
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks: Introduction

No BackProp, please!!!

Objectives for today:

- understand why backprop is problematic

→ for biology

→ for hardware

- PCA as a biologically plausible algorithm

- course overview

Reading:

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)

E. Oja, Simplified Neuron Model as Principal Component Analyser, J. Math. Biol. 15:267-263 (1989)

Previous slide.

After most slides you will find a hidden slide with some annotations and text.

Slides themselves have often graphical elements and keywords, but never

text in the form of full sentences.

I optimize my slides for explanations during the lecture; they are not meant

as a self-contained ‘textbook’.

The first slide indicates objectives as well as important literature.

Topics today (corresponding to Sections of Lecture)

Intro: No Backprop please !!!!

Intro: From Biological to Artificial Neurons

Intro: From Artificial Neurons to Neuromorphic hardware

Intro: Coarse Brain Anatomy

Lecture 1.1: Synaptic Plasticity: Learning rules of the brain

Lecture 1.2 Hebbian Learning rules

Lecture 1.3 PCA as Hebbian learning

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Semester plan

Previous slide.

I discuss the semester plan a bit later.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandLearning in Neural Networks: Introduction

No Backprop, please!!!

Learning actions:

→ riding a bicycle

Remembering facts

→ previous president of the US

→ first name of your mother

Remembering episodes

→ first day at EPFL

Where is your bicycle today?

Memories

are available

because of

Learning

Previous slide.

This class is about Learning in Neural Networks, both artificial ones and

biological ones.

Learning is the basis of acquiring knowledge and building memories.

Learning and memory come in different shades.

All of us have learnt actions.

We all remember some facts.

And we also remember short episodes of our lives.

Some things you remember for a long time. Others not. While you may

remember where you have parked your bike today, you will not necessarily

remember where you parked in on the Tuesday 11 weeks ago.

Artificial Neural Networks, Inspired by the Brain

History: 3 waves of Neural Networks

- starting 1950

- starting 1981

- starting 2012

Previous slide.

Artificial Neural Networks have always been inspired by the brain.

Artificial Neural Networks appeared first in the 1950ies and 60ies, with work

of McCullogh&Pitts (binary neurons, 1943), Rosenblatt (Perceptron, 1958),

Steinbuch (Lernmatrix, precursor of the Hopfield model, 1961), and then

activity diminished (even though it never disappeared).

They appeared again in the 1980ies with the work of Rumelhard and

McCleland (book on Parallel Distributed Processing, 1986), Hopfield (1982),

Sutton and Barto (reward-based learning, 1981), Ackley-Hinton-Sejnowski

(Boltzman machines, 1985), the first NeurIPS conference (called NIPS at the

time), and the re-discovery of BackProp (D.E. Rumelhard et al., Nature, 1996)

Then the wave stopped when researchers pursued Support Vector Machines

or Classic AI.

And finally, as you know, a third wave started under the name of Deep

Learning around 2014. Again, attention modules and many other aspects are

brain-inspired.

Learning Artificial Neural Networks

Deep Networks for Vision

(e.g. AlexNet …)

Deep Networks for Chess and Go

(alpha-go, alpha-zero)

Foundation Models

(LLMs, ChatGPT, Bert)

Sutskever and Hinton,

2012

Silver et al. (2017) ,

Deep Mind

trained with BackProp

trained with BackProp

trained with BackProp

Learning = change of parameters

Parameters =connections (mainly)

Previous slide.

All impactful models have been trained with BackProp. BackProp (combined

with well-known optimization tricks) is a powerful algorithm and can be

adapted to all sorts of network architecture.

(If you do not recall BackProp details, take any textbook. I also added slides

as an appendix to the stack of slides of this first lecture.)

In this class, I will argue that the human brain does not use backprop – but is

has powerful learning capacities as well. And it uses much less energy than

modern AI.

Let us therefore try to explore alternative learning algorithms that could

eventually (and we are not yet there!) to low-power implementations of

learning in neural networks.

BackProp useful to optimize brain models

Using goal-driven deep learning to understand sensory cortex

D Yamins, JH DiCarlo Nat. Neurosci.19: 356-365 (2016)

- Train on classification of Mio of images with BackProp

- 1 Cortical Area → 1 layer of a Deep Convolutional Neural Network

BUT: - Real networks do not use BackProp

- Real networks are not trained with labeled images!

deep network

brain model

Previous slide.

And even some of the best models to explain data in the neurosciences have

been trained with BackProp!

The slide shows deep convolutational neural network model and its

equivalence of processing steps in the brain, following the visual pathway.

The model is trained with BackProp on an image classification task with

Millions of images!

But the training with BackProp does not describe biological learning.

A Spectrum of Learning Algorithms: connections change based on …

2-factor rules:

unsupervised,

no feedback

3-factor rules:

reward-based,

feedback

BackProp rules:

vector feedback

(many local ‘errors’)

Adapted from

Lillicrap et al.

2020

Nat. Rev. Neurosci.

Previous slide.

We study various types of neural networks in this class. Many of these are

feedforward networks. I mostly use a convention where input comes in from

the bottom and moves towards the top layer.

(rarely also from left to right).

Learning in Artificial Neural Networks (ANNs) is related to changes in the

connection strength. In a biological context, the connection point is called a

synapse. Changes in connection strength are called synaptic plasticity.

The question then is whether changes induced by a learning algorithm

depend only on information of the two connected neurons (left: no feedback),

or also on additional information.

Additional information could be a global, scalar feedback (the performance

was good = reward or bad = no reward); or very detailed information in the

form of vectorized feedback (right).

BackProp rules:

vector

feedback

Backprop needs precise error feedback

Vector feedback:

- multiple outputs,

- one ‘signed error per output’

- error vector transmitted back

- precise neuron-specific errors

BackProp Algo has 4 phases:
1) Forward pass and freeze

2) Calculate local output errors

3) Backprop pass, using 2)

4) Update the weights, using 1) +3)

Adapted from

Lillicrap et al.

2020

Nat. Rev. Neurosci.

Previous slide.

In a network with multiple outputs, standard backprop calculates local signed

mismatches for each output unit, and then transfers this information back.

For example consider self-supervised learning and auto-encoders applied to

images with D pixels. Each pixel value is one input=one output unit. ‘error

feedback vector ’ has therefore D components.

Vector feedback is very different from scalar feedback!

Let us recall the BackProp algorithm:

1) in the forward phase, and input vector is applied and passed through

the network. Activities of each neuron need to be stored (or ‘frozen’)

2) the outputs are compared with the target values, which gives the vector

of mismatch values  also called signed local errors.

3) the mismatch values are propagated backward. This feedback uses the

same weights as the feedforward network, but different nonlinearities.

4) Weights are updated using the frozen activities and the local  values

No BackProp please (in this class)

- BackProp needs four separate phases:

forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.g., all linear; feedback weights = feedforward weights;

backward multipliers proportional to activity of feedforward network).

- The feedback architecture must enable vector feedback

→Not implementable in biology

→Difficult to implement in low-energy neuromorphic hardware

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)

Previous slide.

In a network with multiple outputs, standard backprop calculates local signed

mismatches for each output unit, and then transfers this information back.

If you think of a physical network (be it in artificial or biological hardware),

this would require a separate feedback network.

This is the main reason that BackProp is biologically not plausible; for the

same reason it is also not attractive for energy-efficient alternative computing

paradigms, sometimes called ‘in-memory computing’, ‘neuromorphic

hardware’, or ‘non-von-Neumann architecture’.

Essentially, we aim for algorithms that where each unit only uses locally

available information to change parameters. You can think of such algorithms

as asynchronous fully distributed algorithms.

And that type of algo is what we will study in the class. We will use

mathematical language, but take inspiration from the brain.

2-factor rules:

unsupervised,

no feedback

2-factor rules use information locally available at the synapse

Big question:

Can we learn anything

at all without feedback?

→ first part of class:

2-factor rules

“Each connection is a

(conditionally) independent actor

and uses only locally available

information for changes.”

Previous slide.

Most scientists believe that biological neural networks (your brains!) do not

have such a specific detailed error feedback network.

In the absence of such a detailed error feedback network, can we learn

anything at all?

Learning in neural networks means changing the connection. Think of each

connection as an independent actor that only has access to locally available

information. What can we achieve?

In the first part of the class we focus on this question and study a few

example algorithms.

3-factor rules:

reward-based,

feedback

3-factor rules use information locally available at the synapse

combined with one global feedback signal

Big question:

What is the relation to

reinforcement learning?

What can be learned with

these rules?

→ second part of class:

3-factor rules

Previous slide.

But maybe the assumption that there is no feedback at all is too strict.

Indeed, you know the feeling of happiness if you succeeded to do something

you want to do. Success causes in the brain an internal reward signal.

Such a reward signal conveys a SCALAR information on how good or bad

your performance was, but not what you should do to improve the

performance.

Sounds a bit like Reinforcement Learning, but is there a precise connection?

This is what we will study in the second part of the class.

multi-factor rules that use locally available information

combined with several global feedback signals

Big question:

Can we have local learning rules

(with several global signals)

that yield good representations

in multi-layer networks?

Learning rules???

Network architecture???

What kind of feedback???

representation

of objects

Previous slide.

Even reward-based learning methods (using scalar feedback) are somewhat

limited.

Therefore we ask: can we generalize the idea of ‘local learning rule’ with a

few global (or near-global) signal?

A critical test is to learn representations in multi-layer networks.

Summary: Learning in Neural Networks (Introduction)

Reading:

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)

No BackProp, please!!!

Backprop has several problems as model for neuroscience

- 4 phases for update

- precise feedback architecture

- forward=backward weights

Active research area in computational neuroscience

→ online, continuous time

→ robust, plausible feedback

→ Learning rules for all weights

Also relevant for low-energy neuromorphic computing

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Semester plan

3 or 4

weeks

3 or 4

weeks
miniproject

handout

flexible

topics

Assessment methods
Oral exam (70 percent) plus miniproject (30 percent).

If more than 45 students participate, the oral exam is

replaced by a written exam.

Questions?

Oral exam (27 min):
- Presentation of an (important) research paper related to class.

- Followed by questions to paper and to lectures.

- Sample session during last 2 weeks (TA=role of student)

For those who are not available on Tuesday 2pm-4pm,

we offer an alternative exercise sessions Wednesday, 4pm or 5pm

Previous slide.

The first 7 weeks are a very systematic introduction to

- Representation learning with two-factor rules

- Reinforcement learning with three-factor rule

Then we hand out the miniprojects. You can choose one of two projects:

(i) receptive field learning with two-factor rules

(ii) learning to navigate in a maze with three-factor rules

I will handle the last weeks a bit more flexibly in terms of topics.

The course finishes with an oral exam (unless the number of students is

above 45).

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Introduction

From Biological to Artificial Neurons

From Biological to Artificial Neurons

Previous slide.

In this first introduction lecture the focus is on a general introduction into the field

(with its subparts Reinforcement learning and Supervised Learning for

Classification).

We start with a glimpse of the biological inspirations of the field.

The brain: Cortical Areas

Previous slide.

Cortex is divided into different areas:

Information from the eye will first arrive at visual cortex (at the back of the head),

and from there it goes on to other areas. Comparison of the input with memory is

thought to happen in the frontal area (above the eyes). Movements of the arms a

re controlled by motor cortex somewhere above your ears.

Talking about cortical areas provides a macroscopic view of the brain.

10 000 neurons

3 km of wire
1mm

The Brain: zooming in

1mm

Ramon y Cajal

Previous slide.

If we zoom in and look at one cubic millimeter of cortical material under the

microscope, we see a network of cells.

Each cell has long wire-like extensions.

If we counted all the cells in one cubic millimeter, we would get numbers in the

range of ten thousand.

Researchers have estimated that, if you put all the wires you find in one cubic

millimeter together you would find several kilometers of wire.

Thus, the neural network of the brain is a densely connected and densely packed

network of cells.

10 000 neurons

3km of wire

Signal:

Action potential (short pulse)

electrical

pulse

Ramon y Cajal

The brain: a network of neurons

1mm

Previous slide.

These cells are called neurons.

The part of the neuron where signals arrive is called the dendrite, or the dendritic

tree. The cables that transmit the signal to other neurons is called the axon. The

central part of the cell is called the soma.

What is the signal? Neurons communicate with each other by short electrical

pulses, called action potentials, or ‘spikes’.

The brain: signal transmission

Signal:

action potential (short pulse)

action

potential

More than 1000 inputs

Previous slide.

Signals are transmitted along the wires (axons). These wires branch out to make

contacts with many other neurons.

Each neuron in cortex receives several thousands of wires from other neurons

that end in ‘synapses’ (contact points) on the dendritic tree.

𝑢

𝜗

pulse

synapse t

The brain: neurons sum their inputs

Previous slide.

If a spike arrives at one of the synapses, it causes a measurable response in the

receiving neuron.

If several spikes arrive shortly after each other onto the same receiving neuron,

the responses add up.

If the summed response reaches a threshold value, this neuron in turn sends out

a spike to yet other neurons (and sometimes back to the neurons from which it

received a spike).

Summary: the brain is a large recurrent network of neurons

Active neuron

Previous slide.

Thus, signals travel along the connections in a densely connected network of

neurons.

Sometimes I draw an active neuron (that is a neuron that currently sends out a

spike) with a filled red circle, and an inactive one with a filled yellow circle.

Synapse

Neurons

learning = change of connection

Learning in the brain: changes between connections

Previous slide.

Synapses are not jut simple contact points between neurons, but they are crucial

for learning.

Any change in the behavior of an animal (or a human, or an artificial neural

network) is thought to be linked to a change in one or several synapses.

Synapses have a ‘weight’. Spike arrival at a synapse with a large weight causes

a strong response; while the same spike arriving at a synapses with a small

weight would cause a low-amplitude response.

All Learning corresponds to a change of synaptic weights. For example, forming

new memories corresponds to a change of weights. Learning new skills such as

table tennis corresponds to a change of weights.

Brain

Distributed Architecture

10 billions neurons

memory in the connections

10 000 connexions/neurons

10 000 neurons

3 km of wire
1mm

1mm

Neurons and Synapses form a big network

No separation of

processing and memory

Previous slide.

Even though we are not going to work with the Hebb rule during this class, the

above example still shows that

- Memory is located in the connections

- Memory is largely distributed

- Memory is not separated from processing

(as opposed to classical computing architectures such as the van Neumann

architecture or the Turing machine)

brain algorithms

non-von-Neumann

computing &hardware

‘brain-style computing’

Learning Rules in Neural Networks

Previous slide.

In this class we will focus over 14 weeks on learning rules.

These learning rules can be interpreted

- either as solving an optimization problem (computer science/machine learning)

- or as implementing changes in connections (biology/neuromorphic hardware)

Modeling: artificial neurons

𝑢

𝜗

pulse

-responses are added

-pulses created at threshold

-transmitted to other

response

synapse t

Mathematical description

Previous slide.

In the previous part we have seen that response are added and compared with a

threshold.

This is the essential ideal that we keep for the abstract mathematical model in the

following.

We drop the notion of pulses or spikes and just talk of neurons as active or

inactive.

Modeling: artificial neurons

forget spikes: continuous activity x

forget time: discrete updates

𝑥𝑖 = 𝑔 ෍

𝑘

𝑤𝑖𝑘 𝑥𝑘

𝑤𝑖𝑘

𝑥𝑘

weights =

adaptive

parametersactivity of inputs

activity of output

nonlinearity/threshold

Previous slide.

The activity of inputs (or input neurons) is denoted by 𝑥𝑘

The weight of a synapse is denoted by 𝑤𝑖𝑘

The nonlinearity (or threshold function) is denoted by 𝑔

The output of the receiving neuron is given by

𝑥𝑖 = 𝑔 ෍

𝑘

𝑤𝑖𝑘 𝑥𝑘

Quiz: biological neural networks

[] Neurons in the brain have a threshold.

[] Learning means a change of the connection weights

[] The total input to a neuron is the weighted sum of individual inputs

[] The neuronal network in the brain is feedforward: it has no

recurrent connections

[x]

[x]

[x]

[]

[] Most biological neurons (brain) communicate by short pulses (spikes)

[] Most artificial neurons (ANNs) communicate by short pulses (spikes)

[] Classic implementations of ANNs use a von-Neumann architecture

[] GPU implementations of ANNs use a von-Neumann architecture

(i.e., separation of processing and memory)

[x]

[]

[x]

[x]

Previous slide. Your notes

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Introduction

Towards Neuromorphic Hardware

From Artificial Neurons to

Neuromorphic hardware

Previous slide:

Neuromorphic hardware in the narrow sense is a hardware that mimics ‘on the substrate’ aspects of

biological processing or brain-like neural networks. In the broad sense it refers to a class of different

computing materials or unconventional computing paradigms. Sometimes the latter are also called non-von-

Neumann computing or non-von-Neumann hardware.

One of the major drivers for developments in this direction is the high energy consumption of standard

computers, in particular in comparison to the energy consumption of the human brain.

This class will have only one week on neuromorphic hardware, but neuromorphic applications are always in

the background when we think about the learning algorithms that we explore in this class.

brain algorithms

non-von-Neumann

computing &hardware

Learning Rules in Neural Networks

Previous slide.

A quick look at the field of neuromorphic hardware.

Energy consumption of the brain

• Sedentary humans eat and use 2500 kCal per day

• Translate to Joule → 10 000 kJ

• Brain facts: 20 percent of energy consumption of human at
rest goes into the brain

• Most of it goes into synaptic signaling (spike transmission)

• Brain uses 24 – 30 Watt (5 modern light bulbs)

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

The power consumption of the brain is relatively low!

→ 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

Previous slide.

The claim is that the power consumption of the brain (30W) is relatively low.

Low compared to what?

- Compare with GPU

- Compare with household power consumption.

Energy consumption of one GPU

• 300 W (RX 6800/6900 XT)

• 350 W (RTX 3080/3090)

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

→ 10h of training an ANN on 1 GPU = 3.5 kWh

12 months GPU usage → 3000 kWh

1 day of training an ANN on 1 GPU = 8000Wh = 8 kWh

4 months GPU usage → 1000 kWh

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

Previous slide:

A day has 24 hours. So we multiply the power (350W) with the number of hours.

4 months have 120 days. Again a simple multiplication

The question then is: are 3000kWh per year a lot?

We need to compare with ‘normal’ energy consumption.

A modern apartment (with heat pump heating) needs, less than 1000kWh per year. A family of four with

normal electricity usage uses less than 2000 kWh per year.

In other words, a single GPU burns as much energy as a whole family!

Accelerating Neuromorphic Workloads – Innovation required at all levels

IBM slide

Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix

elements as a result of a learning rule (‘algorithm’, right).

Analog signal processing for scalability

▪ Limiting factors of von

Neumann architecture
▪ Memory access

▪ Sequential operations

▪ Digital signal processing

65

▪Overcome by
▪ In-memory computing

▪ Parallel operations

▪ Analog signal processing

Processing
Unit

Compute effort ~O(#Neurons2) Compute effort ~O(N)

Electrical (and optical solutions) are viable candidates

IBM slide

memory in resistors:

tunable

Previous slide:

For these kind of matrix operations we should exploit new computing concepts.

The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons

per layer increases.

Tunable weights via Memristive Devices

• Resistance depends
on molecular
configuration

• Resistance increase or
decreases with
voltage pulses above
threshold value

• Resistance keeps
memory

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous &

symmetric

change of R

Understanding the mechanism

‘memory of resistance’ = ‘memristor’

Images: IBM

Previous slide:

Memristive material studied by IBM.

The basic function arises from the following principle.

The material in light blue is an electrical insulator (dielectric material). However, with a first strong voltage

pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red

column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be

made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower

left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and

resistance for a long time. It has a ‘Memory of Resistance’ → Memristor.

brain algos

non-von-Neumann

computing &hardware

Summary: Learning in Neuromorhoic Hardware

- In-memory computing: non-von Neumann

architecture

- Connections between units can be

physically implemented (cross-bar array

with resistors at crossing points)

- Learning implies changes of connections

- Memristors are changeable resistors that

keep their ‘memory’.

- Changes of memristors can be induced by

voltage pulses

→ Candidate for implementing distributed

learning algorithms

Previous slide:

Summary

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Introduction

Coarse Brain Anatomy

Coarse Brain Anatomy

Previous slide.

Let us have a coarse look at the brain.

Coarse Brain Anatomy: Cortex

frontal

cortex
occipital

cortex

parietal

cortex

temporal

cortex fig: Wikipedia

vision

motor

audition

Sensory representation in visual/somatosensory/auditory cortex

IT cortex: object

representation

Previous slide.

Left: Anatomy. The Cortex is the part of the brain directly below the skull. It is

a folded sheet of densely packed neurons. The biggest folds separate the

four main parts of cortex (frontal, Parietal, occipital, and temporal cortex)

Right: Functional assignments. Different parts of the brain are involved in

different tasks. For example there several areas involved in processing visual

stimuli (called primary and secondary visual cortex). Other areas are

involved in audition (auditory cortex) or the presentation of the body surface

(somatosensory cortex). Yet other areas are prepared in the preparation of

motor commands for e.g., arm movement (primary motor cortex)

Coarse Brain Anatomy
- many different cortical areas

- but also several brain nuclei sitting below the cortex

- Some of these nuclei send dopamine signals

- Dopamine sent from: VTA and substantia nigra

- Dopamine is related to reward, surprise, and pleasure

fig: Wikipedia commons

VTA

substantia

nigra

nucleus

accumbens

Dopamine is important for RL →

Previous slide.

Left: Anatomy. View on the folds of the cortex, and main cortical areas in

different color.

Right: Below the cortex sit different nuclei. Some of these nuclei use

dopamine as their signaling molecule. Important nuclei for dopamine are the

Ventral Tegmental Area (VTA) and the Substantia Nigra pars compacte

(SNc). These dopamine neurons send their signals to large areas of the

cortex as well as to the striatum (and nucleus accumbens).

Since dopamine is involved in reward, these dopamine neurons will play a

role in this class in the parts that links reinforcement learning (RL) and the

brain.

Coarse brain anatomy: the brain adapts during use

More space for fingers allocated in

somato-sensory cortex
(=body representation; number 3 on image)

- musicians vs. non-musicians
Amunts et al. Human Brain Map. 1997

Gaser and Schlaug, J. Neuosci. 2003

More space allocated in hippocampus
(= representation of space; blue on image)

- London taxi driver vs bus driver
Macquire et al. Hippocampus 2006

DOI 10.1002/hipo.2023

→ ‘state representation’ is ‘learned’

Previous slide. (not shown in class)
We said that different areas of the brain are involved in different tasks. For example, the

somatosensory cortex represents the body surface. Nowadays one can measure that the size of

the cortical area devoted to fingers is larger for musicians than for non-musicians. Since

musicians are not born with a larger area, this result implies that experience can influence the

function of the neurons in the brain. Somatosensory cortex is labeled 3 (previous page). The

actual movements of fingers and other body parts are controlled by motor cortex (label 2).

Similarly, hippocampus is involved in spatial navigation. Not surprisingly, London taxi drivers have

a bigger hippocampus than London bus drivers.

Image from

wikipedia

https://en.wikipedia.org/wiki/Primary_somatosensory_cortex#/media/File:Blausen_0103_Brain_Sensory&Motor.png

1. Quiz: Coarse Functional Brain anatomy

[] the brain = the cortex (synonyms)

[] the cortex consists of several areas

[] some areas are more involved in vision, others more

in the representation of the body surface

[] below the cortex there are groups (clusters) of neurons

[] dopamine is linked to reward, pleasure, surprise

[]

[x]

[x]

[x]

[X]

[x]

[x]

[x]

[x]

End of Introduction

Questions?

Motivation: No Backprop, please!!!

Overview: Neuronal Networks in the brain

Overview: Neuromorphic hardware

Overview: Coarse Brain Anatomy

BREAK now.

Next Lecture at 12h15

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 1

Synaptic Plasticity and Learning rules

Synaptic Plasticity: Learning

rules of the brain

Previous slide.

Learning is related to synaptic plasticity. Therefore this is our second topic.

The claim is that the biological observation of ‘synaptic plasticity’ is the basis of

‘learning rules’ implemented in the brain.

Two important manifestations of synaptic plasticity are Hebbian Learning and

Long-Term Potentation (LTP) that will be explained in this part.

Behavioral Learning

Learning actions (reward-based):

→ riding a bicycle

→ play tennis

→ play the violin

Remembering episodes

→ first day at EPFL

→ first visit in a new city

→ reward-free

‘models of the world’

‘models of action choice’

Previous slide.

When we walk around a city for the first time we develop a model of the environment

– even in the absence of any specific rewards (except, may be, that it is good to know

how to find the way home).

You may remember your first day at EPFL.

Both are examples of learning. Remembering episodes (and environments) is mainly

unsupervised learning (or in some context: self-supervised learning).

When we learn to ride a bike we learn with Reinforcement-like feedback, e.g., we

don’t want to fall because falling hurts.

When we learn play the tennis we also get feedback via the observed outcome –

which can be good or bad.

Both are example of reinforcement learning (also called reward-based learning).

Synapse

Neurons

Synaptic Plasticity = Change in Connection Strength

Behavioral Learning – and synaptic plasticity

dendrite

‘spike’:

output signal (pulse)

sent to other neurons

Amplitude of

Postsynaptic

Potential (PSP)

Previous slide.

When we observe learning on the level of behavior (we get better at tennis), then

this implies that something has changed in our brain:

The contact points between neurons (called synapses) have changed. Synaptic

changes manifest themselves as a change in connections strength.

Synaptic plasticity describes the phenomena and rules of synaptic changes.

The connection strength can be measured by the

- amplitude of the postsynaptic potential (PSP)

- by physical size of the synapse (in particular the spine, see next slide)

Important:

Neurons communicate with each other by short electrical pulses, often called

‘spikes’.

Synaptic plasticity – structural changes

Yagishita et al.

Science, 2014

spine

synapse
presynaptic

terminal

Previous slide.

The synaptic connection consists of two parts. The end of an axonal branch

coming from the sending neuron; and the counterpart, a protrusion on the

dendrite of the receiving neuron, called spine.

We refer to the sending neuron as presynaptic and to the receiving one as

postsynaptic.

A change in the connection strength is observable with imaging methods as an

increase in the size of the spine. The bigger spine remains big for a long time

(here observed for nearly one hour).

Synapse

Synaptic plasticity: summary

Syn. Plasticity should enable Learning

- memorize facts and episodes

- learn to recognize WHERE we are

→ current state/representation

of current input

- learn models of the world

→ predict the near future

- learn appropriate actions

- Connections can be strong or weak

- Strong connections have thick spines

- Synaptic plasticity

= change of connection

Previous slide.

Thus connections can be strong or weak – and synaptic plasticity describes the

changes of one synapse from weak to strong or back.

The synaptic changes are thought to be the basis of learning – whatever the

learning task at hand. And RL has several aspects of learning:

- learn to recognize states = where we are;

- learn to choose good actions = action selection;

- learn to predict possible next states = model-based reinforcement learning.

The question now is: Are the any ‘rules’ for connection changes that would predict

whether and when a synapse gets stronger?

presynaptic neuron

postsynpatic neuron
i

𝑤𝑖𝑗

When an axon of cell j repeatedly or persistently

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased
Hebb, 1949

k

- local rule

- simultaneously active (correlations)

Hebb rule / Hebbian Learning

j

Previous slide.

The Hebb rule is the classic rule of synaptic plasticity.

It is often summarized by saying: if two neurons are active together, the

connection between those two neurons gets stronger.

Note that the original formulation of Hebb also has a ‘causal’ notion: ‘takes part in

firing’ – which is more than just firing together.

Local rule means: changes only depend on information that is available at the

synapse.

The changes for the weight from j to i can depend on the activity of neuron j and

the state (or activity) of neuron i, and the value of the weight itself, but for

example not explicitly on the activity of another neuron k. Note that if k connects

to i, the activity of i is a good summary of the influence of k. In other words, i may

depend IMPLICITLY on k, but the weight changes do not depend EXPLICITLY on

k.

Quiz. Terms used Synaptic Plasticity and Learning Rules
We look at the specific synapse

[] k is called the presynaptic neuron of the synapse

[] k is called a presynaptic neuron of i

[] j is called the presynaptic neuron of this synapse

[] i is called the postsynaptic neuron of this synapse

[] the strength of a synapse can be measured by the PSP amplitude.

[] PSP means presynaptic potential

Learning rules in the brain

[] Hebbian learning depends on presynaptic activity AND on state of

postsynaptic neuron

[] A learning rule is called local, if it uses only information available at the

location of the synapse.

[]

[x]

[x]

[x]

[x]

[]

[x]

[x]

i

𝑤𝑖𝑗

k

j

𝑤𝑖𝑗

𝑤𝑖𝑗

Previous slide.

1. The neuron BEFORE the synapse is called the presynaptic neurons:

it sends spike to the synapse.

2. The neuron AFTER the synapse is called the postsynaptic neurons:

it receives a signal via thesynapse.

3. Hebbian learning: the joint activation of pre- and postsynaptic neuron induces a strengthening

of the synapses.

4. A learning rule is called local, if it uses only information available at the location of the synapse.

Hebbian Learning (LTP)

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s

“if two neurons are active together, the connection

between those two neurons gets stronger.”

“another synapse (red) which does not receive

presynaptic spikes, does NOT increase”

Previous slide.

The joint activation of pre- and postsynaptic neuron induces a strengthening of

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic

neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of Hebbian learning, only the stimulated synapses (green)

is strengthened, but not another synapses (red) onto the same neuron.

Hebbian Learning in experiments (schematic)

post
i

𝑤𝑖𝑗
PSP

pre

j
no spike of i

PSP

pre

j

post
i

𝑤𝑖𝑗 no spike of i

pre

j

post
i

𝑤𝑖𝑗

Both neurons

simultaneously active

Increased amplitude ⇒ Δ𝑤𝑖𝑗 > 0

u

Synaptic plasticity: Long-Term Potentiation (LTP)

Previous slide.

In a schematic experiment,

1) You first test the size of the synapse by sending a pulse from the presynaptic

neurons across the synapses. The amplitude of the excitatory postsynaptic

potential (EPSP) is a convenient measure of the synaptic strength. It has been

shown that it is correlated with the size of the spine.

2) Then you do the Hebbian protocol: you make both neurons fire together

3) Finally you test again the size of the synapse. If the amplitude is bigger you

conclude that the synaptic weight has increased.

pre

j

post i

𝑤𝑖𝑗

+50ms

Changes

 - induced over 3 sec

 - persist over 1 – 10 hours

20Hz

Long-term plasticity/changes persist

30 min

(or longer?)

Why the name ‘ Long-term plasticity ‘ (LTP)?

Previous slide.

Experimentalists talk about Long-Term Potentiation (LTP), because once the

change is induced it persists for a long time. Interestingly, it is sufficient to make

the two neurons fire together for just a few seconds.

Thus induction of plasticity is rapid, but the changes persist for an hour or more.

Spike-timing dependent plasticity (STDP)

pre

j

post
i

𝑤𝑖𝑗

𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

Pre

before post

Markram et al, 1995,1997

Zhang et al, 1998

review:

Bi and Poo, 2001

60 repetitions𝑡𝑗
𝑝𝑟𝑒

𝑡𝑖
𝑝𝑜𝑠𝑡

30 min0

PSP

amplitude

100%40ms-40ms

Previous slide (not shown in class).

In the STDP paradigm of LTP induction, the presynaptic neuron is stimulated so

that it emits a single spike, and the postsynaptic neuron is also stimulated so that

emits a single spike – either a few milliseconds before or after the presynaptic

spike. This stimulation protocol (for example pre-before-post) is then repeated

several times.

The increase of the synaptic weight (induced by repeated pre-before-post)

persists for a long time.

How much it increases (or decreases) depends on the exact timing of

conicidences of pre- and post-spikes on the time scale of 10ms

Since the size of the increase depends on the relative timing of the two spikes,

this induction protocol is called Spike-Timing-Dependent Plasticity (STDP).

Summary: Synaptic plasticity

Synaptic plasticity

- makes connections stronger (LTP) or weaker (LTD)

- can be experimentally induced

- needs ‘joint activation’ of the two connected neurons

- is induced rapidly, but can last for a long time

- There are many protocols (combinations of pre and post)

to induce changes
Hebb rule:

- ‘neurons that fire together, wire together’
S. Loewl and W. Singer, Science 1992

‘Local rule’:

- only the activity of sending and receiving neurons matters

Previous slide.

There are several experimental paradigms to induce synaptic changes.

Most of these paradigms are consistent with the Hebb rule of LTP:

Neurons that fire together, wire together, a slogan that was introduced by Loewl

and Singer in 1992. Other paradigms induce a DEPRESSION of the synapse,

called LTD (long-term depression).

However, in all these Hebbian learning rules and their corresponding

experimental paradigms, the role of reward is unclear and not considered.

Hebbian rules are examples of ‘LOCAL’ learning rules.

- For the change of a connection from neuron j to neuron i, only the activity of

these two neurons i and j matters, but not the activity of some other neuron k

further away.

- Local means that only information that is locally available at the site of the

synapse can be used to drive a weight change. What is available is the value of

the weight itself, as well as the state of the postsynaptic neuron and the

incoming spikes sent by the presynaptic neuron.

pre

post

i

j

Hebbian Learning depends on two factors

∆𝑤𝑖𝑗 = 𝑐 𝑥𝑗 [𝜑𝑖 − 𝑏]

𝑥𝑗

𝜑𝑖

∆𝑤𝑖𝑗 = 𝐹 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑤𝑖𝑗1. ‘local’ learning rule: only local

information is used

2. Changes depend on two factors:

- pre (spike arrival from neuron j)

→ variable 𝑥𝑗

- post (activation or output spike

of postsynaptic neuron i)

→ variable 𝜑𝑖

𝑤𝑖𝑗

3. Sensitive to coincidences

‘pre’ and ‘post’

∆𝑤𝑖𝑗 = 𝐹 𝑥𝑗 , 𝜑𝑖 , 𝑤𝑖𝑗

Hebbian rules = 2-factor rules

example

Previous slide.

In standard Hebbian learning, the change of the synaptic weight depends on

presynaptic activity 𝑥𝑗 (the presynaptic factor, pre) and the state of the

postsynaptic neuron (a specific example of a postsynaptic factor is 𝜑𝑖 − 𝑏, where

b is an arbitrary constant).

1. The rule is local: it depends only on information that is available at the synapse.

2. It is built from two factors: the multiplication of a presynaptic and a

postsynaptic factor.

3. Note that it does not contain the notion of reward or success.

Now we want to see whether such rules can be mapped to the math we did in this

class!

I use the term Hebbian rules and 2-factor rules interchangeably.

Quiz. Synaptic Plasticity and Learning Rules
Standard Long-term potentiation

[] has an acronym LTP

[] takes more than 10 minutes to induce

[] lasts more than 30 minutes

[] depends on presynaptic activity

AND on state of postsynaptic neuron

Hebbian Learning:

[] Hebbian learning depends on presynaptic activity (presynaptic factor)

AND on state of postsynaptic neuron (postsynaptic factor)

[x]

[]

[x]

[x]

[x]

[x]

Feedback on Brain Anatomy and Hebbian Learning rules

[] Up to here at least 60 percent of the material was new to me

For 80 percent of the material that we have seen so far

[] I understood the concepts and got a rough or reasonably precise

idea of the biological phenomena

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 1

Hebbian Learning rules

1. Synaptic Plasticity: Learning

rules of the brain

2. Hebbian Learning Rules

Previous slide.

Hebbian Learning (rate models)
pre

j

post
i

𝑤𝑖𝑗

When an axon of cell j repeatedly or persistently

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased
Hebb, 1949

k

- local rule

- simultaneously active (correlations)

active = high rate = many spikes per second

→ Continuous real-valued variables 𝜈𝑗
𝑝𝑟𝑒

, 𝜈𝑖
𝑝𝑜𝑠𝑡

Rate model:

𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

Previous slide.

In this section we consider synaptic plasticity in a rate model. In a rate model we

do not describe single spikes but only the ‘rate’ of spike arrival. The rate 𝜈 is

a continuous variable.

We focus on the directed connection from a neuron j to a neuron i. The connection

point is called the synapse. It’s strength is described by the weight Δ𝑤𝑖𝑗 .

Neuron j and i are called the presynaptic and postsynaptic neuron, respectively.

Donald Hebb proposed a rule of synaptic changes in form of a written statement.

The essence is:

(i) only the activity of the presynaptic neuron j and the state of the postsynaptic

neuron i should matter for the change of the connection from j to i . (but not

that of another neuron k. Hence the rule only uses locally available

information.

(ii) Both neurons should be active to generate an increase in the synapse.

Rate-based Hebbian Learning

Δ𝑤𝑖𝑗= 𝐹(𝑤𝑖𝑗 , 𝑀𝑂𝐷; 𝜈𝑗
𝑝𝑟𝑒

, 𝜈𝑖
𝑝𝑜𝑠𝑡

)

Δ𝑤𝑖𝑗 = 𝑎0 + 𝑎1
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

+ 𝑎1
𝑝𝑜𝑠𝑡

𝜈𝑖
𝑝𝑜𝑠𝑡

+ 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
+ 𝑎2

𝑝𝑜𝑠𝑡
𝜈𝑖

𝑝𝑜𝑠𝑡 2
+ 𝑎2

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑟𝑒 2
. . .

a = a(wij)

a(wij) wij

pre

j

post
i

𝑤𝑖𝑗

Local rule:

Taylor expansion:
Modulator MOD=const

Previous slide.

Let us formulate these insights mathematically.

(i) Local rule implies that the weight change Δ𝑤𝑖𝑗 depends explicitly only on

th firing rate of the pre- and postsynaptic neuron. It can also depend on

the momentary value of the synaptic weight 𝑤𝑖𝑗 itself. Finally, it could

also depend on other factors, for example on the presence or absence of

a neuromodulator such as dopamine, called MOD. At the moment we

assume that the value of MOD does not change so that we can disregard

it.

(ii) The Hebbian rule says little about the function F. We assume that F

allows a Taylor expansion. We expand F with respect to the two firing

rates, but not with respect to the weight value itself. As a result we have

expansion coefficients that still carry the weight-dependence as an

argument.

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡

pre
post

on off on off
on offon off

+ 0 0 0

Rate-based Hebbian Learning

pre

j

post
i

𝑤𝑖𝑗

k

Previous slide.

Let us now focus on some terms in the expansion.

We first focus on the ‘correlation’ between presynaptic and postsynaptic rate

and set all other coefficients in the expansion to zero.

To keep things simple, we assume that the firing rates are either high (say

20Hz) or zero. In the first case, we say that the neuron is ‘on’; in the second

case that it is ‘off’.

We can then construct a table of four different combinations of on and off.

For this first correlation-based rule we find that a synapse either increases or

does not change.

This looks potentially problematic bit then a synapse could never increase!

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝑐

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑗

𝑝𝑟𝑒
(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟(𝜈𝑗

𝑝𝑟𝑒
− 𝜗)(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)

pre
post

on off on off
on offon off

+ +

+ 0 0 0

- -

+ 00 -

+ - - -

2. Rate-based Hebbian Learning

pre

j

post
i

𝑤𝑖𝑗

k

Previous slide.

In the second line of the table, we now use a negative expansion coefficient

𝑎0 = −𝑐 < 0.

In the third line of the table we use instead 𝑎1
𝑝𝑟𝑒

= −𝜗𝑎2
𝑐𝑜𝑟𝑟< 0.

In the fourth line we combine terms 𝑎0 , 𝑎1
𝑝𝑟𝑒

, 𝑎1
𝑝𝑜𝑠𝑡

, 𝑎2
𝑐𝑜𝑟𝑟 in a specific form

All four examples are Hebbian rules. Indeed, in all four examples the joint activity

of pre- and postsynaptic neuron leads to a positive weight change.

Therefore, there are many different Hebbian rules! Experimental data should be

used to decide which of these rules (if any) is implement in the brain.

As computer scientists or theoreticians we can also use simulations and

mathematical arguments to find out which one of these four Hebbian rules will

‘work’ or is the ‘best’ in achieving good learning results – in ways that we need to

define.

pre

j

post
i

𝑤𝑖𝑗

k

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟(𝜈𝑖

𝑝𝑜𝑠𝑡
− 𝜗)𝜈𝑗

𝑝𝑟𝑒

presynaptically gated

𝜈𝑖
𝑝𝑜𝑠𝑡

Δ𝑤𝑖𝑗

. Presynaptically gated plasticity rule

𝜗

Assume activity 𝜈𝑗
𝑝𝑟𝑒

> 0

Previous slide (not shown in class).

Let us focus for a moment on the third line of the table and plot the weight

change as a function of the postsynaptic rate 𝜈𝑖
𝑝𝑜𝑠𝑡

.

Let us assume that the presynaptic activity is nonzero.

The threshold parameter 𝜗 indicates the critical postsynaptic rate where the

weight change switches from negative to positive.

In the absence of presynaptic activity there is no weight change. Therefore

we call this the presynaptically gated plasticity rule.

BCM: 3rd order (‘triplet’)
Bienenstock, Cooper

Munro, 1982

Bienenstock-Cooper-Munro rule and Oja rule

Δ𝑤𝑖𝑗 = 𝑏(𝜈𝑖
𝑝𝑜𝑠𝑡

)2𝜈𝑖
𝑝𝑟𝑒

− 𝑏𝜗𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

triplet pair

Oja: self-normalizing

Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

− 𝑐(𝑤𝑖𝑗)(𝜈𝑖
𝑝𝑜𝑠𝑡

)2 Oja, 1982

Hebbian term drives weight increase if both neurons are active

term with minus sign drives weight decrease

Previous slide.

A variant of the presynaptically gated plasticity rule is the BCM rule, named

after Bienenstock, Cooper, and Munro, the authors of a paper in 1982.

The two main differences to the presynaptically gated rule are that

(i) It contains an extra rate factor 𝜈𝑖
𝑝𝑜𝑠𝑡

.

(ii) The threshold value 𝜗 is taken to be a function of the low-pass-filtered

rate 𝜈𝑖
𝑝𝑜𝑠𝑡

. This leads a so-called ‘sliding threshold’.

If we neglect the sliding threshold, the BCM rule can be mapped directly to

the Taylor expansion.

The BCM rule is another example of a Hebbian rule!

And the Oja rule as well. We will come back to the Oja rule later in this

lecture.

Hebbian Learning detects correlations in the input

Fixed rate

Jointly variing rate

{

{

Development of Receptive Fields

(‘filters’)

Functional Consequence of Hebbian Learning

Example: input natural images →
Image:

Brito&Gerstner 2016

Previous slide.

How can a Hebbian rule be useful?

Suppose a single postsynaptic neuron receives input from several presynaptic

neurons.

Let us assume that the top half of the presynaptic neurons just send random

spikes whereas the lower half of the presynaptic neuron send highly correlated

spikes, because the spike rates of this second group increase and decreases

together.

In this case a useful Hebbian learning rule will strengthen the synapses that see

the jointly varying firing rate and set the other synapses to very small values or

even zero.

Loosely speaking, a good Hebbian learning rule will focus on the parts of input

with ‘interestingly correlated’ signals.

For example, if the input consists of small patches of natural images, then the

learning rule will develop specific two-dimensional filters that are adapted to the

image statistics. In neuroscience, these filters are called ‘receptive fields’

unselective

neurons

output

neurons

output neurons specialize:

→Receptive fields

Initial:
 random
connections

Correlated input

BCM leads to specialized

Neurons (developmental learning);

Bienenstock et al. 1982

{
{

Development and learning rules:

Willshaw&Malsburg, 1976

Linsker, 1986

K.D. Miller et al., 1989

Synaptic Changes for Development of Cortex

Previous slide.

The BCM rule from 1982 is an example of such a ‘good’ Hebbian rule.

Willshaw and von der Malsburg formulated in 1976 a slightly different

mathematical learning rule; since 1986 dozens of scientific papers have

explored Hebbian learning rules that lead to nice receptive fields.

Summary: Models for Hebbian Learning

- A family of ‘Hebbian’ rules

- Considered as models for LTP and LTD

- BCM and Oja rule are well-known examples

- Competition: some synapses grow (i.e., show LTP)

at the expense of others (which show LTD

- Detect correlated inputs → relation to PCA?

Previous slide.

- Hebbian learning refers to a family of learning rules, rather than one

specific rule.

- Rules can be classified by mapping them to a Taylor explansion.

- Terms with a negative coefficient induce Long-Term Depression (LTD).

- A clever combination of LTP and LTD can explain the development of

receptive fields (RF) in Visual Cortex = filters that are typical for the first

layer in a deep convolutional network trained on images.

- A clever combination of LTP and LTD leads to synaptic competition:

some synapses grow at the expense of others. A well-known example

of a Hebbian rule is the Bienenstock-Cooper-Munro (BCM) rule.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Learning in Neural Networks: Lecture 1

Hebbian Learning rules

1. Synaptic Plasticity: Learning

rules of the brain

2. Hebbian Learning Rules

3. PCA as Hebbian Learning

Previous slide.

In this section we want to mathematically formalize the consequences of

Hebbian Learning in a first oversimplified model.

Vector of

 input rates

Ԧ𝑥 =

𝜈1
𝑝𝑟𝑒

𝜈2
𝑝𝑟𝑒

𝜈3
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

. . .
𝜈𝑁

𝑝𝑟𝑒

Ԧ𝑥1 =

𝜈1
1

𝜈2
1

𝜈3
1

𝜈𝑗
1

. . .
𝜈𝑁

1

Ԧ𝑥𝜇 =

𝜈1
𝜇

𝜈2
𝜇

𝜈3
𝜇

𝜈𝑗
𝜇

. . .
𝜈𝑁

𝜇

Hebbian Learning for PCA: notation

- discrete time

- sequential presentation

of input patterns

Previous slide.

We consider a single postsynaptic neuron driven by input from N presynaptic

neurons.

Presynaptic inputs arise from input patterns Ԧ𝑥𝜇.

- We work in discrete time. In each time step of duration Δ𝑡 we apply one of

the patterns. Patterns are selected either randomly or one of the other for

several cycles.

Hebbian Learning for PCA

P input

 patterns Ԧ𝑥𝜇 =

𝜈1
𝜇

𝜈2
𝜇

𝜈3
𝜇

𝜈𝑗
𝜇

. . .
𝜈𝑁

𝜇
{ Ԧ𝑥𝜇; 1 ≤ 𝜇 ≤ 𝑃}

𝜈𝑖
𝑝𝑜𝑠𝑡

= ෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

Linear neuron

 model

Blackboard

Theorem: ASSUME

- linear neuron model

- small learning rate 𝜂 = 𝑎2
𝑐𝑜𝑟𝑟

- Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

-
1

𝑃
σ𝜇=1

𝑃 Ԧ𝑥𝜇 = 0

- patterns presented

sequentially several times

THEN

the weight vector aligns with

principal eigenvector of

correlation matrix.

Previous slide.

The specific assumptions are

- We assume that the patterns have mean zero (normally firing rates should

be positive but we ignore this for the moment.

- The simplest Hebbian learning rule

- A linear neuron model.

- A very small learning rate (or time steps going to zero)

A blackboard calculation then yields that the weight vector converges

towards the eigenvector of the correlation matrix.

In theory this result is valid only for the expected weight change. However,

for small learning rate, weights hardly change during one time step.

Therefore, before a significant change is implemented all patterns have been

applied several times as inputs. In this limit the actual weight change

becomes very close to the expected weight change.

Detects correlations in the input

Fixed rate

Jointly variing rate

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟𝜈𝑖

𝑝𝑜𝑠𝑡
𝜈𝑗

𝑝𝑟𝑒

Δ𝑤𝑖𝑗 = 𝑎2
𝑐𝑜𝑟𝑟 ෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

= ෍

𝑘

𝑤𝑖𝑘 𝜈𝑘
𝑝𝑟𝑒

linear neuron

 model

෍

Ckj

Analysis: Hebbian Learning for PCA

𝐸[Δ𝑤𝑖𝑗] = 𝑎2
𝑐𝑜𝑟𝑟 σ𝑘 𝑤𝑖𝑘 𝐸[𝜈𝑘

𝑝𝑟𝑒
𝜈𝑗

𝑝𝑟𝑒
]

learning rule (Hebb)

linear neuron

expected weight change

correlation matrix

Previous slide.

After inserting the equation of the linear neuron into the learning rule, the

correlation matrix C appears naturally on the right-hand side.

We then write the expansion coefficient 𝑎2
𝑐𝑜𝑟𝑟 = 𝛾Δ𝑡 .

This expresses that during longer presentation times weight changes are

longer.

Then we take the limit Δ𝑡 → 0 and find a differential equation for the weight

vector 𝑤𝑖 = (𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑁) which we express in the coordinate system of

the eigenvectors of C.

The largest eigenvalue dominates the dynamics, and therefore we conclude

that 𝑤𝑖 aligns with Ԧ𝑒1 .

However, we also not that the length of 𝑤𝑖 explodes.

𝐶𝑘𝑗 = 𝐸[𝑥𝑘𝑥𝑗] =
1

𝑃
෍

𝜇=1

𝑃

𝑥𝑘
𝜇

𝑥𝑗
𝜇

𝑥2

𝑥1

𝑥3

Ԧ𝑥
𝜇

𝐶0 Ԧ𝑒𝑛 = 𝜆𝑛 Ԧ𝑒𝑛

𝜆1 > 𝜆2 >. . . > 𝜆𝑁

𝐶𝑘𝑗
0 = 𝐸[(𝑥𝑘 − 𝑥𝑘)(𝑥𝑗 − 𝑥𝑗)]

Hebbian Learning for PCA

(eigenvector of 𝐶0
 with maximal eigenvalue)

is called the Principal Component

Hebbian learning → weight vector 𝑤 aligns with

Ԧ𝑒1

Ԧ𝑒1

correlation

covariance

In which direction

points the

eigenvector of C ?

𝐶 ≠ 𝐶0 !

Previous slide.

If we drop the assumption that the input patterns have zero mean, the

correlation matrix is different from the covariance matrix.

Standard PCA assumes that the mean is zero!

Zero-mean input is therefore an important assumption of the theorem.

- Hebbian learning detects correlations in the input

- with linear neuron model and simple plasticity

 Hebbian learning aligns weight vector with first PC

 of correlation matrix

- BUT: length of weight vector explodes

Fixed rate

Jointly variing rate

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑖
𝑝𝑜𝑠𝑡

𝜈𝑗
𝑝𝑟𝑒

linear neuron

 model

Summary: Hebbian Learning for PCA

Previous slide.

Oja rule: detects first principal comp.
𝜈𝑖

𝑝𝑜𝑠𝑡
= σ𝑘 𝑤𝑖𝑘 𝜈𝑘

𝑝𝑟𝑒
 (1)

Ckj

𝑑

𝑑𝑡
𝑤𝑖𝑗 = 𝑎2

𝑐𝑜𝑟𝑟𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝑎2
𝑐𝑜𝑟𝑟𝑤𝑖𝑗(𝜈𝑖

𝑝𝑜𝑠𝑡
)2

Ckn

𝐸[
𝑑

𝑑𝑡
𝑤] = 𝑎2

𝑐𝑜𝑟𝑟[𝐶𝑤 − (𝑤𝑇𝐶𝑤)𝑤]

0 = 𝐶𝑤 − 𝜆𝑤Converges to fixed point:

𝑤 = Ԧ𝑒1Only is stable

E. Oja, Simplified Neuron Model as Principal Component

Analyser, J. Math. Biol. 15:267-263 (1982)

𝐸[
𝑑

𝑑𝑡
𝑤𝑖𝑗] = 𝑎2

𝑐𝑜𝑟𝑟 ෍

𝑘

𝑤𝑖𝑘𝐸[𝜈𝑘
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

] − 𝑤𝑖𝑗 ෍

𝑘,𝑛

𝑤𝑖𝑘𝐸[𝜈𝑘
𝑝𝑟𝑒

𝜈𝑗
𝑝𝑟𝑒

] 𝑤𝑖𝑛

scalar!

Exercise: The weight vector stays normalized and parallel to first PC!

Previous slide.

The analysis from the Blackboard can be directly transferred to that of the Oja rule.

The Oja rule controls weight growth and avoids the explosion of weights.

1) We express the postsynaptic rate by Equation (1) and insert it several times.

2) We study the expected weight change.

3) We switch to vector notation.

4) We analyze the fixed point.

5) The term in the red oval is a scalar number (called 𝜆), since we apply from both

sides a vector to the matrix C. This yields an Eigenvalue equation for the fixed

point.

6) The result of the analysis (Exercises) is that the weight vector asymptotically

approaches the first principal component. With the choice of parameters given

here, the weight vector at the stable fixed point is normalized to a length of one.

Summary Lecture 1

- BackProp not bio-plausible because it needs four separate phases

and feedback architecture for vector feedback

- Brain consists of neurons organized in several brain areas

- Learning corresponds to changes in the synapses.

- Synaptic changes follow rules, called learning rules.

No BackProp, please!

Hebbian Learning
- not a single learning rule but a family of rules!

- detects correlations in the input

- is useful to drive the development of receptive fields

- bilinear Hebbian learning rule with linear neuron model

detects the first principal component

- The Oja rule is a stable example of Hebbian learning.
E. Oja, Simplified Neuron Model as Principal Component

Analyser, J. Math. Biol. 15:267-263 (1982)

Previous slide.

Overall summary of the lecture.

The End

Previous slide.

End of Lecture.

The following slides are an appendix and not covered in class.

1) Review of PCA as a standard method covered in introduction lectures to

signal processing or data analysis. First you subtract the mean. Then you

calculate the eigenvectors. The eigenvector with the largest eigenvalue is

called the principal component.

2) A table of further well-known Hebbian rules.

3) A review of standard BackProp

All three topics are covered in standard textbooks (e.g., Haykin, Neural

Networks and Learning machines)

𝑥2

𝑥1

𝑥3

1) Subtract mean
Ԧ𝑥 Ԧ𝑥 − Ԧ𝑥

𝐶𝑘𝑗
0 = (𝑥𝑘 − 𝑥𝑘)(𝑥𝑗 − 𝑥𝑗)

2) Calculate covariance matrix

(eigenvector with maximal eigenvalue)

is called the Principal Component

Ԧ𝑒1
3) Calculate eigenvectors

Ԧ𝑒1

1. Appendix: Review of Standard PCA algorithm

Previous slide.

PCA is a standard method covered in introduction lectures to signal

processing or data analysis.

First you subtract the mean. Then you calculate the eigenvectors. The

eigenvector with the largest eigenvalue is called the principal component.

𝑥2

𝑥3

Ԧ𝑥𝜇 =

𝑥1
𝜇

𝑥2
𝜇

. . .
𝑥𝑁

𝜇

Subtract mean

Rotate via PCA

෨Ԧ𝑥𝜇

=

෤𝑥1
𝜇

෤𝑥2
𝜇

. . .
෤𝑥𝑁

𝜇

Keep only

First components

෤𝑥1
𝜇

෤𝑥2
𝜇

PCA for dimension reduction

Previous slide.

Preprocessing of data (to zero mean) is equivalent to a shift of the coordinate

system.

PCA is equivalent to a rotation of the coordinate system (blue axis).

For dimension reduction, one often keeps only the first few components

𝑥2

𝑥3

Ԧ𝑥
𝜇

− Ԧ𝑥
𝜇

-PCA detects the direction of

maximal variance

-PCA give optimal reconstruction

(autoencoder)

Maximization principle in

Lecture 2: comparison

of PCA and ICA

Review of for PCA

Previous slide.

pre

j

post
i

𝑤𝑖𝑗

k

Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝑐(𝑤𝑖𝑗)(𝜈𝑖
𝑝𝑜𝑠𝑡

)2

Δ𝑤𝑖𝑗 = 𝜂 𝜈𝑗
𝑝𝑟𝑒

𝜈𝑖
𝑝𝑜𝑠𝑡

(𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝜗)

Δ𝑤𝑖𝑗 = 𝜂(𝜈𝑗
𝑝𝑟𝑒

− 𝜗)(𝜈𝑖
𝑝𝑜𝑠𝑡

− 𝜗)

pre

post

on off on off

on offon off

+ +

+ 0 0 0

- -

+ 00 -

+ - 0 0Oja

1989

BCM

1982

Covariance,

Sejnowski

1977

2. Appendix well-known Hebbian Learning rules:

simple,

bilinear

|𝑤𝑖| 𝑒𝑥𝑝𝑙𝑜𝑑𝑒𝑠,
 PCA

|𝑤𝑖| 𝑠𝑡𝑎𝑏𝑙𝑒
 PCA

Linear neuron model, 𝐸[Ԧ𝑥𝑖] = 0, and:

|𝑤𝑖| 𝑒𝑥𝑝𝑙𝑜𝑑𝑒𝑠,
PCA

|𝑤𝑖| 𝑠𝑡𝑎𝑏𝑙𝑒

ICA or PCA,

Previous slide.

All these examples are Hebbian learning rules!

The Oja rule provides a simple modification which ensures that the norm of

the weight vector is stable.

The covariance rule does not need the condition that the input is zero mean.

Otherwise same as simple rule

The BCM rule is nonlinear in the plasticity terms. We will see in the lecture on

ICA that nonlinearities generically focus on ICA, but only if the mean input is

zero and if all eigenvalues of the correlation matrix are identical.

Wulfram Gerstner

EPFL, Lausanne, Switzerland3. APPENDIX:

Review of Backprop

BackProp as Gradient Descent

Some error function,

also called loss function

gradient descent

Modern gradient descent

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Batch rule:

one update after all P patterns

(normal gradient descent)

Online rule:

one update after one pattern
(stochastic gradient descent)

Mini Batch rule:

one update after P’=P/K patterns
(minibatch update)

1 epoch = all patterns applied once.

Training over many epochs

𝐸(𝒘) =
1

2
෍

𝜇=1

𝑃

෍

𝑖

𝑡𝑖
𝜇

− ො𝑦𝑖
𝜇 2

𝐸(𝒘)

Some error function, also

called loss function

gradient descent

Modern gradient descent

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Convergence

- To local minimum

- No guarantee to find global

minimum

- Learning rate needs to be

sufficiently small

- Learning rate can be further

decreased once you are

close to convergence

→ See course: Machine Learning

(Jaggi-Urbanke)

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

Multilayer Perceptron: notation

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑎

1

0

𝑔(𝑎)

Quadratic error

gradient descent

𝑤𝑘

𝐸

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸

𝑑𝑤𝑗𝑘
(1)

𝐸(𝒘) =
1

2
෍

𝜇=1

𝑃

෍

𝑖

𝑡𝑖
𝜇

− ො𝑦𝑖
𝜇 2

Multilayer Perceptron: gradient descent

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

local

minimum

Exercise 1 now: Calculate gradient!

Use Chain rule, be smart!

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝐸(𝒘) =
1

2
෍

𝜇=1

𝑃

෍

𝑖

𝑡𝑖
𝜇

− ො𝑦𝑖
𝜇 2

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸

𝑑𝑤𝑗𝑘
(1)

with

ො𝑦𝑖
𝜇

We continue in 8 minutes!

Calculating a gradient in multi-layer networks:

- write down chain rule

- analyze dependency graph

- store intermediate results

- update intermediate results

while proceeding through graph

- update all weights together at the end

gradient descent

compare with

dynamic programming

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp
output

activity

input

pattern

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp Calculate output error

𝛿

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)

Backprop versus direct numerical evaluation

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸

𝑑𝑤𝑗𝑘
(1)

= −𝛾
𝐸 𝑤𝑗𝑘

1
+ 𝜀 − 𝐸 𝑤𝑗𝑘

1
− 𝜀

2𝜀

calculate

→ calculate for one patternො𝑦𝑖
𝜇

𝐸(𝒘) =
1

2
෍

𝜇=1

𝑃

෍

𝑖

𝑡𝑖
𝜇

− ො𝑦𝑖
𝜇 2

Blackboard 3:

algorithmic complexity

Blackboard 3:

algorithmic complexity 𝐸 𝑤𝑗𝑘
1

+ 𝜀 − 𝐸 𝑤𝑗𝑘
1

− 𝜀

2𝜀

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝐸(𝒘) =
1

2
෍

𝜇=1

𝑃

෍

𝑖

𝑡𝑖
𝜇

− ො𝑦𝑖
𝜇 2

Direct numerical evaluation: complexity

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

∆𝑤𝑗𝑘
(1)

= −𝛾
𝑑𝐸 𝑤𝑗𝑘

1
+ 𝜀 − 𝑑𝐸 𝑤𝑗𝑘

1
− 𝜀

2𝜀

calculate

1) calculate for one patternො𝑦𝑖
𝜇

𝐸(𝒘) =
1

2
෍

𝜇=1

𝑃

෍

𝑖

𝑡𝑖
𝜇

− ො𝑦𝑖
𝜇 2

→ each weight is touched once

2) for each change of weight,

evaluate E twice

3) For n weights, order n-square!!!

Backprop: complexity

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

ො𝑦1
𝜇 ො𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Exercise 2 at home: show algo is of order n

Backprop: Quiz

Your friend claims the following; do you agree?

[] BackProp is nothing else than the chain rule, handled well.

[] BackProp is just numerical differentiation

[] BackProp is a special case of automatic algorithmic differentiation

[] BackProp is an order of magnitude faster than numerical

differentiation

Conclusions: Multilayer Perceptron and Backprop

- Weights can be adapted by gradient descent

- Backprop is an implementation of gradient descent

- Gradient descent converges to a local minimum

→Big Multilayer perceptrons (and infinitely many

Network architectures) can be

trained by BackProp to minimize a loss function

BUT no BackProp please (in this class)

- BackProp needs four separate phases:

forward pass, mismatch calculation, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.g., all linear, and feedback weights = feedforward weights).

- The feedback architecture must enable vector feedback

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: The brain: Cortical Areas
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Modeling: artificial neurons
	Slide 50
	Slide 51: Modeling: artificial neurons
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Energy consumption of the brain
	Slide 60
	Slide 61: Energy consumption of one GPU
	Slide 62
	Slide 63: Accelerating Neuromorphic Workloads – Innovation required at all levels
	Slide 64
	Slide 65: Analog signal processing for scalability
	Slide 66
	Slide 67: Tunable weights via Memristive Devices
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171

