Previous slides.

Receptive fields of visual cells (in visual cortex area V1) are found as follows.

1. Insert an electrode close to one neuron. Put the electrical signal from the electrode

on a loudspeaker.

2. Apply a single light dot  at randomly selected locations on a gray visual screen.

3. The area of the visual screen on which a light dot causes electrical pulses 

(perceptible as tok-tok-tok from the speaker) is the visual receptive field of the cell.

4. You can test also with dark dots of light on the grey background; or by applying a 

prolonged light signal that is turned off after some time.



visual 

cortex

1. Neighboring cells 

in visual cortex

have similar preferred

 center of receptive field

2. Globally a ‘spatial map’

of outside world across V1

Receptive fields and Retinotopic Map 

Hubel and Wiesel  (1962) , Receptive fields, binocular 

interaction and functional architecture in the cat's visual 

cortex J. Physiol. doi: 10.1113/jphysiol.1962.sp006837

https://doi.org/10.1113/jphysiol.1962.sp006837


Previous slide.

Moreover, neighboring cells have similar receptive fields. Thus we have a map from 

screen location to location of neuron on the folded sheet of cortex. The map is distorted 

because the fovea takes much more space.



Receptive fields:

 Retina, LGN

Receptive fields:

 visual cortex V1

Orientation 

selective

Receptive fields have a spatial structure



Previous slide.

From the retina to cortex, signal transmission is recoded at an intermediate nucleus 

called LGN (lateral geniculate nucleus).

Cells in the LGN have circular receptive fields whereas cells in visual cortex V1 have

elongated receptive fields. They are called orientation selective RFs (receptive fields).



Receptive fields:

 visual cortex V1

Orientation selective

Visual Cortex V1 Receptive fields show Orientation Tuning 



Previous slide.

Alternatively to a single light spot you can also stimulate with a slowly moving light bar.

You get maximal excitation of the neuron if the bar is aligned with the positive part (red)

of the receptive field.



Receptive fields:

 visual cortex V1

Orientation selective


2


0

rate

Stimulus orientation

Receptive fields with Orientation   Tuning



Previous slide.

The term orientation selective arises because if you change the orientation of the light 

bar, there is a preferred orientation at which the neuron maximally responds. 



visual 

cortex

Neighboring cells in visual cortex

Have similar preferred orientation:

   cortical orientation map

Hubel and Wiesel 1968; Bonhoeffer&Grinvald, 1991; 

Bressloff&Cowan, 2002; Kaschube et al. 2010

Orientation Map 



Previous slide.

Neighboring cells in cortex of cats and monkey also have similar preferred orientation. 

The result is a cortical orientation map.



Receptive fields:

 Retina, LGN

Receptive fields:

 visual cortex V1

orientation 

selective

Receptive field Development

rotational 

symmetry



Previous slide.

From the retina to the LGN and then to cortex, information is preprocessed or ‘recoded’

as indicated by the different shapes of receptive fields. The elongated receptive fields 

with preferred orientation are useful as ‘edge detectors’ in V1 and in that sense 

potentially a ‘better code’.

The question then arises how this recoding arises.



Receptive fields:

 visual cortex V1

What makes cells Orientation selective? – connectivity!

Receptive fields:

in LGN

Precise wiring necessary – how done?

Receptive Field Development 

Hubel and Wiesel  (1962) , J. Physiol. 

Willshaw and von der Malsburg (1976) Proc. Roy. Soc. Lond. B. 



Previous slide.

The study of receptive fields in visual cortex of mammals by Hubel and Wiesel has been 

very influential. They proposed that the elongated receptive fields (edge detectors) arise 

by appropriate wiring of the connections to V1 arriving from LGN (the intermediate stop 

from the retina to cortex) .

But then the question arises, how such a precise wiring can develop.

In particular, the wiring is not fixed but depends on the stimulation.

If young animals see only vertical stripes, they develop more edge detectors for vertical 

than for horizontal orientation.

From this and many other experiments can be concluded that the connections are not 

genetically encoded, but that the wiring depends on the statistics of stimulation. Now, 

this sounds like Hebbian learning could help  to set up the wiring!

There have been many theoretical studies to illustrate how Hebbian learning could be 

used. The ideas can traced back at least to Willshaw and von der Malsburg (1976).



Apply nonlinear Hebbian learning rules/nonlinear neuron model

-Inhibitory lateral interactions

that learn with Hebbian rule

- 3 different types of nonlinearity g

Brito and Gerstner, 2016, PLOS comput. Biol.

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

) − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

All three nonlinearities lead

to Gabor-like receptive fields! 



Previous slide.

We focus on a recent study. It exploits  that ICA arises from Hebbian learning in

nonlinear neurons with gain function g. There are weak inhibitory interactions between 

visual cortex neurons (yellow). These interactions change according to the Hebbian 

learning rule that we have seen before. 

The forward connections change according to the Hebb-rule combined with 

normalization. After presentation of pre-whitened image patches, learning results in 

elongated receptive fields (inset: schematic of Gabor filter) of each neuron. Different 

neurons have different RFs (5 samples shown). The diversity of RFs is shown as 

distribution of dots (one dot per neuron) indicating the width and length of the RF.

Three different non-linearities (a,b,c) give very similar results.

𝑑

𝑑𝑡
𝐵𝑖𝑛 = +𝑎𝑙𝑎𝑡(𝜈𝑖

𝑝𝑜𝑠𝑡
−𝜈𝑖

𝑝𝑜𝑠𝑡
)𝜈𝑛

𝑝𝑜𝑠𝑡

Gerstner and Brito (2016),  Nonlinear Hebbian learning as a unifying principle,  PLOS Comput. Biol.   . 



The receptive field of a visual neuron refers to

[ ] The localized region of space to which it is sensitive

[ ] The orientation of a light bar to which it is sensitive

[ ] The set of all stimulus features to which it is sensitive

The receptive field of a auditory neuron refers to

[ ] The set of all stimulus features to which it is sensitive

[ ] The range of frequencies to which it is sensitive

The receptive field of a somatosensory neuron refers to

[ ] The set of all stimulus features to which it is sensitive

[ ] The region of body surface to which it is sensitive

Quiz

[x]

[x]

[x]

[x]

[x]

[x]

[x]



Previous slide.

The term ‘receptive field’ is also used outside vision.



Summary: ICA and  Receptive Field Development 

- Edge detectors are the independent component of image patches

- Edge detectors are typical for receptive fields in visual cortex V1

- ICA can be implemented by a nonlinear Hebbian learning rule

- Hebbian learning can explain the development of receptive fields in 

visual cortex V1 (and similarly in other primary sensory cortical areas)



Summary: the power of 2-factor rules

- 2-factor rules are Hebbian rules (‘pre’ and ‘post’).

- Hebbian rules have strong experimental support.

- 2-factor rules explain receptive field development

- 2-factor rules can implement PCA

- 2-factor rules can implement ICA

- 2-factor rules can implement k-means clustering.

- 2-factor rules can implement compressed 

representation for linear readout

- 2-factor rules can implement autoencoders

- BUT nearly always limited to 1 hidden layer

- Representation learning across multiple 

layers is nearly impossible with Hebb rule



The end
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