Learning in Neural Networks: Lecture 2
Formalities

Interdisciplinary class (8 NX, 2 Math, rest IC) = ask questions!
34 enrolled students -> oral exam possible

Number of credits = 6 =2 9 h/week of work for 18 weeks
(this includes 2 hours of lectures)

Choice of 2 Exercise sessions:

- Tuesday 14:15- 16:00 OR

- Wednesday 16h15 - 17h15
Personal work on the exercises Is integral part of the class.
Number of exercises/week decreases after start of miniproj.



Previous slide.
Please ask guestions during class!

Everybody should spend time with the exercises. Please try first to solve them
yourself before you look at the solutions.

The theory developed In the exercises Is important to understand the theory part
of the paper that you will have to present during the oral exam. After the paper

presentation, there will be questions about all the content of the class including
the exercises.

For practical reasons, you will not be asked to perform long calculations during
the exams, but the central idea of how you show a result is part of the exam.



Learning in Neural Networks: Lecture 2

Review: Hebbian learning (2-factor rules)
PCA as maximization of variance
ICA and Blind Source Separation

Gaussian and Non-Gaussian distribution

Wulfram Gerstner
EPFL, Lausanne, Switzerland

|CA AIgOnth m FAST_ | CA Hyvarinen and Oja (2000) Independent Component Analysis:

Algorithms and Applications, Neural Networks

Hyvarinen and Oja (1998), Inde
general nonlinear He

|CA and recepnve f|e|dS Gerstner and Brito (2016), Non

pendent Component Analysis by
obian rules, Signal Processing.

Inear Hebbian learning as a

unifying principle, PLOS Comput. Biol.



Learning in Neural Networks: Lecture 2
ICA with Hebbian rules

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Review: Hebbian learning (2-factor rules)

Hyvarinen and Oja (2000) Independent Component Analysis:
Algorithms and Applications, Neural Networks
Hyvarinen and Oja (1998), Independent Component Analysis by

general nonlinear Hebbian rules, Signal Processing.




neihnian Learning (LIP)

Hebblan coactivation: 0 *
pre-post-post-post 9
~A

“If two neurons are active together, the connection
between those two neurons gets stronger.”

“another synapse (red) which does not receive
presynaptic spikes, does NOT increase”



Previous slide.

The joint activation of pre- and postsynaptic neuron induces a strengthening of

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic
neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of Hebbian learning, only the stimulated synapses (green)
IS strengthened, but not another synapses (red) onto the same neuron.



Rate-based Hebbian Learning
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Previous slide.
Let us formulate these insights mathematically.
() Local rule implies that the weight change Aw;; depends explicitly only on

th firing rate of the pre- and postsynaptic neuron. It can also depend on
the momentary value of the synaptic weight w;; itself. Finally, it could

also depend on other factors, for example on the presence or absence of
a neuromodulator such as dopamine, called MOD. At the moment we
assume that the value of MOD does not change so that we can disregard
It.

(i) The Hebbian rule says little about the function F. We assume that F
allows a Taylor expansion. We expand F with respect to the two firing
rates, but not with respect to the weight value itself. As a result we have
expansion coefficients that still carry the weight-dependence as an
argument.



Bienenstock-Cooper-Munro rule, a Nonlinear Hebb Rule
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Previous slide.

A variant of the presynaptically gated plasticity rule is the BCM rule, named
after Bienenstock, Cooper, and Munro, the authors of a paper in 1982.

The two main differences to the presynaptically gated rule are that
(i) It contains an extra rate factor v’°*".
(i) The threshold value ¥ Is taken to be a function of the low-pass-filtered

rate v°°“. This leads a so-called ‘sliding threshold’.

If we neglect the sliding threshold, the BCM rule can be mapped directly to
the Taylor expansion.

The BCM rule Is another example of a Hebbian rule!
It IS a nonlinear Hebbian rule.

We will see that a nonlinear Hebbian rule gives rise to ICA.



- Functional Consequence of Hebbian Learning

Fixed rate { = | | O

L5

1L L A
Jointly variing rate L] O—

Hebbian Learning detects correlations in the input

- Development of Receptive Fields
(‘filters’)

- Nonlinear Hebbian rules lead to ICA




Previous slide.
How can a Hebbian rule be useful?
Suppose a single postsynaptic neuron receives input from several presynaptic

neurons.
Let us assume that the top half of the presynaptic neurons just send random

spikes whereas the lower half of the presynaptic neuron send highly correlated
spikes, because the spike rates of this second group increase and decreases

together.

In this case a useful Hebbian learning rule will strengthen the synapses that see
the jointly varying firing rate and set the other synapses to very small values or

even zero.
Loosely speaking, a good Hebbian learning rule will focus on the parts of input

with ‘interestingly correlated’ signals.

For example, If the input consists of small patches of natural images, then the
learning rule will develop specific two-dimensional filters that are adapted to the
image statistics. In neuroscience, these filters are called ‘receptive fields’



| ] Neurons In the brain are non-linear

| ] The total input to model neurons Is a linear combination synaptic inputs
| | Learning means a change of the connection weights

| ] Hebbian learning Is a two-factor rule: pre and post
[ ]
[ ]
[ ]

Hebbian rules can contain several terms, including nonlinear terms
PCA by Hebbian learning uses linear Hebbian term and linear neurons
The BCM rule I1s an example of a linear Hebbian learning rule




Previous slide.

Your notes.
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Previous slide.

In this short section we review why PCA finds the direction of the maximal
variance.

PCA has already covered in many classes on signal processing and data
analys and Is standard material



Standard PCA algorithm

1) Subtract mean x—x — E[X]

2) Calculate covariance matrix
Cri = ((xx — E[x D (x; — E[x;]))

3) Calculate eigenvectors X1
(elgenvector with maximal eigenvalue)
Is called the Principal Component



Previous slide.

PCA s a standard method covered in introduction lectures to signal
processing or data analysis.

First you subtract the mean. Then you calculate the eigenvectors. The
eigenvector with the largest eigenvalue Is called the principal component.



PCA theorem

PCA theorem: The first PCA Is the direction of
maximal variance

Today:
Similar maximization principle,
but applied to ICA.




Previous slide.

We project onto an arbitrary axis in direction of a unit vector that we call w The
—T =

projection of a data point X on w gives y = W' X

We change the direction of w such that

Ely*]

IS maximized.

For maximization we can either use gradient ascent, or solve directly using
coordinates In the eigenvector system of the correlation matrix.

Part of the calculation Is done on the blackboard, other parts in the exercises.

We will apply similar ideas of projection and maximization today to derive rules
of ICA.
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Images from: Independent Component Analysis:
Algorithms and Applications, Neural Networks (2000)
by Hyvarinen and Oja



Previous slide.

After PCA (Principal Component Analysis) we now
look at ICA (Independent Component Analysis)



Independent component analysis
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Hyvarinen and Oja, 2000



Previous slide.

Image we recelve a mixture of two different, but independent signals.
Can we recover the original unmixed signals ?



Task: recover the original signals
Mixed signhals
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Two classes of methods:
1) Exploit temporal structure: Temporal ICA

2) Exploit iIndependence: Standard ICA/Spatial ICA



Previous slide.

There are two classes of methods.
The first one Is that we exploit the temporal if it is available.
In other words, If it iIs a ‘real’ sequence of samples like in the above

examples, we can exploit that the data points come In a specific non-random
order.



Temporal ICA -

Els;()]=0  51(0);
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Temporal ICA

E[sy()s1(t —7]) # 0

E[s1(D)s;(t —1)] = 0—

Els,(t)s,(t—1)] #0 m'

SV VY \ /IR

valid for any 7! (< autocorrelation time scale of signals)



Task: recover the original signals
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Previous three slides.

If the data consists of a ‘real’ sequence of samples in time, as in the above
examples, we can exploit that the data points come In a specific non-random
order.

In temporal ICA we exploit that the autocorrelation of each signal Is non-zero,
but the cross-correlations MUST be zero since the two signals are

Independent according to our assumption.
And this Is true for arbitrary time delays t that are shorter than the
autocorrelation time scale of the signal.

This leads to powerful algorithms.



Task: recover the original signals
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Two classes of methods:
1) Exploit temporal structure: Temporal ICA

2) Exploit independence: Standard ICA/Spatial ICA

Hyvarinen and Oja, 2000



Previous three slides.
Now we focus on the second method, which Is more standard one.



What is the ‘Natural Axis’ of data distribution?

A) coordinate rescaling

changes dominant axis

Preprocessing by Whitening:
- use PCA

-rescale to unit variance
- All directions have
identical variance




Previous slide.
In the standard ICA algorithms, we consider that data points have been generated randomly

and have no specific temporal order. If they arrive one after the other, the order would be a
random sequence. Therefore temporal order Is uninformative. The only aspect that Is
exploitable is the ‘spatial’ distribution of the data points.

Suppose we have the distribution as in A). What Is the natural axis? OR: what would PCA give
as the first PC? Same question for B).

However, A and B are the same distribution and can be transformed to each other by rescaling
the coordinates in y-direction. Think of wheather forecast with one axis temperature and the
second one wind speed. Units of coordinates are meaningless!

C) We use PCA on the distribution in B, and rotate the coordinate system to align with the
PCs. Afterwards we rescale this new coordinate system by multiplying coordinates.
This process is called ‘whitening’ if, after the rescaling, a PCA of the transformed data set give

unit variance in all directions.



What is the ‘Natural Axis?’

Renormalized:
-Mean zero
-Variance one (after whitening)

xz/J/2
\ x Independence:

S yl p(V1,¥2) = P1(V)p2(¥2)

One minute:
Independence implies Uncorrelated

implies

P(V1,Y2) = p1()P2(¥2) E[(y1 — 7)) (Vs — §,] = 0

ﬁ




Previous slide.

Image we recelve a mixture of two different, but independent signals.
Can we recover the original unmixed signals ?

(V1 =V 2 = Y2 = El(y1 — Y1) 2 — ¥2)]

— ffP(Y1»YZ)[()’1 — y1) (V2 — y2)] dy; dy,

Because of iIndependence

(1 — 912 —32)) = v — I0)dy ] p(v2)(v2 — 2) dy,

The right-hand-side vanishes since by definition y; = E|y4]



Example: Preprocessing for ICA

Renormalized:
-Mean zero
-Variance one (whitening)

-> all directions have equally
important in 2" order statistics

Independence:
P(V1,Y2) = P1(V1)p2(V2)




Previous slide. A summary of the procedure as whole

Step 1: The data Is shifted to mean zero. We apply PCA and turn to the
Eigensystem of the correlation matrix. The whitening (rescaling of coordinates
by) VA" is applied so that the variance is the same in all directions.

The coordinates in the whitened system are x,x; , ...

Further application of PCA is useless to find a ‘good’ coordinate system.

Step 2: The best intrinsic coordinate system in this example is found by
searching for independence. This yields a further rotation of the coordinate

system with the final coordinates y,, y,.

In the next few slides these steps are applied to an example from Hyvarinen
and Oja (2000)

Images from: Independent Component Analysis:
Algorithms and Applications, Neural Networks (2000)

by Hyvarinen and Oja



Example: Preprocessing for ICA
S

draw data points
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Example: Preprocessing for ICA
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Independent Component Analysis
Finds the ‘natural axis’

Independence

1 P(V1,y2) = p1(Y1)p2(2)
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Variance Is the same In all directions!!!
Yet there i1s a ‘natural axis’!

Hyvarinen and Oja, 2000



Previous slide.

Step 2 is the ICA step : The best intrinsic coordinate system In this example Is
found by searching for independence. This yields a further rotation of the

coordinate system with the final coordinates y,, y,.
There are several algorithms to perform ICA.

We study in the next section a specific one.

Images from: Independent Component Analysis:
Algorithms and Applications, Neural Networks (2000)

by Hyvarinen and Oja



Suppose that we have sequence of data points x(t,), x(t,), x(t3), ... .

] Temporal ICA requires signals s(t) with an autocorrelation function that
extends over a nonzero time scale (I.e. different time points are not
Independent)

Temporal ICA requires data with a Gaussian distribution

Temporal ICA requires data with a non-Gaussian distribution

Spatial ICA requires signals with an autocorrelation function that
extends over a nonzero time scale

Spatial ICA requires data where different time points are independent
Spatial ICA treats data as If different time points were independent
Spatial ICA requires data with a non-Gaussian distribution

1 e



Feedback on ICA

| ] Up to here at least 60 percent of the material was new to me

For 80 percent of the material that we have seen so far
'] | understood the concepts and got a good idea of the formalism



Learning in Neural Networks: Lecture 2
IGA with Hebbian rules
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PCA as maximization of variance
ICA and Blind Source Separation

ICA and Hebb: Gaussian vs. Non-Gaussian distribution

Images from: Independent Component Analysis:
Algorithms and Applications, Neural Networks (2000)
by Hyvarinen and Oja



Previous slide.

In this section we introduce the concept of non-Gaussian distribution



Gaussian and non-Gaussian distributions

Figure 7: The multivariate distribution
of two independent gaussian
variables.

08 | | | ' ] hl

Q.7+

0.6} 4

0.5

0.4

0.3

CIF

<

Figure 8: The density function of the Laplace distribution, which is a typical supergaussian distribution. For
comparison, the gaussian density is given by a dashed line. Both densities are normalized to unit variance.

Hyvarinen and Oja, 2000



Previous slide.
Gaussian distributions fall off with exp(—x 2)

Non-Gaussian distributions may fall off more slowly (have ‘longer tails’, e.g. Laplacian);
or more rapidly (‘shorter tails’, e.g., rectangular distribution) than the Gaussian.



Independence and non Gaussian distribution

Gaussian vs.
Figure 7: The multivariate distribution N On -G au SSlan

of two independent gaussian
variables.

Independence:
P(YV1,Y2) = P1(V1)p2(V2)

Normalized Gaussian distribution has no preferred axis
With a normalized Gaussian distribution, data points are
uncorrelated and independent



Previous slide.

A standard Gaussian distribution, normalized to standard deviation of one, describes
Independent data.

Independence implies that there are no correlations.
A normalized Gaussian distribution has no preferred axis (see also exercises).

However, a non-Gaussian distribution, normalized to standard deviation of one, can
have one or two preferred axis, that correspond to the ‘independent signals’.



Mean and expectation
Ep(y) = Jyp(y) dy

B (h)) = [ Ry

Measure of non-Gaussianity
K(W) = Eqata (V") — 3) reference of
](V_? By (F)) — @ Gaussian function

result depends on direction of vector w



Previous slide.

There are many ways to measure the non-Gaussianity of data along an axis
—>T -
Yy =Ww'X
A first example Is Kurtosis. Kurtosis Is the fourth-order correlations, and we subtract a
term that corresponse to the fourth-order correlation of the Gaussian distribution.
Therefore, Kurtosis yields a number that measures ‘non-Gaussianity’. Long and short

tails of the distribution correspond to positive or negative Kurtosis.

By construction, the Kurtosis of a Gaussian distribution vanishes.

More generally, any function F(y) = F(w!x)

can be used to measure non-Gaussianity by taking the expection over the data. We

simply have to subtract the expectation that a Gaussian distribution p(v) would have If
pushed through the nonlinear function F(v).



FInd the maximum of non-Gaussianity
J (W) = [Eqata(F (y

JW) = [y(w) — al? depends on weight vector w

In class exercise NOW: show that one implies the other
9

dw

2 minutes

—————




Previous slide.

In order to get rid of the positive or negative signs of the non-Gaussianity on the
previous slide, It is convenient to take the square.

Interestingly, whether taking the square or not does not matter if we study the optima.

Some optima of y(w) maximize the non-Gaussianity J; other minimize It.



FInd the maximum of non-Gaussianity

AW =1 Egal?g@TD)  with and WT|=1

online B s .
Aw =nxgw'x)=x-g(y)
synaptic change
Aw; = 7 xjg(V_V)Tf) =x;9(Y) N
X — ‘ A

_ y = gWw'x)

Q\ OO

Hebb rule for nonlinear neuron model!
Or nonlinear Hebb rule and linear neuron model.

Hyvarinen and Oja, 1998
Gerstner and Brito, 2016



Previous slide.

Optimizing the non-Gaussianity by gradient descent yields a Hebbian learning rule!

To see this, we have to
- Use as a postsynaptic neuron a nonlinear neuron model with transfer function g,

where g Is the derivative of the original function F that we want to optimize.
- Alternatively, we can take LINEAR neuron model and assume that the Hebbian
learning rule that controls synaptic changes is nonlinear, similar to the BCM rule.

Note that we optimize the expectation over data. This leads to a batch rule for the
update of the parameters. We get a biologically interpretable rule only after the
transition to an online rule.



Summary: ICA by a neuronal rule

Aw;j X Fyepp (pre;j, post;)

pre O/\‘ ~ post
j I
Nonlinear Hebb = ICA wije (¢ —tf)
—new _ —old 5 T o h (update based on all data
W = +77E{xg(w X))} patc hoints)
—> _ - —T - -
Aw  =nxg(w’ X) online (one data point at a time)
Aw;; = nx]gl(z Wir Xr) online — single synapse

ICA yields a nonllnear Hebbian online rule for synaptic plasticity




Previous slide.

Quite generally, minimization of a loss function or maximization of an optimization

criterion yields a batch rule.
The batch Is the empirical average over the actual data (or expectation over the

ACTUAL data)
The online rule Is for a single sample of the data.

The Interpretation of the online rule in terms of Hebbian learning is sometimes easier If
we consider the vector components, instead of the vector.

Then we see directly the contributions of presynaptic and postsynaptic neuron.

What we have here Is a linear presynaptic drive x;
Multiplied with a nonlinear postsynaptic value g;(.).



Learning in Neural Networks: Lecture 2
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Previous slide.

We now turn to a famous algorithm for ICA, called fastICA, developed by Hyvarinen and
Oja.

This Is a batch algorithm, involving a speed-up by an approximate Newton step and an
explicit renormalization step.

Nevertheless, the similarity to two-factor rules Is striking, If we consider its online
version.



Gaussian and non-Gaussian distributions

P(YV1,Y2) = P1(V1)P2(V2)
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Previous slide.

Reminder: our aim Is to maximize the non-Gaussianity. Non-Gaussianity can arise
because the distribution has either a shorter tails than a Gaussian (sub-Gaussian); or a
longer tail than a Gaussian (super-Gaussian).

In one case the function

Edata(F(Y))
IS maximized: in the other one minimized.

We therefore write generically ‘optimize’ the criterion Egq:q (F (7))
with nonlinearity F.



Optimization with Newton Method

Y Gradient defines direction!

find zero-crossing ¢(n) = 0!

y =¢1)

N T ¢(0) + ¢'(0)n= 0! Q

— >

Initial value n = 0. Increase or decrease n? -2 ¢'(0)
By how much?

Newton step:
predict linear zero crossing Mnewton = —¢(0)/¢'(0)



Previous slide.

Suppose we want to find the zero crossing y=0 of the function y = ¢(n). If at our initial
guess of n the value is ¢(n) > 0, then we have to move down; if p(n) < 0 we have to
move up. The slope ¢’ tells us which direction leads up or down; let us increase or
decrease n by an amount An in the appropriate direction.

The Newton method proposes to choose An such that the step size would correspond to
the zero-crossing of the linear approximation (red) of the curve (blue). If we denote the
initial value as n = 0,then the step size IS A = Nyewion = —P(0)/ ¢'(0). The general case

S Mivewton = =P (Mo1a)/ @' (Mora) Where n,,, is the current value.

An interesting and relevant application is when we want to find a minimum or maximum of
a scalar function J. Then we define ¢(.) as the derivative of the function J. Searching for a
zero-crossing of ¢ (.) Is equivalent to searching for an optimum of J. The Newton method
can find minima and maxima of J! (both are zero-crossings of ¢.

Right: If the function J(w,, w,, w5 ...) takes a vector as input, we calculate the gradient
and search for an optimum along the straight line in direction of the gradient. The variable
n denotes the position along the line. We choose the coordinate system such that (at each
iteration, the Initial value isn = 0. We then search for a zero-crossing of ¢ (1) where ¢(.)
IS the value of the slope of the function J along the line.



Independent component analysis

Algo fastICA with Nonlinearity F
1. Initialize w
2. Approximate Newton step (Newton Method)

w — Edata{fg(w X) —Wg’(w X)}

3. Renormalize

—Snew
w

|V—v’new‘

—
W =

4.1f not converged, go to 2



Previous slide.

The first term Is identical to the term we found for ICA via nonlinear HebD.

The second term with the negative sign Is an approximate Newton step intended to
speed up gradient descent. The idea is similar to line search: we adapt the step size of
the gradient step to a relatively large value that leads in a single step close to the
minimum along the specific direction (‘'line’) defined by the gradient. In the next iteration
we find a new gradient and take again a big step.

The Blackboard calculation indicates the precise assumptions that go into the

approximation of the Newton step.

() Data Is prewhitened (which is correct)

(i) The distribution of g’(w'x) is independent of |X|? (which is an ad-hoc
approximation to simplify the expression). The distribution Is over the data points.

As mentioned before, the algorithm can search for minima or maxima (since both are
zero-crossings of the derivative).

In terms of optimization, the Newton-method Is a second-order method since it uses not
only the gradient but also its derivative (hence the curvature).



EEG analysis

MEG [ 1000 fT/em
L&\\ - EOG [ 500uV

—hq % : | ECG [ 500 uV

—— saccades —— }—— blinking — —— biting —

oA

[

|

|

10s
Figure 11: (From Vigéario et al, 1998). Samples of MEG signals, showing artifacts produced by blinking,

saccades, biting and cardiac cycle. For each of the 6 positions shown, the two orthogonal directions of the
sensors are plotted.



Previous slide.
A standard application of ICA Is In EEG analysis. For example, ICA allows to remove
eye blinks and other ‘error’ signals.

Another famous application is to use ICA to explain the development of receptive fields.
(next section).



Suppose that we have sequence of data points x(t,), x(t,), x(t3), ... .

[ ] Spatial ICA requires data with a non-Gaussian distribution

[ ] Optimization of non-Gaussianity leads to different ICA rules,
depending on the criterion of ‘non-Gaussianity’

| ] A Hebb-rule is an example of online rule

| ] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F

| ] A non-Gaussianity function F leads to a Hebb-rule with nonlinearity F’

[ ] FastiICA implements an approximate Newton step for optimization

_ | ] FastICA Is a second-order gradient descent/ascent algorithm

(I1.e. Includes curvature information of the loss/optimality criterion)




Feedback on ICA

| ] At least 60 percent of the material on fastICA and ICA as Hebb-
rule was new to me

For 80 percent of the material that we have seen In this part
| | | understood the concepts and got a good idea of the formalism



Wulfram Gerstner

EPFL, Lausanne, Switzerland
Hebblan learning (2-factor rules) can be nonlinear

PCA can be derived from a maximization priciple

ICA and Blind Source Separation:
temporal and spatial ICA have different conditions

Optimization of Non-Gaussianity yields ICA via Hebbian rule
after transition from batch to online

|ICA Algorithm FAST-ICA implements approximate Newton step



The end
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