
Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction

Winner-take-all: strong inhibitory interaction

K-means clustering can be implemented by a Hebbian rule

Soft competition and representation learning

Development of Receptive fields

Previous slide.

The aim is to show that several clustering algorithm (e.g. K-means) but also a variant of

Mixture Models can be implemented by Neural Networks that use Hebbian learning.

This is a classic topic of Neural Network theory and is covered in textbooks, such as the

Book of Simon Haykin or the book of Hertz-Krogh-Palmer

Hebbian Learning (LTP)

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s

“if two neurons are active together, the connection

between those two neurons gets stronger.”

“another synapse (red) which does not receive

presynaptic spikes, does NOT increase”

Previous slide.

The joint activation of pre- and postsynaptic neuron induces a strengthening of

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic

neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of Hebbian learning, only the stimulated synapses (green)

is strengthened, but not another synapses (red) onto the same neuron.

Rate-based Hebbian Learning

Δ𝑤𝑖𝑗= 𝐹(𝑤𝑖𝑗 , 𝑀𝑂𝐷; 𝜈𝑗
𝑝𝑟𝑒

, 𝜈𝑖
𝑝𝑜𝑠𝑡

)

Δ𝑤𝑖𝑗 = 𝑎0 + 𝑎1
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

+ 𝑎1
𝑝𝑜𝑠𝑡

𝜈𝑖
𝑝𝑜𝑠𝑡

+ 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
+ 𝑎2

𝑝𝑜𝑠𝑡
𝜈𝑖

𝑝𝑜𝑠𝑡 2
+ 𝑎2

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑟𝑒 2
. . .

a = a(wij)

a(wij) wij

Blackboard1

pre

j

post
i

𝑤𝑖𝑗

Local rule:

Taylor expansion:
Modulator MOD=const

Previous slide.

Let us formulate these insights mathematically.

(i) Local rule implies that the weight change Δ𝑤𝑖𝑗 depends explicitly only on

th firing rate of the pre- and postsynaptic neuron. It can also depend on

the momentary value of the synaptic weight 𝑤𝑖𝑗 itself. Finally, it could

also depend on other factors, for example on the presence or absence of

a neuromodulator such as dopamine, called MOD. At the moment we

assume that the value of MOD does not change so that we can disregard

it.

(ii) The Hebbian rule says little about the function F. We assume that F

allows a Taylor expansion. We expand F with respect to the two firing

rates, but not with respect to the weight value itself. As a result we have

expansion coefficients that still carry the weight-dependence as an

argument.

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝑤𝑖𝑗 𝜈𝑖

𝑝𝑜𝑠𝑡 2

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡 𝜈𝑖
𝑝𝑜𝑠𝑡 − 𝜗

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟(𝜈𝑗

𝑝𝑟𝑒
− 𝜗)(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)

pre
post

2. Rate-based Hebbian Learning

pre

j

post
i

𝑤𝑖𝑗

k

Oja-rule (for linear neurons)

BCM-rule

covariance-rule

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝑤𝑖𝑗 𝜈𝑖

𝑝𝑜𝑠𝑡
competitive-rule

(for non-linear neurons)

Previous slide.

The first three Hebbian rules are examples that we have seen previously.

The competitive rule at the end is the one we use later today.

Hebbian Learning detects correlations in the input

Jointly variing rate

Jointly variing rate

{

{

Functional Consequence of Hebbian Learning

So far: considered a single neuron at a time.

Now: interacting neurons!

Weak inhibitory interaction → neurons decorrelate.

Strong inhibitory interaction → neurons compete → winner.

Previous slide.

We saw that Hebbian learning can focus on correlated input, but so far we mostly

considered one single neuron at a time.

The question now is: how can we ensure that different neurons focus on different

aspects of the input?

The answer is by applying inhibitory connections between neurons.

Quiz: biological neural networks

[] Neurons are nonlinear

[] The total input to a neuron is the weighted sum of individual inputs

[] The neuronal network in the brain is feedforward: it has no

lateral connections

[] Hebb-rules are always linear in ‘𝜈𝑗
𝑝𝑟𝑒

’ and ‘𝜈𝑖
𝑝𝑜𝑠𝑡

’

[] 2-factor rules can always be written as a multiplication

of a ‘pre’-term with a ‘post’-term

[x]

[x]

[]

[]

[]

Previous slide.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction

Winner-take-all

K-means clustering

Soft competition

P. Foldiak (1989), Adaptive network for optimal linear feature extraction, IEEE

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=118615&tag=1

Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS Comput. Biol. .

Vogels et al. (2011), Inhibitory plasticity balances excitation andinhibition. Science

Previous slide.

We saw that Hebbian learning can focus on correlated input, but so far we mostly

considered one single neuron at a time.

The question now is: how can we ensure that different neurons focus on different

aspects of the input?

The answer is by applying inhibitory connections between neurons.

’

- Hebbian learning detects correlations in the input

- linear neuron model and Oja plasticity rule

 - Hebbian learning aligns weight vector with first PC

 of correlation matrix

- BUT: only one PC extracted

Fixed rate

Jointly variing rate

linear neuron

 model

Summary from Lecture 1: Hebbian Learning for PCA

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

− 𝑤𝑖𝑗(𝜈𝑖
𝑝𝑜𝑠𝑡

)2

Previous slide.

PC = Principal component = eigenvector of correlation matrix with maximum

eigenvalue

Hebbian Learning detects multiple PCs

Jointly variing rate

Jointly variing rate

{

{

Add interactions: Hebbian Learning for multiple PCs

Weak inhibitory interaction → neurons decorrelate.

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

− 𝑤𝑖𝑗(𝜈𝑖
𝑝𝑜𝑠𝑡

)2

𝜈𝑖
𝑝𝑜𝑠𝑡

= ෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

− ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

𝑑

𝑑𝑡
𝐵𝑖𝑛 = +𝑎𝑙𝑎𝑡𝜈𝑖

𝑝𝑜𝑠𝑡
𝜈𝑛

𝑝𝑜𝑠𝑡

Hebb/Oja

Hebb
neurons extract different PCs

→ converges to PCA subspace

P. Foldiak, Adaptive network for optimal linear feature extraction, 1989

inhibitory

Previous slide.

We can add linear interactions between the (linear) neurons.

If these interactions are negative (inhibitory), one neuron tells the others that they

should focus on different inputs.

Moreover, one can make the lateral inhibitory weights learn with an Hebbian learning

rule. Then the lateral weights grows to the subset of PCs that have the set of

maximum eigenvalues of the correlation matrix. Say, PC 1,2,. … 5

As in lecture 1 we suppose that the data has mean zero. To understand how the

interaction works imaging that

(i) Two output neurons are correlated. Then the lateral inhibition grows which makes

the neurons decorrelated.

(ii) Two output neurons are anti-correlated (i.e. if one increases, the other one

decreases. Then the interactions first decrease and then change sign so that

correlation increases - which makes them decorrelated.

As a result of these interactions the input weight vectors become orthogonal, so that

the output neurons are decorrelated and the lateral interactions are close to zero.

- Hebbian learning detects independent components in the input

- non-linear neuron model and simple plasticity rule

 - Hebbian learning aligns weight vector with first IC of data

 - BUT: only one IC extracted

input data:

- Centered at zero

- Whitened

nonlinear neuron

 model

Summary from Lecture 2: Hebbian Learning for ICA

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

= 𝑎2
𝑐𝑜𝑟𝑟𝑔𝑖(෍

𝑘

𝑤𝑖𝑘 𝑥𝑘)𝜈𝑗
𝑝𝑟𝑒

+ renormalize 𝑤 =
𝑤𝑛𝑒𝑤

𝑤𝑛𝑒𝑤

Previous slide.

IC = independent component = direction of maximal or minimal non-

Gaussianity of data distribution

Hebbian Learning detects orthogonal ICs

Add interactions: Hebbian Learning for multiple ICs

Weak inhibitory interaction → output neurons decorrelate.

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

) − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

𝑑

𝑑𝑡
𝐵𝑖𝑛 = +𝑎𝑙𝑎𝑡(𝜈𝑖

𝑝𝑜𝑠𝑡
−𝜈𝑖

𝑝𝑜𝑠𝑡
)𝜈𝑛

𝑝𝑜𝑠𝑡

Hebb

Hebb Neurons become decorrelated

Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS Comput. Biol. .

Vogels et al. (2011), Inhibitory plasticity balances excitation andinhibition. Science

inhibitory

𝑥1
′

𝑥2
′

𝑦1

𝑦2
input data:

- mean zero

- whitened

+ renormalize 𝑤 =
𝑤𝑛𝑒𝑤

𝑤𝑛𝑒𝑤

Previous slide.

We add linear interactions between the (nonlinear) neurons.

If these interactions are negative (inhibitory), one neuron tells the others that they

should focus on different inputs. The lateral weights learn with an Hebbian learning

rule. Then the forward weight vectors grow to a set of orthogonal ICs.

As in lecture 2 we suppose that the data has mean zero and is whitened. The

argument is as before. Imagine that that

(i) Two output neurons are correlated. This means that the input weight vectors are

not orthogonal but have an angle below 90 degree. Then the inhibition grows

which decreases correlation by turning the input weight vector. The growth stops

at 90 degree.

(ii) Two output neurons are anti-correlated. This is only possible if one of the output

signals driving learning can turn negative. Therefore subtract a running average

𝜈𝑖
𝑝𝑜𝑠𝑡

. Then angles of input weight vectors larger than 90 degree lead to a

reduction of the lateral interaction.

As a result of these interactions the input weight vectors become orthogonal, so that

the output neurons are decorrelated.

Quiz:

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

) − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

To extract multiple Independent Components (ICs)

[] the forward weights can be learned with a standard

Hebb rule ‘pre times post’

[] there is no need to whiten the data

[] A Hebbian rule ‘pre times post’ for inhibitory later weights (red) works well

to ensure that different neurons extract different ICs

[] After long enough training, different ICs always have nearly always weight

vectors that have an angle close to 45 degree to each other

[x]

[]

[x]

[]

Previous slide.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction

Interacting neurons: Winner-take-all

K-means clustering

Soft competition

P. Foldiak (1989), Adaptive network for optimal linear feature extraction, IEEE

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=118615&tag=1

Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS Comput. Biol. .

Vogels et al. (2011), Inhibitory plasticity balances excitation andinhibition. Science

Previous slide.

So far we assumed relatively weak lateral interactions.

Now we assume that inhibitory interactions are strong so that if one neuron is

active it shuts down all other neurons.

Winner-take-all circuit: strong lateral inhibition

Blackboard

update dynamics? - discrete time steps

inhibition

- Nonlinear neurons with positive rate

- Strong inhibitory interactions

- Activity of one neuron suppresses activity of all others

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

− ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

)

𝜈𝑖
𝑝𝑜𝑠𝑡

≥ 0

∗ 𝜈𝑖
𝑝𝑜𝑠𝑡

𝑡 + Δ𝑡 = 𝑔൫σ𝑘 𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

𝑡 − ൯σ𝑛 𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

(𝑡)

𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇

input

pattern

Ԧ𝑥
𝜇

Loop

1) initialize 𝜈𝑖
𝑝𝑜𝑠𝑡

= 0

2) apply input Ԧ𝑥
𝜇

3) Loop: run dynamics (*)

 for several steps Δt

Previous slide.

1. We assume that the nonlinear function g is a saturating function which vanishes

below some threshold. The maximum output is 1.

2. We add strong inhibitory interactions 𝐵𝑖𝑛 > 1 between the (nonlinear) neurons.

Note that inhibition enters into the argument of the non-linearity.

3. We also add positive self-interactions of each neuron with each self. This can lead

to an instability that rapidly drives the activity of a neuron to its maximum.

4. However, the neurons that reaches the maximum first, inhibits the others so

strongly that it is impossible that more than one neuron is active. The active neuron is

called the winner.

5. The dynamics is updated iteratively with fixed input:

6. The input consists of patterns Ԧ𝑥
𝜇

so that for several time steps

𝜈𝑖
𝑝𝑜𝑠𝑡

𝑡 + Δ𝑡 = 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

𝑡 − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

(𝑡))

𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇

Hebbian learning rule

Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑖
𝑝𝑜𝑠𝑡

𝑥𝑗
𝜇

− 𝛾𝑤𝑖𝑗𝜈𝑖
𝑝𝑜𝑠𝑡

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘

→ on-line update (one input at a time)

→ updates only for winner (one neuron

at a time)

-k is winner

-Only k is active

How can we update the weights ?

Neuronal dynamics rapidly converges to ‘winner’:

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝛿𝑖𝑘
-k is winner

-Only k is active

Previous slide.

1. The input consists of patterns Ԧ𝑥
𝜇

, hence

2. After convergence of the network dynamics, a single neuron k is winner. The

winner has activity equal to 1, all other neurons have zero activity.

3. We apply Hebbian learning to ALL output neurons of the network. However, with the

proposed learning rule, only the winner adapts its weights because only the winner

has non-zero firing rate. The weights of the other neurons remain unchanged.

4. The weight vector of the winner moves towards the current pattern Ԧ𝑥
𝜇

(see next

slide)

𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇

Winner-take-all circuit: strong lateral inhibition

inhibition
input

pattern

Ԧ𝑥
𝜇

Suppose all input pattern Ԧ𝑥
𝜇

 have | Ԧ𝑥
𝜇 |2 = 1 and

Then → 𝑤 2 ≈ 1
x

x
x
x

0 < 𝜈𝑗
𝑝𝑟𝑒

= 𝑥𝑗
𝜇

.

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘

for winner:

Ԧ𝑥
𝜇

𝑤𝑘

Δ𝑤𝑘

Previous slide.

Because of the normalization, all data points lie on the sphere.

The weight vector moves towards the data point. By assumption data lies on the

positive quadrant of the sphere. Therefore the weight vector will lie inside, but has its

end point close to the surface of the sphere.

Winner-take-all circuit: strong lateral inhibition

inhibition
input

pattern

Ԧ𝑥
𝜇

Suppose all input pattern Ԧ𝑥
𝜇

 have | Ԧ𝑥
𝜇 |2 = 1 and 𝑤𝑘

2 = 1.

Then:

→ min
𝑘

{ | Ԧ𝑥
𝜇

− 𝑤𝑘|} equivalent to max
k

{𝑤𝑘
𝑇 Ԧ𝑥

𝜇
}

several output neurons k,

with input weight vectors 𝑤𝑘

Blackboard 2

Previous slide.

One line calculation. (blackboard)

We assume that for data point Ԧ𝑥𝜇 the weight vector 𝑤𝑘 with index k is the closest one

We square the equation (1) and multiply out all terms. Then with our assumptions

| Ԧ𝑥
𝜇 |2 = 1 and 𝑤𝑘

2 = 1 the statement

follows.

𝑤𝑘
T Ԧ𝑥𝜇 ≥ 𝑤𝑖

T Ԧ𝑥𝜇 for all i(2)

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇 for all i(1)

Quiz:

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

− ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

)

[] To select a single winner via lateral interactions, lateral interactions should be

inhibitory

[] For updating the weights, the learning rule can be applied to all neurons

[] Only the winning neuron updates its forward weights

[] a positive self-interaction loop is helpful, but not absolutely necessary

[x]

[x]

[x]

Feedback on competition by lateral interaction

[] At least 60 percent of the material on competive networks was

new to me

For 80 percent of the material that we have seen in this part

[] I understood the concepts and got a good idea of the formalism

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction

Interacting neurons: Winner-take-all

K-means clustering

Grossberg (1976) Adaptive Pattern Classification and Universal Recoding:

I. Parallel Development and Coding of Neural Feature Detectors, Biol, Cybern.

Rumelhard and Zipser (1985) Feature discovery by competitive learning, Cognitive Science

Hertz-Krogh-Palmer (1991) Introduction to the theory of neural networks (Addison-Wesley)

Simon Haykin (1999) Neural Networks, 2nd edition (Prentice Hall)

Previous slide.

Now we connect the network dynamics and learning rule to a well-known

algorithm: k-means clustering.

Most students have seen this algorithm already in other classes.

k-means clustering: “online” version has neuronal interpretation

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇 for all i

Ԧ𝑥𝜇 and find the closest prototype

2) Change the weights of this prototypes by:

Δ𝑤𝑘 = −𝜂 𝑤𝑘 − Ԧ𝑥𝜇

3) Reduce and go back to 1𝜂

NETWORK

DYNAMICS

can do this

HEBBIAN

LEARNING

Can do this

‘developmental

Change’

Assume 𝑃 data points Ԧ𝑥𝜇 with 1 ≤ 𝜇 ≤ 𝑃

1) Pick a

Previous slide.

The classic k-means algo in its online version (one data point at a time).

This algorithm is found in many introductory textbooks of signal processing

and data science.

Based on the results of the previous sections, we now know that this

algorithm can be implemented by Hebbian learning and lateral neuronal

inhibition.

Classification by nearest
prototype

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇
for all i

prototype data

Voronoi (or Dirichlet) tesselation

Previous slide.

In the space of data points (here a plane), the classification by nearest

prototype (nearest weight vector) induces a tessellation of the space.

k-means cClustering

wi

wk

Initialize: Prototypes wk

Take a Datapoint x

x

𝑥1, 𝑥2, 𝑥3,

𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇
for all i

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘

2) Update winner

1) Determine winner k

Moves the prototypes in direction of data points!

Previous slide.

A geometric illustration of the algorithm

Example: MNIST data, clustering of digits with

Competitive Neural Network

1 5 9 13 17 21 25 28

1

5

9

13

17

21

25

28

28x28=784

Previous slide.

Just a reminder of how the MINST data looks like.

Different writers have written several times the digits from 1 to 10. There are

different writing styles. The digits are black on white background and (nearly)

centered.

Hard Clustering/K-means clustering

1 5 9 13 17 21 25 28

1

5

9

13

17

21

25

28

28x28=784

wi

wk

Prototype wk ‘represents group of data points’

Datapoint x

x

𝑥1, 𝑥2, 𝑥3,

Group of similar

points: cluster

k winner: 𝑤𝑘 − Ԧ𝑥𝜇 ≤ 𝑤𝑖 − Ԧ𝑥𝜇 for all i

Previous slide.

Each sample of MNIST data is a point in the 784-dimensional space.

Images with similar configuration of images lie close to each other.

K-means clustering will move the weight vector (prototype) in the center of

mass of the cluster.

Note that images that look similar to the human eye but where the

handwritten digit is shifted by 3 pixels upwards or downwards look very

different in pixel space!

𝑤𝑘

𝑤𝑛

Rumelhard and Zipser (1985) Feature discovery by competitive learning, Cognitive Science

weight vector moves to the center of mass of ‘its’ cluster

Δ𝑤𝑘 = −𝜂 𝑤𝑘 − Ԧ𝑥𝜇 𝛿𝑘𝑗∗(𝜇) online

batchΔ𝑤𝑘 = −𝜂 ෍

𝜇

𝛿𝑘𝑗∗(𝜇) 𝑤𝑘 − Ԧ𝑥𝜇

𝑗∗ 𝜇 =index of

winner

Clustering of data on a sphere

Previous slide.

The neural algorithm works best if the data points are represented by vectors

of unit length. In this case all data points lie on the sphere.

A general result of k-means clustering is that the prototype (weight vector)

moves towards the center of ‘its’ cluster of data points.

This implies that each weight vector is also (nearly) normalized to unit length.

As a result, nearest neighbor is (nearly) equivalent to max scalar product.

See also exercises.

Dead unit
𝑤1

𝑤𝑛

1) weight vector moves to the center of mass of ‘its’ cluster

2) A weight vector only moves if it the ‘winner’

→ Dead units possible

xx

x

x

.
𝑤𝑘

x

x
x
x

x
x

Dead units avoided by initializing weight vectors

with ramdonly chosen data points

Previous slide.

The picture also shows that it can happen that some weight vector (here the

blue vector) is responsible for no point in the data cloud. It is called a dead

unit.

Theorem: Minimal Reconstruction Error

reconstruction error
𝐸 = ෍

𝑘

෍

𝜇∈𝐶𝑘

𝑤𝑘 − Ԧ𝑥𝜇 2

Cluster (prototype) Samples in cluster k

Sum over all

data points wi

wk Ԧ𝑥𝜇

Suppose each data point is replaced by

its closest prototype. Then k-means

clustering minimizes the mean quadratic

reconstruction error

Exercise: Derivation of the learning rule for k-means

𝐸 = ෍

𝑘

෍

𝜇∈𝐶𝑘

𝑤𝑘 − Ԧ𝑥𝜇 2

Gradient descent on the error surface

Δ𝑤𝑘 = −𝜂 ෍

𝜇∈𝐶𝑘

𝑤𝑘 − Ԧ𝑥𝜇 batch

Δ𝑤𝑘 = 𝜂 Ԧ𝑥𝜇 − 𝑤𝑘 on-line

Feedback on k-means clustering

[] At least 60 percent of the material on k-mans clustering

For 80 percent of the material that we have seen in this part

[] I understood the concepts and got a good idea of the formalism

Previous slide.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3

Competitive Learning with Hebbian rules

Introduction

Interacting neurons: weak linear interaction

Interacting neurons: Winner-take-all

K-means clustering

Soft competition and Soft clustering

Grossberg (1976) Adaptive Pattern Classification and Universal Recoding:

I. Parallel Development and Coding of Neural Feature Detectors, Biol, Cybern.

Rumelhard and Zipser (1985) Feature discovery by competitive learning, Cognitive Science

Hertz-Krogh-Palmer (1991) Introduction to the theory of neural networks (Addison-Wesley)

Simon Haykin (1999) Neural Networks, 2nd edition (Prentice Hall)

Previous slide.

Soft clustering/Mixture model
20 centers per digit after clustering
(compare Perry Moerland 1999, Mixture model approach)

Soft clustering: Gaussian Mixture Model

Previous slide.

In k-means clustering, a data point belongs exactly to one prototype (hard

clustering).

Gaussian Mixture Models GMMs can be interpreted as ‘soft clustering’: Different

protypes can take over partial responsibility for explaining a data point.

Here is a standard application: GMMs have been applied to model the distribution

of all the handwritten digits ‘4’. What is shown is the center of each of the 20

Gaussians interpreted as pixels. The same is repeated for ‘1’ and ‘7’.

We do not cover the theory of GMMs here. Rather the point of the following two

slides is to show that neuronal models with Hebbian rules can do something very

similar to GMMs. If you are not familiar with GMMs you can forget this analogy and

focus just on the next few slides.

Gozel and Gerstner, 2021

Weak competition caused by shared inhibitory neurons

inhibitory neuron

Input:

MNIST 3 and 4.

synaptic plasticity (feedforward weights)

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡 𝜈𝑖
𝑝𝑜𝑠𝑡 − 𝜗 - (𝜈𝑖

𝑝𝑜𝑠𝑡
)4

unspecific unit

Previous slide.

b) Real neurons in the brain are either excitatory (blue) or inhibitory (red). Therefore an

excitatory neuron cannot simply inhibit another neuron, but inhibition arises indirectly

via excitation of inhibitory neurons

c) The synaptic plasticity rule on the main slide is a bit simplified; the real plasticity rule

is shown below. We can think of the term (𝜈𝑖
𝑝𝑜𝑠𝑡

)4 as a generalized Oja-term.

e) MNIST images of 3 and 4 were applied at the input (black) while plasticity was on.

After learning neurons either specialized on a specific writing style of 3 or 4, or

remained unspecific. In the legend below, black neurons are called EC (entorhinal

cortex) blue cells DGC (Dentat Gyrus Cells). Red cells are called GABAergic.

Fig 1a Fig 1c

Gozel and Gerstner, 2021

Add Input: MNIST 5,

Present digits 3 and 4 and 5 in random order.

Initialize new neurons with small random weights.

Problem of ‘dead units’ avoided:

- Lateral interactions switch from excitation to inhibition

Soft competition: Each pattern represented by several neurons

(g)

(a,b))

Previous slide.

The dentate gyrus (DG) is one of the very few brain regions where neurons are born

during adulthood. It receives input from EC (entorhinal cortex) plus lateral input from

GABAergic cells. Importantly, shortly after birth the GABAergic cells EXCITE the

newborn neuron. As a consequence of this, they are not in competition with other

neurons but cooperate with other neurons. Therefore the feedforward plasticity of the

newborn neurons makes them respond to the ‘average’ stimulus that the other neurons

like.

a) In the model, previously unspecific neurons have died and are replace by newborn

neurons. After stimulation with digits 3 and 4 and 5, the newborn neurons respond at

the end of this early phase to the ‘average stimulus’. B) Later the GABAergic cells

become inhibitory. In this late phase, the newborn cells are in competition with the

existing cells. Therefore they specialize on different writing styles of 5.

Interaction type:

- linear inhibitory interaction with Hebbian rule:

→ PCA with several components

→ ICA/sparse coding with several components

- winner-take all: strong (fixed) inhibitory interaction

→ k-means clustering

→ a single neuron wins the competition

→ Hebbian learning for all neurons, but only winner changes

-soft winner take all

→ a combination of several neurons gets active (‘wins’)

→ similar to sparse coding with several components

→ interpolation between ‘prototypes’

→ similar to Gaussian mixture models

Summary: Lateral interactions and competitive learning

Previous slide. Summary

Literature:

Dentate gyrus: https://en.wikipedia.org/wiki/Dentate_gyrus

The end

of this part

Hyvarinen and Oja (2000) Independent Component Analysis:

Algorithms and Applications, Neural Networks

Hyvarinen and Oja (1998), Independent Component Analysis by

general nonlinear Hebbian rules, Signal Processing.

Gozel and Gerstner (2021) A functional model of the adult dentate gyrus. eLife. DOI: https://doi.org/10.7554/eLife.66463 1 of

Brito and Gerstner (2016), Nonlinear Hebbian learning as a

unifying principle, PLOS Comput. Biol. DOI:10.1371/journal.pcbi.1005070

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 3B

Receptive fields, Hebbian rules and ICA of image patches

ICA on image patches

Receptive fields in neuroscience

Development of receptive fields by Hebbian learning

Bell and Sejnowski, 1997, The “independent components” of natural scenes are edge filters ,

Vision research

Hyvarinen and Oja (2000) Independent Component Analysis: Algorithms and Applications,

Neural Networks

Hyvarinen and Oja (1998), Independent Component Analysis by general nonlinear Hebbian

rules, Signal Processing.

Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS

Comput. Biol. DOI:10.1371/journal.pcbi.1005070

Hubel and Wiesel (1962) , Receptive fields, binocular interaction and functional architecture

in the cat's visual cortex J. Physiol. doi: 10.1113/jphysiol.1962.sp006837

Willshaw and von der Malsburg (1976) How patterned neural connections can be set up by

self-organization, Proc. Roy. Soc. Lond. B. https://doi.org/10.1098/rspb.1976.0087

https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1098/rspb.1976.0087

Quiz: ICA. Learning in neural networks

Suppose that we have sequence of data points Ԧ𝑥(𝑡1), Ԧ𝑥(𝑡2), Ԧ𝑥(𝑡3), … .

[] Spatial ICA requires data with a non-Gaussian distribution

[] Optimization of non-Gaussianity leads to different ICA rules,

depending on the criterion of ‘non-Gaussianity’

[] A Hebb-rule is an example of online rule

[] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F

[] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F’

[] FastICA implements an approximate Newton step for optimization

[] FastICA is a second-order gradient descent/ascent algorithm

(i.e. includes curvature information of the loss/optimality criterion)

[x]

[x]

[x]

[]

[x]

[x]

[x]

Review of lecture 2: ICA with Hebbian rules

Hebbian learning (2-factor rules) can be nonlinear

PCA can be derived from a maximization priciple

ICA and Blind Source Separation:

temporal and spatial ICA have different conditions

Optimization of Non-Gaussianity yields ICA via Hebbian rule

after transition from batch to online

ICA Algorithm FAST-ICA implements approximate Newton step

Previous slide.

In this section we ask two closely related questions:

1) What are the independent components of images?

2) What are receptive fields in visual cortex and how do they develop after birth?

What are the independent components of images?

Apply ICA algo

on image patches

Previous slide.

1) What are the independent components of images?

A common idea is that images are composed of objects and individual objects are

composed of ‘image elements’. For example, a picture of a building is composed of

many straight bars.

To find these image elements we apply ICA to thousands of image patches.

Figure 4: Basis functions in ICA of natural images. The input window size was 16×16 pixels.

These basis functions can be considered as the independent features of images.

From: Hyvarinen and Oja, 2000;

See also: Bell and Sejnowski, 1997

Previous slide.

ICA yields indeed many ‘bar-like’ elements.

On the left, a single independent component is shown. Below several.

These independent components can be interpreted as edge-detectors. Different

‘independent components’ correspond to edge detectors at different locations and with

different orientations.

Selected decorrelating filters and their basis functions

extracted from natural scene data. Each type of

decorrelating filter yielded 144 12 × 12 filters. (a) PCA (b)

ZCA (Wz): The first six entries in this column show the 1-

pixel wide centre-surround filter which whitens while

preserving the phase spectrum. All are identical, but

shifted. The lower six entries (37, 60… 144) show the

basis functions instead, which are the columns of the

inverse of the Wz matrix. (c) W: the weights learnt by the

ICA network trained on Wz-whitened data, showing (in

descending order) the DC filter, localized oriented filters,

and localized checkerboard filters. (d) WI: The

corresponding ICA filters, calculated according to WI =

WWz, looking like whitened versions of the W-filters. (e) A:

the corresponding basis functions, or columns of . These

are the patterns which optimally stimulate their

corresponding ICA filters, while not stimulating any other

ICA filter, so that WIA = I.

Bell and Sejnowksi,

Vision Research, 1997

The “independent components” of

natural scenes are edge filters

Independent components of images

Previous slide.

Compared to ICA, PCA typically yields more global components where each has

structure that extends across the whole image patch. You can think of PCA as

Fouriermodes of the two-dimensional patches. ICA, however, gives localized edge

detectors.

1) What are the independent components of images?

→ ICA yields localized ‘edge detectors’.

2) How is this related to receptive fields?

3) And how do receptive fields develop?

Intermediate summary: ICA on image patches

Previous slide.

First finding: ICA applied on image patches yields localized ‘edge detectors’

The second question now is:

How is this related to receptive fields? And how do receptive fields develop?

visual

cortex

electrode

Receptive fields

tok-tok-tok
tok-tok-tok

visual

cortex

electrode

Receptive fields

visual

cortex

Neighboring cells

in visual cortex

have similar preferred

 center of receptive field

Receptive fields and Retinotopic Map

Previous slides.

Receptive fields of visual cells (in visual cortex area V1) are found as follows.

1. Insert an electrode close to one neuron. Put the electrical signal from the electrode

on a loudspeaker.

2. Apply a single light dot at randomly selected locations on a gray visual screen.

3. The area of the visual screen on which a light dot causes electrical pulses

(perceptible as tok-tok-tok from the speaker) is the visual receptive field of the cell.

4. You can test also with dark dots of light on the grey background; or by applying a

prolonged light signal that is turned off after some time.

visual

cortex

1. Neighboring cells

in visual cortex

have similar preferred

 center of receptive field

2. Globally a ‘spatial map’

of outside world across V1

Receptive fields and Retinotopic Map

Hubel and Wiesel (1962) , Receptive fields, binocular

interaction and functional architecture in the cat's visual

cortex J. Physiol. doi: 10.1113/jphysiol.1962.sp006837

https://doi.org/10.1113/jphysiol.1962.sp006837

Previous slide.

Moreover, neighboring cells have similar receptive fields. Thus we have a map from

screen location to location of neuron on the folded sheet of cortex. The map is distorted

because the fovea takes much more space.

Receptive fields:

 Retina, LGN

Receptive fields:

 visual cortex V1

Orientation

selective

Receptive fields have a spatial structure

Previous slide.

From the retina to cortex, signal transmission is recoded at an intermediate nucleus

called LGN (lateral geniculate nucleus).

Cells in the LGN have circular receptive fields whereas cells in visual cortex V1 have

elongated receptive fields. They are called orientation selective RFs (receptive fields).

Receptive fields:

 visual cortex V1

Orientation selective

Visual Cortex V1 Receptive fields show Orientation Tuning

Previous slide.

Alternatively to a single light spot you can also stimulate with a slowly moving light bar.

You get maximal excitation of the neuron if the bar is aligned with the positive part (red)

of the receptive field.

Receptive fields:

 visual cortex V1

Orientation selective


2


0

rate

Stimulus orientation

Receptive fields with Orientation Tuning

Previous slide.

The term orientation selective arises because if you change the orientation of the light

bar, there is a preferred orientation at which the neuron maximally responds.

visual

cortex

Neighboring cells in visual cortex

Have similar preferred orientation:

 cortical orientation map

Hubel and Wiesel 1968; Bonhoeffer&Grinvald, 1991;

Bressloff&Cowan, 2002; Kaschube et al. 2010

Orientation Map

Previous slide.

Neighboring cells in cortex of cats and monkey also have similar preferred orientation.

The result is a cortical orientation map.

Receptive fields:

 Retina, LGN

Receptive fields:

 visual cortex V1

orientation

selective

Receptive field Development

rotational

symmetry

Previous slide.

From the retina to the LGN and then to cortex, information is preprocessed or ‘recoded’

as indicated by the different shapes of receptive fields. The elongated receptive fields

with preferred orientation are useful as ‘edge detectors’ in V1 and in that sense

potentially a ‘better code’.

The question then arises how this recoding arises.

Receptive fields:

 visual cortex V1

What makes cells Orientation selective? – connectivity!

Receptive fields:

in LGN

Precise wiring necessary – how done?

Receptive Field Development

Hubel and Wiesel (1962) , J. Physiol.

Willshaw and von der Malsburg (1976) Proc. Roy. Soc. Lond. B.

Previous slide.

The study of receptive fields in visual cortex of mammals by Hubel and Wiesel has been

very influential. They proposed that the elongated receptive fields (edge detectors) arise

by appropriate wiring of the connections to V1 arriving from LGN (the intermediate stop

from the retina to cortex) .

But then the question arises, how such a precise wiring can develop.

In particular, the wiring is not fixed but depends on the stimulation.

If young animals see only vertical stripes, they develop more edge detectors for vertical

than for horizontal orientation.

From this and many other experiments can be concluded that the connections are not

genetically encoded, but that the wiring depends on the statistics of stimulation. Now,

this sounds like Hebbian learning could help to set up the wiring!

There have been many theoretical studies to illustrate how Hebbian learning could be

used. The ideas can traced back at least to Willshaw and von der Malsburg (1976).

Apply nonlinear Hebbian learning rules/nonlinear neuron model

-Inhibitory lateral interactions

that learn with Hebbian rule

- 3 different types of nonlinearity g

Brito and Gerstner, 2016, PLOS comput. Biol.

𝜈𝑖
𝑝𝑜𝑠𝑡

= 𝑔(෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

) − ෍

𝑛

𝐵𝑖𝑛𝜈𝑛
𝑝𝑜𝑠𝑡

All three nonlinearities lead

to Gabor-like receptive fields!

Previous slide.

We focus on a recent study. It exploits that ICA arises from Hebbian learning in

nonlinear neurons with gain function g. There are weak inhibitory interactions between

visual cortex neurons (yellow). These interactions change according to the Hebbian

learning rule that we have seen before.

The forward connections change according to the Hebb-rule combined with

normalization. After presentation of pre-whitened image patches, learning results in

elongated receptive fields (inset: schematic of Gabor filter) of each neuron. Different

neurons have different RFs (5 samples shown). The diversity of RFs is shown as

distribution of dots (one dot per neuron) indicating the width and length of the RF.

Three different non-linearities (a,b,c) give very similar results.

𝑑

𝑑𝑡
𝐵𝑖𝑛 = +𝑎𝑙𝑎𝑡(𝜈𝑖

𝑝𝑜𝑠𝑡
−𝜈𝑖

𝑝𝑜𝑠𝑡
)𝜈𝑛

𝑝𝑜𝑠𝑡

Gerstner and Brito (2016), Nonlinear Hebbian learning as a unifying principle, PLOS Comput. Biol. .

The receptive field of a visual neuron refers to

[] The localized region of space to which it is sensitive

[] The orientation of a light bar to which it is sensitive

[] The set of all stimulus features to which it is sensitive

The receptive field of a auditory neuron refers to

[] The set of all stimulus features to which it is sensitive

[] The range of frequencies to which it is sensitive

The receptive field of a somatosensory neuron refers to

[] The set of all stimulus features to which it is sensitive

[] The region of body surface to which it is sensitive

Quiz

[x]

[x]

[x]

[x]

[x]

[x]

[x]

Previous slide.

The term ‘receptive field’ is also used outside vision.

Summary: ICA and Receptive Field Development

- Edge detectors are the independent component of image patches

- Edge detectors are typical for receptive fields in visual cortex V1

- ICA can be implemented by a nonlinear Hebbian learning rule

- Hebbian learning can explain the development of receptive fields in

visual cortex V1 (and similarly in other primary sensory cortical areas)

Summary: the power of 2-factor rules

- 2-factor rules are Hebbian rules (‘pre’ and ‘post’).

- Hebbian rules have strong experimental support.

- 2-factor rules explain receptive field development

- 2-factor rules can implement PCA

- 2-factor rules can implement ICA

- 2-factor rules can implement k-means clustering.

- 2-factor rules can implement compressed

representation for linear readout

- 2-factor rules can implement autoencoders

- BUT nearly always limited to 1 hidden layer

- Representation learning across multiple

layers is nearly impossible with Hebb rule

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Classification by nearest prototype
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Dead unit
	Slide 52
	Slide 53: Theorem: Minimal Reconstruction Error
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

