
Learning in Neural Networks: Lecture 2

Formalities

Interdisciplinary class (8 NX, 2 Math, rest IC) → ask questions!

34 enrolled students → oral exam possible

Number of credits = 6 → 9 h/week of work for 18 weeks

(this includes 2 hours of lectures)

Choice of 2 Exercise sessions:

- Tuesday 14:15- 16:00 OR

- Wednesday 16h15 – 17h15

Personal work on the exercises is integral part of the class.

Number of exercises/week decreases after start of miniproj.

Previous slide.

Please ask questions during class!

Everybody should spend time with the exercises. Please try first to solve them

yourself before you look at the solutions.

The theory developed in the exercises is important to understand the theory part

of the paper that you will have to present during the oral exam. After the paper

presentation, there will be questions about all the content of the class including

the exercises.

For practical reasons, you will not be asked to perform long calculations during

the exams, but the central idea of how you show a result is part of the exam.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 2

ICA with Hebbian rules (Independent Component Analysis)

Review: Hebbian learning (2-factor rules)

PCA as maximization of variance

ICA and Blind Source Separation

Gaussian and Non-Gaussian distribution

ICA Algorithm FAST-ICA

ICA and receptive fields

Hyvarinen and Oja (2000) Independent Component Analysis:

Algorithms and Applications, Neural Networks

Hyvarinen and Oja (1998), Independent Component Analysis by

general nonlinear Hebbian rules, Signal Processing.

Gerstner and Brito (2016), Nonlinear Hebbian learning as a

unifying principle, PLOS Comput. Biol.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 2

ICA with Hebbian rules

Review: Hebbian learning (2-factor rules)

Hyvarinen and Oja (2000) Independent Component Analysis:

Algorithms and Applications, Neural Networks

Hyvarinen and Oja (1998), Independent Component Analysis by

general nonlinear Hebbian rules, Signal Processing.

Hebbian Learning (LTP)

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s

“if two neurons are active together, the connection

between those two neurons gets stronger.”

“another synapse (red) which does not receive

presynaptic spikes, does NOT increase”

Previous slide.

The joint activation of pre- and postsynaptic neuron induces a strengthening of

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic

neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of Hebbian learning, only the stimulated synapses (green)

is strengthened, but not another synapses (red) onto the same neuron.

Rate-based Hebbian Learning

Δ𝑤𝑖𝑗= 𝐹(𝑤𝑖𝑗 , 𝑀𝑂𝐷; 𝜈𝑗
𝑝𝑟𝑒

, 𝜈𝑖
𝑝𝑜𝑠𝑡

)

Δ𝑤𝑖𝑗 = 𝑎0 + 𝑎1
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

+ 𝑎1
𝑝𝑜𝑠𝑡

𝜈𝑖
𝑝𝑜𝑠𝑡

+ 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
+ 𝑎2

𝑝𝑜𝑠𝑡
𝜈𝑖

𝑝𝑜𝑠𝑡 2
+ 𝑎2

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑟𝑒 2
. . .

a = a(wij)

a(wij) wij

pre

j

post
i

𝑤𝑖𝑗

Local rule:

Taylor expansion:
Modulator MOD=const

Previous slide.

Let us formulate these insights mathematically.

(i) Local rule implies that the weight change Δ𝑤𝑖𝑗 depends explicitly only on

th firing rate of the pre- and postsynaptic neuron. It can also depend on

the momentary value of the synaptic weight 𝑤𝑖𝑗 itself. Finally, it could

also depend on other factors, for example on the presence or absence of

a neuromodulator such as dopamine, called MOD. At the moment we

assume that the value of MOD does not change so that we can disregard

it.

(ii) The Hebbian rule says little about the function F. We assume that F

allows a Taylor expansion. We expand F with respect to the two firing

rates, but not with respect to the weight value itself. As a result we have

expansion coefficients that still carry the weight-dependence as an

argument.

pre

j

post
i

𝑤𝑖𝑗

k

Δ𝑤𝑖𝑗 = 𝑏𝜈𝑖
𝑝𝑜𝑠𝑡

(𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝜗)𝜈𝑗
𝑝𝑟𝑒

BCM rule: 3rd order

𝜈𝑖
𝑝𝑜𝑠𝑡

Δ𝑤𝑖𝑗

𝜗 = 𝑓(ǉ𝜈𝑖
𝑝𝑜𝑠𝑡

)

Bienenstock, Cooper

Munro, 1982

Sliding threshold

Bienenstock-Cooper-Munro rule, a Nonlinear Hebb Rule

Δ𝑤𝑖𝑗 = 𝑏𝜈𝑖
𝑝𝑜𝑠𝑡

(𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝜗)𝜈𝑗
𝑝𝑟𝑒

= 𝑏(𝜈𝑖
𝑝𝑜𝑠𝑡

)2𝜈𝑖
𝑝𝑟𝑒

− 𝑏𝜗𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

𝜗 assume
𝜈𝑗

𝑝𝑟𝑒
> 0

Nonlinear Hebb rule important today!

LTP LTD

Previous slide.

A variant of the presynaptically gated plasticity rule is the BCM rule, named

after Bienenstock, Cooper, and Munro, the authors of a paper in 1982.

The two main differences to the presynaptically gated rule are that

(i) It contains an extra rate factor 𝜈𝑖
𝑝𝑜𝑠𝑡

.

(ii) The threshold value 𝜗 is taken to be a function of the low-pass-filtered

rate 𝜈𝑖
𝑝𝑜𝑠𝑡

. This leads a so-called ‘sliding threshold’.

If we neglect the sliding threshold, the BCM rule can be mapped directly to

the Taylor expansion.

The BCM rule is another example of a Hebbian rule!

It is a nonlinear Hebbian rule.

We will see that a nonlinear Hebbian rule gives rise to ICA.

Hebbian Learning detects correlations in the input

Fixed rate

Jointly variing rate

{

{

Development of Receptive Fields

(‘filters’)

Functional Consequence of Hebbian Learning

Nonlinear Hebbian rules lead to ICA

Previous slide.

How can a Hebbian rule be useful?

Suppose a single postsynaptic neuron receives input from several presynaptic

neurons.

Let us assume that the top half of the presynaptic neurons just send random

spikes whereas the lower half of the presynaptic neuron send highly correlated

spikes, because the spike rates of this second group increase and decreases

together.

In this case a useful Hebbian learning rule will strengthen the synapses that see

the jointly varying firing rate and set the other synapses to very small values or

even zero.

Loosely speaking, a good Hebbian learning rule will focus on the parts of input

with ‘interestingly correlated’ signals.

For example, if the input consists of small patches of natural images, then the

learning rule will develop specific two-dimensional filters that are adapted to the

image statistics. In neuroscience, these filters are called ‘receptive fields’

Quiz: Modeling biological neural networks

[] Neurons in the brain are non-linear

[] The total input to model neurons is a linear combination synaptic inputs

[] Learning means a change of the connection weights

[] Hebbian learning is a two-factor rule: pre and post

[] Hebbian rules can contain several terms, including nonlinear terms

[] PCA by Hebbian learning uses linear Hebbian term and linear neurons

[] The BCM rule is an example of a linear Hebbian learning rule

[x]

[x]

[x]

[x]

[x]

[x]

[]

Previous slide.

Your notes.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 2

ICA with Hebbian rules

Review: Hebbian learning (2-factor rules)

PCA as variance maximization

Previous slide.

In this short section we review why PCA finds the direction of the maximal

variance.

PCA has already covered in many classes on signal processing and data

analys and is standard material

.

𝑥2

𝑥1

𝑥3

1) Subtract mean Ԧ𝑥 Ԧ𝑥 − 𝐸 Ԧ𝑥

𝐶𝑘𝑗
0 = (𝑥𝑘 − 𝐸 𝑥𝑘)(𝑥𝑗 − 𝐸 𝑥𝑗)

2) Calculate covariance matrix

(eigenvector with maximal eigenvalue)

is called the Principal Component

Ԧ𝑒1
3) Calculate eigenvectors

Ԧ𝑒1

Standard PCA algorithm

Previous slide.

PCA is a standard method covered in introduction lectures to signal

processing or data analysis.

First you subtract the mean. Then you calculate the eigenvectors. The

eigenvector with the largest eigenvalue is called the principal component.

𝑥2

𝑥3

Ԧ𝑥
𝜇

− 𝐸𝑑𝑎𝑡𝑎[Ԧ𝑥
𝜇

]

PCA theorem: The first PCA is the direction of

maximal variance

Today:

Similar maximization principle,

but applied to ICA.

PCA theorem

Blackboard 1: (8 min)

Idea of projection

𝑦 = 𝑤𝑇 Ԧ𝑥𝜇

Previous slide.

We project onto an arbitrary axis in direction of a unit vector that we call 𝑤 The

projection of a data point Ԧ𝑥 on 𝑤 gives y = 𝑤𝑇 Ԧ𝑥

We change the direction of 𝑤 such that

is maximized.

For maximization we can either use gradient ascent, or solve directly using

coordinates in the eigenvector system of the correlation matrix.

Part of the calculation is done on the blackboard, other parts in the exercises.

We will apply similar ideas of projection and maximization today to derive rules

of ICA.

𝐸 𝑦2

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 2

ICA with Hebbian rules

Review: Hebbian learning (2-factor rules)

PCA as maximization of variance

ICA and Blind Source Separateion

Images from: Independent Component Analysis:

Algorithms and Applications, Neural Networks (2000)

by Hyvarinen and Oja

Previous slide.

After PCA (Principal Component Analysis) we now

look at ICA (Independent Component Analysis)

Independent component analysis

Original

Signal sources

Mixed signals

Blind source separation:

Can we recover the original sources?

𝑥1 = 𝑎11𝑠1 + 𝑎12𝑠2

𝑥2 = 𝑎21𝑠1 + 𝑎22𝑠2

𝑠1(𝑡)

𝑠2(𝑡)

𝑥1(𝑡)

𝑥2(𝑡)

𝑠1, 𝑠2

𝑥1, 𝑥2

Hyvarinen and Oja, 2000

unknown mixing coefficients

Previous slide.

Image we receive a mixture of two different, but independent signals.

Can we recover the original unmixed signals ?

Task: recover the original signals

Two classes of methods:
1) Exploit temporal structure: Temporal ICA

2) Exploit independence: Standard ICA/Spatial ICA

𝑥1(𝑡)

𝑥2(𝑡)

Mixed signals

Previous slide.

There are two classes of methods.

The first one is that we exploit the temporal if it is available.

In other words, if it is a ‘real’ sequence of samples like in the above

examples, we can exploit that the data points come in a specific non-random

order.

Temporal ICA
𝑠1(𝑡)

𝑠2(𝑡)

𝐸[𝑠1 𝑡 𝑠2 𝑡] = 0

𝐸[𝑠2 𝑡] = 0

𝐸[𝑠1 𝑡] = 0

Temporal ICA

𝐸[𝑠1(𝑡)𝑠1(𝑡 − 𝜏]) ≠ 0

𝐸[𝑠1 𝑡 𝑠2 𝑡 − 𝜏] = 0

𝐸[𝑠2 𝑡 𝑠2 𝑡 − 𝜏] ≠ 0

𝜏

valid for any 𝜏 ! (< autocorrelation time scale of signals)

Task: recover the original signals

Main idea of temporal ICA:

Find unmixing matrix W such that outputs are independent

W

𝐸[𝑦𝑖(𝑡)𝑦𝑘(𝑡 − 𝜏)] = 𝛿𝑖𝑘𝜆(𝜏)

𝐸[𝑦𝑖(𝑡)𝑦𝑘(𝑡)] = 𝛿𝑖𝑘

for several delays 𝜏

𝑦1 𝑡 = ෍

𝑘

𝑤1𝑘𝑥𝑘

𝑦2 𝑡 = ෍

𝑘

𝑤2𝑘𝑥𝑘

Previous three slides.

If the data consists of a ‘real’ sequence of samples in time, as in the above

examples, we can exploit that the data points come in a specific non-random

order.

In temporal ICA we exploit that the autocorrelation of each signal is non-zero,

but the cross-correlations MUST be zero since the two signals are

independent according to our assumption.

And this is true for arbitrary time delays 𝜏 that are shorter than the

autocorrelation time scale of the signal.

This leads to powerful algorithms.

Task: recover the original signals

Two classes of methods:
1) Exploit temporal structure: Temporal ICA

2) Exploit independence: Standard ICA/Spatial ICA

𝑥1(𝑡)

𝑥2(𝑡)

Hyvarinen and Oja, 2000

Previous three slides.

Now we focus on the second method, which is more standard one.

What is the ‘Natural Axis’ of data distribution?

Preprocessing by Whitening:

- use PCA

-rescale to unit variance

→All directions have

identical variance

A) B)

C)

coordinate rescaling

changes dominant axis

Blackboard 2: (6 min)

Whitening

Ԧ𝑥𝜇 = (𝑥1
𝜇

, 𝑥2
𝜇

)

Previous slide.

In the standard ICA algorithms, we consider that data points have been generated randomly

and have no specific temporal order. If they arrive one after the other, the order would be a

random sequence. Therefore temporal order is uninformative. The only aspect that is

exploitable is the ‘spatial’ distribution of the data points.

Suppose we have the distribution as in A). What is the natural axis? OR: what would PCA give

as the first PC? Same question for B).

However, A and B are the same distribution and can be transformed to each other by rescaling

the coordinates in y-direction. Think of wheather forecast with one axis temperature and the

second one wind speed. Units of coordinates are meaningless!

C) We use PCA on the distribution in B, and rotate the coordinate system to align with the

PCs. Afterwards we rescale this new coordinate system by multiplying coordinates.

This process is called ‘whitening’ if, after the rescaling, a PCA of the transformed data set give

unit variance in all directions.

Renormalized:

-Mean zero

-Variance one (after whitening)

y1 𝑝(𝑦1, 𝑦2) = 𝑝1(𝑦1)𝑝2(𝑦2)

Independence:

What is the ‘Natural Axis?’

One minute:

Independence implies Uncorrelated

… but uncorrelated does not imply independent

𝑝(𝑦1, 𝑦2) = 𝑝1(𝑦1)𝑝2(𝑦2)
𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝐸[(𝑦1 − ǉ𝑦1)(𝑦2 − ǉ𝑦2] = 0

[] True?

[] False?

[x]

[]

𝑥2

𝑥1

Previous slide.

Image we receive a mixture of two different, but independent signals.

Can we recover the original unmixed signals ?

Because of independence

(𝑦1 − ǉ𝑦1)(𝑦2 − ǉ𝑦2) = ∫ 𝑝 𝑦1 𝑦1 − ǉ𝑦1 𝑑𝑦1∫ 𝑝 𝑦2 (𝑦2 − ǉ𝑦2) 𝑑𝑦2

(𝑦1 − ǉ𝑦1)(𝑦2 − ǉ𝑦2) = 𝐸[(𝑦1 − ǉ𝑦1)(𝑦2 − ǉ𝑦2)]

 = ∫ ∫ 𝑝(𝑦1, 𝑦2)[(𝑦1 − ǉ𝑦1)(𝑦2 − ǉ𝑦2)] 𝑑𝑦1 𝑑𝑦2

The right-hand-side vanishes since by definition ǉ𝑦1 = 𝐸[𝑦1]
.

Renormalized:

-Mean zero

-Variance one (whitening)

Example: Preprocessing for ICA

→ all directions have equally

important in 2nd order statistics

𝑝(𝑦1, 𝑦2) = 𝑝1(𝑦1)𝑝2(𝑦2)

Independence:

𝑦1

𝑦2

Step 1

Step 2 𝑥2

𝑥1

Previous slide. A summary of the procedure as whole

Step 1: The data is shifted to mean zero. We apply PCA and turn to the

Eigensystem of the correlation matrix. The whitening (rescaling of coordinates

by) is applied so that the variance is the same in all directions.

The coordinates in the whitened system are 𝑥1
′ , 𝑥2

′ , …

Further application of PCA is useless to find a ‘good’ coordinate system.

Step 2: The best intrinsic coordinate system in this example is found by

searching for independence. This yields a further rotation of the coordinate

system with the final coordinates 𝑦1, 𝑦2.

In the next few slides these steps are applied to an example from Hyvarinen

and Oja (2000)

Images from: Independent Component Analysis:

Algorithms and Applications, Neural Networks (2000)

by Hyvarinen and Oja

𝜆𝑛

Mixed signals

Original Signals

x2

𝑥1 = 𝑎11𝑠1 + 𝑎12𝑠2

𝑥2 = 𝑎21𝑠1 + 𝑎22𝑠2

x1

Example: Preprocessing for ICA

s1

s2

s1

s2

Hyvarinen and Oja, 2000

draw data points

x2

x1

Example: Preprocessing for ICA

s1

Mixed signals

Whitening

-PCA, rotate to eigensystem

-Divide each component by 𝜆𝑛

Original signals

Hyvarinen and Oja, 2000

𝑥1
′

𝑥2
′

𝑝(𝑦1, 𝑦2) = 𝑝1(𝑦1)𝑝2(𝑦2)

Independence

defines natural axis

Variance is the same in all directions!!!

Yet there is a ‘natural axis’!

Independent Component Analysis
Finds the ‘natural axis’

Hyvarinen and Oja, 2000

𝑥1
′

𝑥2
′

𝑦1

𝑦2

Previous slide.

Step 2 is the ICA step : The best intrinsic coordinate system in this example is

found by searching for independence. This yields a further rotation of the

coordinate system with the final coordinates 𝑦1, 𝑦2.

There are several algorithms to perform ICA.

We study in the next section a specific one.

Images from: Independent Component Analysis:

Algorithms and Applications, Neural Networks (2000)

by Hyvarinen and Oja

Quiz: ICA. Modeling biological neural networks

Suppose that we have sequence of data points Ԧ𝑥(𝑡1), Ԧ𝑥(𝑡2), Ԧ𝑥(𝑡3), … .

[] Temporal ICA requires signals s(t) with an autocorrelation function that

extends over a nonzero time scale (i.e. different time points are not

independent)

[] Temporal ICA requires data with a Gaussian distribution

[] Temporal ICA requires data with a non-Gaussian distribution

[] Spatial ICA requires signals with an autocorrelation function that

extends over a nonzero time scale

[] Spatial ICA requires data where different time points are independent

[] Spatial ICA treats data as if different time points were independent

[] Spatial ICA requires data with a non-Gaussian distribution

[x]

[]

[]

[]

[]

[x]

[x]

Feedback on ICA

[] Up to here at least 60 percent of the material was new to me

For 80 percent of the material that we have seen so far

[] I understood the concepts and got a good idea of the formalism

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 2

ICA with Hebbian rules

Review: Hebbian learning (2-factor rules)

PCA as maximization of variance

ICA and Blind Source Separation

ICA and Hebb: Gaussian vs. Non-Gaussian distribution

Images from: Independent Component Analysis:

Algorithms and Applications, Neural Networks (2000)

by Hyvarinen and Oja

Previous slide.

In this section we introduce the concept of non-Gaussian distribution

Gaussian and non-Gaussian distributions

Figure 7: The multivariate distribution

of two independent gaussian

variables.

Figure 8: The density function of the Laplace distribution, which is a typical supergaussian distribution. For

comparison, the gaussian density is given by a dashed line. Both densities are normalized to unit variance.

Blackboard 3

Hyvarinen and Oja, 2000

Previous slide.

Gaussian distributions fall off with

Non-Gaussian distributions may fall off more slowly (have ‘longer tails’, e.g. Laplacian);

or more rapidly (‘shorter tails’, e.g., rectangular distribution) than the Gaussian.

exp −𝑥2

Independence and non Gaussian distribution

Figure 7: The multivariate distribution

of two independent gaussian

variables.

Normalized Gaussian distribution has no preferred axis

With a normalized Gaussian distribution, data points are

 uncorrelated and independent

Gaussian vs.

Non-Gaussian

𝑝(𝑦1, 𝑦2) = 𝑝1(𝑦1)𝑝2(𝑦2)

Independence:

Previous slide.

A standard Gaussian distribution, normalized to standard deviation of one, describes

independent data.

Independence implies that there are no correlations.

A normalized Gaussian distribution has no preferred axis (see also exercises).

However, a non-Gaussian distribution, normalized to standard deviation of one, can

have one or two preferred axis, that correspond to the ‘independent signals’.

𝐸𝑝(𝑦) = න𝑦 𝑝(𝑦) 𝑑𝑦

Mean and expectation

𝐸𝑝(ℎ(𝑦)) = නℎ(𝑦)𝑝(𝑦)𝑑𝑦

Measure of non-Gaussianity

𝐾(𝑤) = 𝐸𝑑𝑎𝑡𝑎(𝑦4) − 3𝐸𝑑𝑎𝑡𝑎(𝑦2)

𝐽(𝑤) = [𝐸𝑑𝑎𝑡𝑎 𝐹 𝑦 − 𝐸𝐺𝑎𝑢𝑠𝑠(𝐹(𝜈))]2

reference of

Gaussian function

result depends on direction of vector 𝑤

Previous slide.

There are many ways to measure the non-Gaussianity of data along an axis

𝑦 = 𝑤𝑇 Ԧ𝑥
A first example is Kurtosis. Kurtosis is the fourth-order correlations, and we subtract a

term that corresponse to the fourth-order correlation of the Gaussian distribution.

Therefore, Kurtosis yields a number that measures ‘non-Gaussianity’. Long and short

tails of the distribution correspond to positive or negative Kurtosis.

By construction, the Kurtosis of a Gaussian distribution vanishes.

More generally, any function 𝐹(𝑦) = 𝐹(𝑤𝑇 Ԧ𝑥)

can be used to measure non-Gaussianity by taking the expection over the data. We

simply have to subtract the expectation that a Gaussian distribution p(𝜈) would have if

pushed through the nonlinear function 𝐹(𝜈).

𝑑𝐽

𝑑𝑤
= 0 ֎

𝑑𝛾

𝑑𝑤
= 0

2 minutes

𝐽(𝑤) = [𝐸𝑑𝑎𝑡𝑎(𝐹(𝑦)) − 𝐸𝐺𝑎𝑢𝑠𝑠(𝐹(𝜈))]2

𝐽(𝑤) = [𝛾(𝑤) − 𝑎]2

Find the maximum of non-Gaussianity

In class exercise NOW: show that one implies the other

→ optimize directly 𝛾 𝑤 ≔ 𝐸𝑑𝑎𝑡𝑎(𝐹(𝑦(𝑤)))
Blackboard 4a:

Gradient

depends on weight vector 𝑤

Previous slide.

In order to get rid of the positive or negative signs of the non-Gaussianity on the

previous slide, it is convenient to take the square.

Interestingly, whether taking the square or not does not matter if we study the optima.

Some optima of 𝛾(𝑤) maximize the non-Gaussianity J; other minimize it.

Δ𝑤 = 𝜂 𝐸𝑑𝑎𝑡𝑎൛ Ԧ𝑥𝑔 𝑤𝑇 Ԧ𝑥 }

Find the maximum of non-Gaussianity

Ԧ𝑥
𝑦 = 𝑔 𝑤𝑇 Ԧ𝑥

Δ𝑤 = 𝜂 Ԧ𝑥𝑔 𝑤𝑇 Ԧ𝑥 = Ԧ𝑥 ⋅ 𝑔(𝑦)
online

Δ𝑤𝑗 = 𝜂 𝑥𝑗𝑔 𝑤𝑇 Ԧ𝑥 = 𝑥𝑗𝑔(𝑦)

Hebb rule for nonlinear neuron model!

Or nonlinear Hebb rule and linear neuron model.

synaptic change

with 𝑔 = 𝐹′ 𝑎𝑛𝑑 |𝑤𝑇|=1

Hyvarinen and Oja, 1998

Gerstner and Brito, 2016

Previous slide.

Optimizing the non-Gaussianity by gradient descent yields a Hebbian learning rule!

To see this, we have to

- Use as a postsynaptic neuron a nonlinear neuron model with transfer function g,

where g is the derivative of the original function F that we want to optimize.

- Alternatively, we can take LINEAR neuron model and assume that the Hebbian

learning rule that controls synaptic changes is nonlinear, similar to the BCM rule.

Note that we optimize the expectation over data. This leads to a batch rule for the

update of the parameters. We get a biologically interpretable rule only after the

transition to an online rule.

Summary: ICA by a neuronal rule

Δ𝑤𝑖𝑗 ∝ 𝐹𝐻𝑒𝑏𝑏(𝑝𝑟𝑒𝑗 , 𝑝𝑜𝑠𝑡𝑖)

pre
post

ij

𝑤𝑖𝑗𝜀 𝑡 − 𝑡𝑗
𝑓Nonlinear Hebb → ICA

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝜂𝐸൛ Ԧ𝑥 𝑔(𝑤𝑇 Ԧ𝑥)}

Δ𝑤 = 𝜂 Ԧ𝑥𝑔(𝑤𝑇 Ԧ𝑥)

batch

online

online – single synapseΔ𝑤𝑖𝑗 = 𝜂 𝑥𝑗𝑔𝑖(෍

𝑘

𝑤𝑖𝑘 𝑥𝑘)

ICA yields a nonlinear Hebbian online rule for synaptic plasticity

(one data point at a time)

(update based on all data

points)

Previous slide.

Quite generally, minimization of a loss function or maximization of an optimization

criterion yields a batch rule.

The batch is the empirical average over the actual data (or expectation over the

ACTUAL data)

The online rule is for a single sample of the data.

The interpretation of the online rule in terms of Hebbian learning is sometimes easier if

we consider the vector components, instead of the vector.

Then we see directly the contributions of presynaptic and postsynaptic neuron.

What we have here is a linear presynaptic drive 𝑥𝑗

Multiplied with a nonlinear postsynaptic value 𝑔𝑖(.).

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 2

FastICA algorithm

Review: Hebbian learning (2-factor rules)

PCA as maximization of variance

ICA and Blind Source Separation

Gaussian vs. Non-Gaussian distribution

ICA Algorithm FAST-ICA
Hyvarinen and Oja (2000) Independent Component Analysis:

Algorithms and Applications, Neural Networks

Hyvarinen and Oja (1998), Independent Component Analysis by

general nonlinear Hebbian rules, Signal Processing.

Previous slide.

We now turn to a famous algorithm for ICA, called fastICA, developed by Hyvarinen and

Oja.

This is a batch algorithm, involving a speed-up by an approximate Newton step and an

explicit renormalization step.

Nevertheless, the similarity to two-factor rules is striking, if we consider its online

version.

Gaussian and non-Gaussian distributions

Normalized gaussian distribution

 has no preferred axis

𝑝(𝑦1, 𝑦2) = 𝑝1(𝑦1)𝑝2(𝑦2)

x’1

x’2

y1

y2

𝐽(𝑦) = [𝐸𝑑𝑎𝑡𝑎(𝐹(𝑦)) − 𝐸𝐺𝑎𝑢𝑠𝑠(𝐹(𝜈))]2

Measure of non-Gaussianity

→ optimize 𝐸𝑑𝑎𝑡𝑎(𝐹(𝑦))

Previous slide.

Reminder: our aim is to maximize the non-Gaussianity. Non-Gaussianity can arise

because the distribution has either a shorter tails than a Gaussian (sub-Gaussian); or a

longer tail than a Gaussian (super-Gaussian).

In one case the function

𝐸𝑑𝑎𝑡𝑎(𝐹(𝑦))
is maximized; in the other one minimized.

We therefore write generically ‘optimize’ the criterion 𝐸𝑑𝑎𝑡𝑎 𝐹 𝑦

with nonlinearity F.

Optimization with Newton Method

𝑦

𝑦 = 𝜙 𝜂

𝜂

= 𝜙 0 + 𝜙′(0)𝜂 +

find zero-crossing 𝜙 𝜂 = 0!

Initial value 𝜂 = 0. Increase or decrease 𝜂? → 𝜙′(0)

= 0!

𝜂𝑁𝑒𝑤𝑡𝑜𝑛 = −𝜙(0)/𝜙′(0)
Newton step:

predict linear zero crossing

By how much?

Gradient defines direction!

Previous slide.

Suppose we want to find the zero crossing y=0 of the function y = 𝜙 𝜂 . If at our initial

guess of 𝜂 the value is 𝜙 𝜂 > 0, then we have to move down; if 𝜙 𝜂 < 0 we have to

move up. The slope 𝜙’ tells us which direction leads up or down; let us increase or

decrease 𝜂 by an amount Δ𝜂 in the appropriate direction.

The Newton method proposes to choose Δ𝜂 such that the step size would correspond to

the zero-crossing of the linear approximation (red) of the curve (blue). If we denote the

initial value as 𝜂 = 0, then the step size is Δ𝜂 = 𝜂𝑁𝑒𝑤𝑡𝑜𝑛 = −𝜙(0)/ 𝜙′(0). The general case

is Δ𝜂𝑁𝑒𝑤𝑡𝑜𝑛 = −𝜙(𝜂𝑜𝑙𝑑)/ 𝜙′(𝜂𝑜𝑙𝑑) where 𝜂𝑜𝑙𝑑 is the current value.

An interesting and relevant application is when we want to find a minimum or maximum of

a scalar function J. Then we define 𝜙(.) as the derivative of the function J. Searching for a

zero-crossing of 𝜙(.) is equivalent to searching for an optimum of J. The Newton method

can find minima and maxima of J! (both are zero-crossings of 𝜙.

Right: If the function J w1, w2, w3 … takes a vector as input, we calculate the gradient

and search for an optimum along the straight line in direction of the gradient. The variable

𝜂 denotes the position along the line. We choose the coordinate system such that (at each

iteration, the initial value is 𝜂 = 0. We then search for a zero-crossing of 𝜙(𝜂) where 𝜙(.)
is the value of the slope of the function J along the line.

Independent component analysis

Algo fastICA with Nonlinearity F

1. Initialize w

2.Approximate Newton step (Newton Method)

3.Renormalize

4. If not converged, go to 2

𝑤 =
𝑤𝑛𝑒𝑤

𝑤𝑛𝑒𝑤

𝑤𝑛𝑒𝑤 = 𝐸𝑑𝑎𝑡𝑎൛ Ԧ𝑥𝑔 𝑤𝑇 Ԧ𝑥 − 𝑤𝑔′(𝑤𝑇 Ԧ𝑥)}

Blackboard 4B:

Newton Step

𝑔 = 𝐹′

Previous slide.

The first term is identical to the term we found for ICA via nonlinear Hebb.

The second term with the negative sign is an approximate Newton step intended to

speed up gradient descent. The idea is similar to line search: we adapt the step size of

the gradient step to a relatively large value that leads in a single step close to the

minimum along the specific direction (‘line’) defined by the gradient. In the next iteration

we find a new gradient and take again a big step.

The Blackboard calculation indicates the precise assumptions that go into the

approximation of the Newton step.

(i) Data is prewhitened (which is correct)

(ii) The distribution of 𝑔′ 𝑤𝑇 Ԧ𝑥 is independent of Ԧ𝑥 2 (which is an ad-hoc

approximation to simplify the expression). The distribution is over the data points.

As mentioned before, the algorithm can search for minima or maxima (since both are

zero-crossings of the derivative).

In terms of optimization, the Newton-method is a second-order method since it uses not

only the gradient but also its derivative (hence the curvature).

EEG analysis

Figure 11: (From Vigário et al, 1998). Samples of MEG signals, showing artifacts produced by blinking,

saccades, biting and cardiac cycle. For each of the 6 positions shown, the two orthogonal directions of the

sensors are plotted.

Previous slide.

A standard application of ICA is in EEG analysis. For example, ICA allows to remove

eye blinks and other ‘error’ signals.

Another famous application is to use ICA to explain the development of receptive fields.

(next section).

Quiz: ICA. Modeling biological neural networks

Suppose that we have sequence of data points Ԧ𝑥(𝑡1), Ԧ𝑥(𝑡2), Ԧ𝑥(𝑡3), … .

[] Spatial ICA requires data with a non-Gaussian distribution

[] Optimization of non-Gaussianity leads to different ICA rules,

depending on the criterion of ‘non-Gaussianity’

[] A Hebb-rule is an example of online rule

[] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F

[] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F’

[] FastICA implements an approximate Newton step for optimization

[] FastICA is a second-order gradient descent/ascent algorithm

(i.e. includes curvature information of the loss/optimality criterion)

[x]

[x]

[x]

[]

[x]

[x]

[x]

Feedback on ICA

[] At least 60 percent of the material on fastICA and ICA as Hebb-

rule was new to me

For 80 percent of the material that we have seen in this part

[] I understood the concepts and got a good idea of the formalism

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Summary: ICA with Hebbian rules

Hebbian learning (2-factor rules) can be nonlinear

PCA can be derived from a maximization priciple

ICA and Blind Source Separation:

temporal and spatial ICA have different conditions

Optimization of Non-Gaussianity yields ICA via Hebbian rule

after transition from batch to online

ICA Algorithm FAST-ICA implements approximate Newton step

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

