Wulfram Gerstner

Learning in Neural Networks: Introduction .- ......c sviverian
No BackProp, please!!!

Objectives for today:
- understand why backprop Is problematic
-> for biology
-> for hardware
- PCA as a biologically plausible algorithm

- course overview

Reading:

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)

T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)
E. Oja, Simplified Neuron Model as Principal Component Analyser, J. Math. Biol. 15:267-263 (1989)



Previous slide.

After most slides you will find a hidden slide with some annotations and text.
Slides themselves have often graphical elements and keywords, but never
text in the form of full sentences.

| optimize my slides for explanations during the lecture; they are not meant
as a self-contained ‘textbook’.

The first slide Iindicates objectives as well as important literature.

Topics today (corresponding to Sections of Lecture)

Intro: No Backprop please !!!!

Intro: From Biological to Artificial Neurons

Intro: From Artificial Neurons to Neuromorphic hardware
Intro: Coarse Brain Anatomy

Lecture 1.1: Synaptic Plasticity: Learning rules of the brain
Lecture 1.2 Hebbian Learning rules

Lecture 1.3 PCA as Hebbian learning




Wulfram Gerstner
EPFL, Lausanne, Switzerland

Content

- Why BackProp is biologically not plausible. Biological two-factor rules and neuromorphic hardware
- Hebbian Learning (two-factor rules) for PCA and ICA

- Two-factor rules for dictionary learning (k-means/competitive learning/winner-takes-all)

- Three-factor rules and neuromodulators (theory and neuroscience)

- Three-factor rules for reward-based learning (theory)
- Three-factor rules for TD reinforcement-learning (algorithmic formulations)

- Actor-critic networks

- Reinforcement learning in the brain

- Learning by surprise and novelty: exploration and changing environments (algorithmic)
- Surprise and novelty in the brain

- Learning representations in multi-layer networks (algorithms without backprop)

- Learning to find a goal: a bio-plausible model with place cells and rewards

- Neuromorphic hardware and in-memory computing




Previous slide.
| discuss the semester plan a bit later.



Wulfram Gerstner

Learning in Neural Networks: Introduction .- ... siveion
No Backprop, please!!!

Learning actions:

- riding a bicycle
Remembering facts

-> previous president of the US

- first name of your mother
Remembering episodes

- first day at EPFL

Memories

are avallable
because of

Learning

Where Is your bicycle today?



Previous slide.

This class Is about Learning in Neural Networks, both artificial ones and
biological ones.

Learning Is the basis of acquiring knowledge and building memories.
Learning and memory come In different shades.

All of us have learnt actions.
We all remember some facts.

And we also remember short episodes of our lives.

Some things you remember for a long time. Others not. While you may

remember where you have parked your bike today, you will not necessarily
remember where you parked in on the Tuesday 11 weeks ago.



Artificial Neural Networks, Inspired by the Brain

Feedforward
network

Output

History: 3 waves of Neural Networks

- starting 1950

- starting 1981
- starting 2012



Previous slide.
Artificial Neural Networks have always been inspired by the brain.

Artificial Neural Networks appeared first in the 1950ies and 60ies, with work
of McCullogh&Pitts (binary neurons, 1943), Rosenblatt (Perceptron, 1958),
Steinbuch (Lernmatrix, precursor of the Hopfield model, 1961), and then
activity diminished (even though it never disappeared).

They appeared again in the 1980ies with the work of Rumelhard and
McCleland (book on Parallel Distributed Processing, 1986), Hopfield (1982),
Sutton and Barto (reward-based learning, 1981), Ackley-Hinton-Sejnowski
(Boltzman machines, 1985), the first NeurlPS conference (called NIPS at the
time), and the re-discovery of BackProp (D.E. Rumelhard et al., Nature, 1996)
Then the wave stopped when researchers pursued Support Vector Machines
or Classic Al.

And finally, as you know, a third wave started under the name of Deep
Learning around 2014. Again, attention modules and many other aspects are
brain-inspired.



= cE= = Learning = change of parameters
Learning Artificial Neural Networks

Deep Networks for Vision
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Sutskever and Hinton,

ook (e.g. AlexNet ... ) 019
Q — trained with BackProp
S P e

Deep Networks for Chess and Go
Silver et al. (2017) ,
(alpha-go, alpha-zero) Deep Mind
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Foundation Models
(LLMs, ChatGPT, Bert)

— trained with BackProp



Previous slide.

All impactful models have been trained with BackProp. BackProp (combined
with well-known optimization tricks) Is a powerful algorithm and can be
adapted to all sorts of network architecture.

(If you do not recall BackProp detalls, take any textbook. | also added slides
as an appendix to the stack of slides of this first lecture.)

In this class, | will argue that the human brain does not use backprop — but Is

has powerful learning capacities as well. And it uses much less energy than
modern Al.

Let us therefore try to explore alternative learning algorithms that could
eventually (and we are not yet there!) to low-power implementations of
learning In neural networks.



BackProp useful to optimize hrain models
. brain model
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- Train on classification of Mio of images with BackProp
1 Cortical Area - 1 layer of a Deep Convolutional Neural Network
BUT: - Real networks do not use BackProp
- Real networks are not trained with labeled images!

Using goal-driven deep learning to understand sensory cortex
D Yamins, JH DiCarlo Nat. Neurosci.19: 356-365 (2016)



Previous slide.

And even some of the best models to explain data in the neurosciences have
been trained with BackProp!

The slide shows deep convolutational neural network model and its
eguivalence of processing steps in the brain, following the visual pathway.

The model is trained with BackProp on an image classification task with
Millions of images!

But the training with BackProp does not describe biological learning.



A Spectrum of Learning Algorithms: connections change hased on...
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Previous slide.

We study various types of neural networks in this class. Many of these are
feedforward networks. | mostly use a convention where input comes in from
the bottom and moves towards the top layer.

(rarely also from left to right).

Learning in Artificial Neural Networks (ANNS) Is related to changes in the
connection strength. In a biological context, the connection point Iis called a
synapse. Changes in connection strength are called synaptic plasticity.

The question then Is whether changes induced by a learning algorithm
depend only on information of the two connected neurons (left: no feedback),
or also on additional information.

Additional information could be a global, scalar feedback (the performance
was good = reward or bad = no reward); or very detailed information in the
form of vectorized feedback (right).



Vector feedback:

- multiple outputs,

- one ‘signed error per output’

- error vector transmitted back
- precise neuron-specific errors

BackProp Algo has 4 phases:

1) Forward pass and freeze )
2) Calculate local output errors

3) Backprop pass) using 2)

4) Update the weights, using 1) +3)
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Previous slide.
In a network with multiple outputs, standard backprop calculates local signed

mismatches for each output unit, and then transfers this information back.

For example consider self-supervised learning and auto-encoders applied to
images with D pixels. Each pixel value is one input=one output unit. ‘error
feedback vector 6" has therefore D components.

Vector feedback Is very different from scalar feedback!

Let us recall the BackProp algorithm:

1) In the forward phase, and input vector Is applied and passed through

the network. Activities of each neuron need to be stored (or ‘frozen’)

2) the outputs are compared with the target values, which gives the vector
of mismatch values 6 also called signed local errors.
3) the mismatch values are propagated backward. This feedback uses the

same welights as the feedforward network, but different nonlinearities.

4) Welights are updated using the frozen activities and the local 6 values



- BackProp needs four separate phases:
forward pass, output mismatch, backward pass, weight update.

- Backward pass needs specific feedback architecture

(e.qg., all inear; feedback weights = feedforward weights;
backward multipliers proportional to activity of feedforward network).

- The feedback architecture must enable vector feedback

- Not implementable in biology
-> Difficult to implement in low-energy neuromorphic hardware

F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)
T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neuroscl. 21: 335-346 (2020)



Previous slide.

In a network with multiple outputs, standard backprop calculates local signed
mismatches for each output unit, and then transfers this information back.

If you think of a physical network (be It in artificial or biological hardware),
this would require a separate feedback network.

This Is the main reason that BackProp Is biologically not plausible; for the
same reason It Is also not attractive for energy-efficient alternative computing
paradigms, sometimes called ‘in-memory computing’, ‘neuromorphic
hardware’, or ‘non-von-Neumann architecture’.

Essentially, we aim for algorithms that where each unit only uses locally
available information to change parameters. You can think of such algorithms
as asynchronous fully distributed algorithms.

And that type of algo is what we will study in the class. We will use
mathematical language, but take inspiration from the brain.



2-factor rules use information locally available at the synapse

Nufee;dback
ebbiar Big question: |
learning Can we learn anything
000 at all without feedback?
Q. O, .0
R e - first part of class:
& G 2-factor rules
2-factor rules: “Each connection is a
unsupervised, . :
no feedback (conditionally) independent actor

and uses only locally available
information for changes.”



Previous slide.
Most scientists believe that biological neural networks (your brains!) do not

have such a specific detailed error feedback network.

In the absence of such a detailed error feedback network, can we learn
anything at all?

Learning in neural networks means changing the connection. Think of each
connection as an independent actor that only has access to locally available
iInformation. What can we achieve?

In the first part of the class we focus on this question and study a few
example algorithms.



d-factor rules use information locally available at the synapse
combined with one glohal feedback signal
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Previous slide.

But maybe the assumption that there is no feedback at all is too strict.

Indeed, you know the feeling of happiness If you succeeded to do something
you want to do. Success causes In the brain an internal reward signal.

Such a reward signal conveys a SCALAR information on how good or bad

your performance was, but not what you should do to improve the
performance.

Sounds a bit like Reinforcement Learning, but Is there a precise connection?

This is what we will study In the second part of the class.



multi-factor rules that use locally available information
combined with several giohal feedback signals

Learning rules??? Big question:
Can we have local learning rules
Network architecture??? (with several global signals)

that yield good representations
What kind of feedback???| In multi-layer networks?

representation
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Previous slide.

Even reward-based learning methods (using scalar feedback) are somewhat
limited.

Therefore we ask: can we generalize the idea of ‘local learning rule’ with a
few global (or near-global) signal?

A critical test Is to learn representations in multi-layer networks.



Summary: Learning in Neural Networks (Introduction}

Backprop has several problems as model for neuroscience

- 4 phases for update - online, continuous time

- precise feedback architecture - robust, plausible feedback

- forward=backward weights - Learning rules for all weights
No BackProp, please!!!

Active research area in computational neuroscience
Also relevant for low-energy neuromorphic computing

Reading:
F. Crick, The recent excitement about Neural Networks, Nature 337:129-132 (1989)
T.P. Lillicrap et al., Backpropagation and the brain, Nature Reviews Neurosci. 21: 335-346 (2020)




Wulfram Gerstner
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Content

3or4 | -WhyBackProp is biologically not plausible. Biological two-factor rules and neuromorphic hardware
weeks - Hebbian Learning (two-factor rules) for PCA and ICA
- - Two-factor rules for dictionary learning (k-means/competitive learning/winner-takes-all)
3 or 4 - Three-factor rules and neuromodulators (theory and neuroscience)
7 - Three-factor rules for reward-based learning (theory)
weeks . . o . L
_ - Three-factor rules for TD reinforcement-learning (algorithmic formulations) miniproject
- -Act_or-critic networks_ | | handout
_ - Reinforcement learning in the brain
flex_lble - Learning by surprise and novelty: exploration and changing environments (algorithmic)
topics 4 - Surprise and novelty in the brain

—

- Learning representations in multi-layer networks (algorithms without backprop)
- Learning to find a goal: a bio-plausible model with place cells and rewards
- Neuromorphic hardware and in-memory computing



Assessment methods

Oral exam (70 percent) plus miniproject (30 percent).
If more than 45 students participate, the oral exam Is
replaced by a written exam.

Oral exam (27 min):
- Presentation of an (important) research paper related to class.
- Followed by questions to paper and to lectures.

- Sample session during last 2 weeks (TA=role of student)

Questions?

For those who are not available on Tuesday 2pm-4pm,
we offer an alternative exercise sessions Wednesday, 4pm or 5pm



Previous slide.

The first 7 weeks are a very systematic introduction to
- Representation learning with two-factor rules
- Reinforcement learning with three-factor rule

Then we hand out the miniprojects. You can choose one of two projects:
(1) receptive field learning with two-factor rules
(1) learning to navigate in a maze with three-factor rules

| will handle the last weeks a bit more flexibly in terms of topics.

The course finishes with an oral exam (unless the number of students is
above 45).



- - -
|

Wulfram Gerstner

EPFL, Lausanne, Switzerland
From Biological to Artificial Neurons



Previous slide.

In this first introduction lecture the focus Is on a general introduction into the field
(with Its subparts Reinforcement learning and Supervised Learning for

Classification).

We start with a glimpse of the biological inspirations of the field.



The brain: Gortical Areas
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Previous slide.
Cortex iIs divided into different areas:
Information from the eye will first arrive at visual cortex (at the back of the head),

and from there It goes on to other areas. Comparison of the input with memory is
thought to happen in the frontal area (above the eyes). Movements of the arms a
re controlled by motor cortex somewhere above your ears.

Talking about cortical areas provides a macroscopic view of the brain.



The Brain: zooming in
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Previous slide.

If we zoom In and look at one cubic millimeter of cortical material under the
microscope, we see a network of cells.

Each cell has long wire-like extensions.

If we counted all the cells in one cubic millimeter, we would get numbers in the
range of ten thousand.

Researchers have estimated that, if you put all the wires you find in one cubic
millimeter together you would find several kilometers of wire.

Thus, the neural network of the brain Is a densely connected and densely packed
network of cells.



The brain: a network of neurons
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Previous slide.
These cells are called neurons.
The part of the neuron where signals arrive Is called the dendrite, or the dendritic

tree. The cables that transmit the signal to other neurons Is called the axon. The
central part of the cell is called the soma.

What Is the signal? Neurons communicate with each other by short electrical
pulses, called action potentials, or ‘spikes’.



The brain: signal transmission
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Previous slide.
Signals are transmitted along the wires (axons). These wires branch out to make

contacts with many other neurons.

Each neuron In cortex receives several thousands of wires from other neurons
that end in ‘'synapses’ (contact points) on the dendritic tree.



The brain: neurons sum their inputs

synapse



Previous slide.
If a spike arrives at one of the synapses, it causes a measurable response In the
receiving neuron.

If several spikes arrive shortly after each other onto the same receiving neuron,
the responses add up.

If the summed response reaches a threshold value, this neuron in turn sends out
a spike to yet other neurons (and sometimes back to the neurons from which it
received a spike).



simmary: the brain is a large recurrent network of neurons

-
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® Active neuron



Previous slide.

Thus, signals travel along the connections in a densely connected network of
neurons.

Sometimes | draw an active neuron (that is a neuron that currently sends out a
spike) with a filled red circle, and an inactive one with a filled yellow circle.
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Previous slide.

Synapses are not jut simple contact points between neurons, but they are crucial
for learning.

Any change in the behavior of an animal (or a human, or an artificial neural
network) Is thought to be linked to a change in one or several synapses.

Synapses have a ‘weight’. Spike arrival at a synapse with a large weight causes
a strong response; while the same spike arriving at a synapses with a small
weight would cause a low-amplitude response.

All Learning corresponds to a change of synaptic weights. For example, forming
new memories corresponds to a change of weights. Learning new skills such as

table tennis corresponds to a change of weights.



Neurons and Synapses form a big network

Brain

Distributed Architecture
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rocessing and memory



Previous slide.
Even though we are not going to work with the Hebb rule during this class, the
above example still shows that
- Memory Is located In the connections
- Memory is largely distributed
- Memory Is not separated from processing
(as opposed to classical computing architectures such as the van Neumann

architecture or the Turing machine)
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Previous slide.
In this class we will focus over 14 weeks on learning rules.
These learning rules can be interpreted

- eilther as solving an optimization problem (computer science/machine learning)
- or as implementing changes in connections (biology/neuromorphic hardware)



pulse
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-responses are added

-pulses created at threshold response
-transmitted to other

—> Mathematical description



Previous slide.
In the previous part we have seen that response are added and compared with a
threshold.

This Is the essential ideal that we keep for the abstract mathematical model in the
following.

We drop the notion of pulses or spikes and just talk of neurons as active or
Inactive.



forget spikes: continuous activity x
forget time: discrete updates

nonlinearity/threshold
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Previous slide.

The activity of inputs (or input neurons) Iis denoted by x;,
The weight of a synapse Is denoted by w;;,

The nonlinearity (or threshold function) is denoted by g

The output of the receiving neuron Is given by

Xi —= Y Ewikxk
k



| ] Neurons In the brain have a threshold.
| | Learning means a change of the connection weights
[ ] The total input to a neuron is the weighted sum of individual inputs
| | The neuronal network in the brain Is feedforward: it has no
recurrent connections

] Most biological neurons (brain) communicate by short pulses (spikes)
| Most artificial neurons (ANNs) communicate by short pulses (spikes)
| Classic implementations of ANNs use a von-Neumann architecture
] GPU implementations of ANNs use a von-Neumann architecture

(1.e., separation of processing and memory)

[
[
[
[



Previous slide. Your notes



Learning In Neural Networks: Introduction
Towards Neuromorphic Hardware

Wulfram Gerstner
EPFL, Lausanne, Switzerland

From Artificial Neurons to
Neuromorphic hardware



Previous slide:
Neuromorphic hardware in the narrow sense is a hardware that mimics ‘on the substrate’ aspects of

biological processing or brain-like neural networks. In the broad sense it refers to a class of different
computing materials or unconventional computing paradigms. Sometimes the latter are also called non-von-

Neumann computing or non-von-Neumann hardware.

One of the major drivers for developments in this direction is the high energy consumption of standard
computers, in particular in comparison to the energy consumption of the human brain.

This class will have only one week on neuromorphic hardware, but neuromorphic applications are always in
the background when we think about the learning algorithms that we explore In this class.
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Previous slide.
A quick look at the field of neuromorphic hardware.



Energy consumption of the brain

® Sedentary humans eat and use 2500 kCal per day
®* Translate to Joule > 10 000 kJ

®* Brain facts: 20 percent of energy consumption of human at
rest goes into the brain

®* Most of it goes into synaptic signaling (spike transmission)
® Brain uses 24 - 30 Watt (5 modern light bulbs)

The power consumption of the brain is relatively low!
- 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain



https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

Previous slide.
The claim Is that the power consumption of the brain (30W) Is relatively low.

Low compared to what?
- Compare with GPU
- Compare with household power consumption.



Energy consumption of one GPU

* 300 W (RX 6800/6900 XT)
* 350 W (RTX 3080/3090)

- 10h of training an ANN on 1 GPU = 3.5 kWh
1 day of training an ANN on 1 GPU = 8000Wh =8 kWh

4 months GPU usage > 1000 kWh

12 months GPU usage -2 3000 kWh

https.//www.tomshardware.com/features/graphics-card-power-consumption-tested



https://www.tomshardware.com/features/graphics-card-power-consumption-tested

Previous slide:

A day has 24 hours. So we multiply the power (350W) with the number of hours.

4 months have 120 days. Again a simple multiplication

The guestion then is: are 3000kWh per year a lot?

We need to compare with ‘normal’ energy consumption.

A modern apartment (with heat pump heating) needs, less than 1000kWh per year. A family of four with
normal electricity usage uses less than 2000 kWh per year.

In other words, a single GPU burns as much energy as a whole family!



Accelerating Neuromorphic Workloads — Innovation required at all levels
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Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix
elements as a result of a learning rule (‘algorithm’, right).



Analog signal processing for scalability

= Limiting factors of von = Overcome by
Neumann architecture = |n-memory computing
= Memory access » = Parallel operations

= Seqguential operations

o . . = Analog signal processing
= Digital signal processing

memory Iin resistors:

Processing Memory "°“a:o:‘ev tunable
Unit o
Compute effort ~O(#Neurons?) Compute effort ~O(N)

Electrical (and optical solutions) are viable candidates

IBM slide



Previous slide:

For these kind of matrix operations we should exploit new computing concepts.
The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons

per layer increases.



Tunable weights via Memristive Devices

‘memory of resistance’ = ‘memristor

® Resistance depends
Understanding the mechanism on molecular

configuration

® Resistance Increase or

decreases with
voltage pulses above
threshold value

® Resistance keeps
memory

IBM MO,+HfO,

Continuous &
symmetric
change of R

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Images: IBM



Previous slide:
Memristive material studied by IBM.
The basic function arises from the following principle.

The material in light blue is an electrical insulator (dielectric material). However, with a first strong voltage
pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red
column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be
made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower
left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and
resistance for a long time. It has a ‘Memory of Resistance’ 2> Memristor.



siimmary: Learning in Neuromorhoic Hardware

N

brain algos

/

non-von-Neumann
computing &hardware

- In-memory computing: non-von Neumann
architecture

- Connections between units can be
physically implemented (cross-bar array
with resistors at crossing points)

- Learning implies changes of connections

- Memristors are changeable resistors that
keep their ‘'memory’.

- Changes of memristors can be induced by
voltage pulses

- Candidate for implementing distributed

learning algorithms



Previous slide:

Summary
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Coarse Brain Anatomy



Previous slide.

Let us have a coarse look at the brain.



GCoarse Brain Anatomy: Gortex
Sensory representation In visual/somatosensory/auditory cortex
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Previous slide.
Left: Anatomy. The Cortex is the part of the brain directly below the skull. It Is

a folded sheet of densely packed neurons. The biggest folds separate the
four main parts of cortex (frontal, Parietal, occipital, and temporal cortex)

Right: Functional assignments. Different parts of the brain are involved In
different tasks. For example there several areas involved In processing visual
stimuli (called primary and secondary visual cortex). Other areas are
iInvolved In audition (auditory cortex) or the presentation of the body surface
(somatosensory cortex). Yet other areas are prepared in the preparation of
motor commands for e.g., arm movement (primary motor cortex)



GCoarse Brain Anatomy
- many different cortical areas

- but also several brain nuclel sitting below the cortex
- Some of these nuclel send dopamine signals
- _Dopamine sent from: VTA and substantia nigra

23 |
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/ . 5 D .\ 4. Striatu
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" ‘1 nigra

nucleus
accumbens  fig: Wikipedia commons



Previous slide.
Left: Anatomy. View on the folds of the cortex, and main cortical areas in

different color.

Right: Below the cortex sit different nuclel. Some of these nuclel use
dopamine as their signaling molecule. Important nuclei for dopamine are the
Ventral Tegmental Area (VTA) and the Substantia Nigra pars compacte
(SNc). These dopamine neurons send their signals to large areas of the
cortex as well as to the striatum (and nucleus accumbens).

Since dopamine is involved in reward, these dopamine neurons will play a
role in this class in the parts that links reinforcement learning (RL) and the

brain.



Goarse brain anatomy: the brain adapts during use

More space for fingers allocated In

Ssomato-sensory cortex
(=body representation; number 3 on image)

- musiclans vS. non-musiclans

Amunts et al. Human Brain Map. 1997
Gaser and Schlaug, J. Neuosci. 2003

More space allocated In hippocampus
(= representation of space; blue on image)

- London taxi driver vs bus driver
Macquire et al. Hippocampus 2006

DOI 10.1002/hipo.2023
- ‘state representation’ is ‘learned’




PreViOUS Slide' (nOt Shown inhﬁl@/&%)xipedia.org/wiki/Primary_somatosensory_cortex#/media/FiIe:BIausen_OlOB_Brain_Sensory&Motor.png
We said that different areas of the brain are involved in different tasks. For example, the

somatosensory cortex represents the body surface. Nowadays one can measure that the size of
the cortical area devoted to fingers Is larger for musicians than for non-musicians. Since
musicians are not born with a larger area, this result implies that experience can influence the
function of the neurons in the brain. Somatosensory cortex is labeled 3 (previous page). The
actual movements of fingers and other body parts are controlled by motor cortex (label 2).

Similarly, hippocampus is involved In spatial navigation. Not surprisingly, London taxi drivers have
a bigger hippocampus than London bus drivers.

Primary motor cortex Primary Somatosensory

cortex

Central sulcus

Image from
wikipedia

Calcarine fissure

Lateral Fissure

Primary visual
cortex

Primary Auditory cortex



1. Quiz: Coarse Functional Brain anatomy

| | the brain = the cortex (synonyms)

| | the cortex consists of several areas

| ] some areas are more involved In vision, others more
- In the representation of the body surface

| | below the cortex there are groups (clusters) of neurons
I | dopamine is linked to reward, pleasure, surprise



End of Introduction
Questions?

Motivation: No Backprop, please!!
Overview: Neuronal Networks In the brain

Overview: Neuromorphic hardware
Overview: Coarse Brain Anatomy

BREAK now.
Next Lecture at 12h15



Learning in Neural Networks: Lecture 1
synaptic Plasticity and Learning rules

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Synaptic Plasticity: Learning
rules of the brain



Previous slide.
Learning Is related to synaptic plasticity. Therefore this Is our second topic.

The claim is that the biological observation of ‘synaptic plasticity’ is the basis of
learning rules’ implemented in the brain.

Two iImportant manifestations of synaptic plasticity are Hebbian Learning and
Long-Term Potentation (LTP) that will be explained in this part.



gehavioral Learning

Learning actions (reward-based):
- riding a bicycle
-> play tennis
-> play the violin

‘models of action choice’

Remembering episodes
- first day at EPFL
- first visit In a new city
- reward-free

‘models of the world’



Previous slide.

When we walk around a city for the first time we develop a model of the environment
— even In the absence of any specific rewards (except, may be, that it iIs good to know
how to find the way home).

You may remember your first day at EPFL.

Both are examples of learning. Remembering episodes (and environments) Is mainly
unsupervised learning (or in some context: self-supervised learning).

When we learn to ride a bike we learn with Reinforcement-like feedback, e.g., we
don't want to fall because falling hurts.

When we learn play the tennis we also get feedback via the observed outcome —
which can be good or bad.

Both are example of reinforcement learning (also called reward-based learning).



Behavioral Learning - a!lﬂ synaptic plasticity

45\ aurons
q‘, : Amplitude of
Postsynaptic
—:\c%/ Potential (PSP)

i

SynaJ = o,
onde P
’ . ;dendrlte .

| ‘spike’:

D output signal (pulse)
___—Lsent to other neurons

Synaptic Plasticity = Change in Connection Strength



Previous slide.

When we observe learning on the level of behavior (we get better at tennis), then
this implies that something has changed in our brain:

The contact points between neurons (called synapses) have changed. Synaptic
changes manifest themselves as a change in connections strength.

Synaptic plasticity describes the phenomena and rules of synaptic changes.

The connection strength can be measured by the
- amplitude of the postsynaptic potential (PSP)
- by physical size of the synapse (in particular the spine, see next slide)

Important:

Neurons communicate with each other by short electrical pulses, often called
'spikes’.



synaptic plasticity - structural changes

2 min 20min 50 min

Yagishita et al.
Science, 2014



Previous slide.

The synaptic connection consists of two parts. The end of an axonal branch
coming from the sending neuron; and the counterpart, a protrusion on the
dendrite of the receiving neuron, called spine.

We refer to the sending neuron as presynaptic and to the receiving one as
postsynaptic.

A change in the connection strength is observable with imaging methods as an
Increase In the size of the spine. The bigger spine remains big for a long time
(here observed for nearly one hour).



synaptic plasticity: summary

- Connections can be strong or weak

>Ynapse /.| - Strong connections have thick spines
— - Synaptic plasticity
A = change of connection
-

Syn. Plasticity should enable Learning

- memorize facts and episodes

- learn to recognize WHERE we are
-> current state/representation

of current input

- learn models of the world
-> predict the near future

- learn appropriate actions



Previous slide.

Thus connections can be strong or weak — and synaptic plasticity describes the
changes of one synapse from weak to strong or back.

The synaptic changes are thought to be the basis of learning — whatever the
learning task at hand. And RL has several aspects of learning:

- learn to recognize states = where we are;

- learn to choose good actions = action selection;

- learn to predict possible next states = model-based reinforcement learning.

The question now is: Are the any ‘rules’ for connection changes that would predict
whether and when a synapse gets stronger?



Hebb rule / Hehbian Learning

presynaptic neuron

o \ N
NN ]

|
§ postsynpatic neuron

When an axon of cell | repeatedly or persistently
takes part in firing cell I, then |'s efficiency as one
of the cells firing 1 Is increased Hebb. 1949

- local rule
- simultaneously active (correlations)



Previous slide.
The Hebb rule Is the classic rule of synaptic plasticity.

It IS often summarized by saying: if two neurons are active together, the
connection between those two neurons gets stronger.

Note that the original formulation of Hebb also has a ‘causal’ notion: ‘takes part in
firing’ — which i1s more than just firing together.

Local rule means: changes only depend on information that is available at the
syhapse.

The changes for the weight from | to | can depend on the activity of neuron | and
the state (or activity) of neuron I, and the value of the weight itself, but for
example not explicitly on the activity of another neuron k. Note that if k connects
to I, the activity of 1 Is a good summary of the influence of k. In other words, | may
depend IMPLICITLY on k, but the weight changes do not depend EXPLICITLY on
K.



Quiz. Terms used Synaptic Plasticity and Learn

We look at the specific synapse Vij

| ] k 1s called the presynaptic neuron of the synapse Wij jQ
| ] kis called a presynaptic neuron of | \\ ij
[ 1] Is called the presynaptic neuron of this synapse ),

[ ]11s called the postsynaptic neuron of this synapse K |
[ ] the strength of a synapse can be measured by the PSP amplitude.
| | PSP means presynaptic potential

Learning rules in the brain
[ | Hebbian learning depends on presynaptic activity AND on state of

~ postsynaptic neuron
| | Alearning rule Is called local, If it uses only information available at the

location of the synapse.




Previous slide.

1. The neuron BEFORE the synapse Is called the presynaptic neurons:
It sends spike to the synapse.

2. The neuron AFTER the synapse iIs called the postsynaptic neurons:
It recelves a signal via thesynapse.

3. Hebbian learning: the joint activation of pre- and postsynaptic neuron induces a strengthening
of the synapses.

4. Alearning rule is called local, If it uses only information available at the location of the synapse.



neihnian Learning (LIP)

Hebbian coactivation:
pre-post-post-post -

“If two neurons are active together, the connection
between those two neurons gets stronger.”

“another synapse (red) which does not receive
presynaptic spikes, does NOT increase”



Previous slide.

The joint activation of pre- and postsynaptic neuron induces a strengthening of

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic
neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.

Note that by definition of Hebbian learning, only the stimulated synapses (green)
IS strengthened, but not another synapses (red) onto the same neuron.



Synaptic plasticity: Long-Term Potentiation (LTP)

Hebblan Learning Iin experiments (schematic)
pre |
. O

IA\W___u pep no spike of |

pOSt

Pre ] Both neurons

b\ wy simultaneously active
. ] ;
pOSt

pre ‘

] Q\ W, ‘. ke of |
NI /@p no spike of i -

\ ,
| A\ Increased amplitude = Aw;; > 0



Previous slide.

In a schematic experiment,

1) You first test the size of the synapse by sending a pulse from the presynaptic
neurons across the synapses. The amplitude of the excitatory postsynaptic
potential (EPSP) Is a convenient measure of the synaptic strength. It has been
shown that it Is correlated with the size of the spine.

2) Then you do the Hebbian protocol: you make both neurons fire together

3) Finally you test again the size of the synapse. If the amplitude Is bigger you
conclude that the synaptic weight has increased.



Why the name ' Long-term plasticity ‘ (LTP)3

[ 20HZ 30 min
Pre I I Y |

| W,

postCL

EEEEEER T

P
____________ anges persist ,

Long-term plasticity/

Changes
- Induced over 3 sec
- persist over 1 — 10 hours (or longer?)

S M



Previous slide.

Experimentalists talk about Long-Term Potentiation (LTP), because once the
change Is induced It persists for a long time. Interestingly, It is sufficient to make
the two neurons fire together for just a few seconds.

Thus induction of plasticity Is rapid, but the changes persist for an hour or more.



spike-timing dependent plasticity (STDP)

tpre tpre

® pre I J ] 60 repetitions
Wij \JQ ‘tlpost ‘ tlpost |
pcgst t : Markram et al, 1995,1997

Zhang et al, 1998

wip o+ o review:
“phy i
o o8 °©F Bl and Poo, 2001

0 = .
il ™ 3 o
B PSP
0.5 . |
| ——— ! - __amplitude
: -40ms ? 40ms 't 100% —
Y
Pre

before post 0 30 min



Previous slide (not shown In class).

In the STDP paradigm of LTP induction, the presynaptic neuron is stimulated so
that it emits a single spike, and the postsynaptic neuron Is also stimulated so that
emits a single spike — either a few milliseconds before or after the presynaptic
spike. This stimulation protocol (for example pre-before-post) Is then repeated
several times.

The increase of the synaptic weight (induced by repeated pre-before-post)
persists for a long time.

How much It increases (or decreases) depends on the exact timing of
conicidences of pre- and post-spikes on the time scale of 10ms

Since the size of the increase depends on the relative timing of the two spikes,
this induction protocol Is called Spike-Timing-Dependent Plasticity (STDP).



Summary: Synaptic plasticity

Synaptic plasticity

- makes connections stronger (LTP) or weaker (LTD)

- can be experimentally induced

- needs ‘joint activation’ of the two connected neurons

- IS Induced rapidly, but can last for a long time

- There are many protocols (combinations of pre and post)

to Induce changes
Hebb rule:

- ‘neurons that fire together, wire together’
S. Loewl and W. Singer, Science 1992

‘Local rule’:
- only the activity of sending and recelving neurons matters



Previous slide.

There are several experimental paradigms to induce synaptic changes.

Most of these paradigms are consistent with the Hebb rule of LTP:

Neurons that fire together, wire together, a slogan that was introduced by Loewil
and Singer in 1992. Other paradigms induce a DEPRESSION of the synapse,

called LTD (long-term depression).

However, in all these Hebbian learning rules and their corresponding
experimental paradigms, the role of reward Is unclear and not considered.

Hebbian rules are examples of 'LOCAL’ learning rules.

- For the change of a connection from neuron | to neuron I, only the activity of
these two neurons | and | matters, but not the activity of some other neuron k
further away.

- Local means that only information that is locally available at the site of the
synapse can be used to drive a weight change. What is available Is the value of
the weight itself, as well as the state of the postsynaptic neuron and the
Incoming spikes sent by the presynaptic neuron.



1. ‘local’ learning rule: only local Aw;; = F(pre, post, Wij)
Information Is used pre

2. Changes depend on two factors: ~ @~ POS!
- pre (spike arrival from neuron j) | | P

- variable X;

- post (activation or output spike
of postsynaptic neuron 1)

- v.a.rlable Q; | | AWiJ' — F(xj , Qi Wij )
3. Sensitive to coincidences
‘pre’ and ‘post example

Aw;; = c xj|@; — b]

Hebbian rules = 2-factor rules




Previous slide.

In standard Hebbian learning, the change of the synaptic weight depends on
presynaptic activity x; (the presynaptic factor, pre) and the state of the
postsynaptic neuron (a specific example of a postsynaptic factor iIs ¢; — b, where
b Is an arbitrary constant).

1. The rule is local: it depends only on information that is available at the synapse.
2. It 1s built from two factors: the multiplication of a presynaptic and a

postsynaptic factor.
3. Note that it does not contain the notion of reward or success.

Now we want to see whether such rules can be mapped to the math we did In this
class!

| use the term Hebbian rules and 2-factor rules interchangeably.



Quiz. Synaptic Plasticity and Learning Rules

Standard Long-term potentiation

| | has an acronym LTP

| ] takes more than 10 minutes to induce
[ ] lasts more than 30 minutes

] [ ] depends on presynaptic activity

AND on state of postsynaptic neuron

Hebbian Learning:
| | Hebbian learning depends on presynaptic activity (presynaptic factor)
j AND on state of postsynaptic neuron (postsynaptic factor)




Feedback on Brain Anatomy and Hebbian Learning rules
| ] Up to here at least 60 percent of the material was new to me
For 80 percent of the material that we have seen so far

'] | understood the concepts and got a rough or reasonably precise
idea of the biological phenomena



Learning in Neural Networks: Lecture 1
Hehbian Learning ruies

Wulfram Gerstner
EPFL, Lausanne, Switzerland

1. Synaptic Plasticity: Learning
rules of the brain

2. Hebbian Learning Rules



Previous slide.



Hebbian Learning (rate models)

pre
ope N v
W;: : pOSt
NG ] v

K post
When an axon of cell | repeatedly or persistently

takes part in firing cell 1, then |'s efficiency as one

of the cells firing 1 Is Increased
- local rule Hebb, 1949

- simultaneously active (correlations)

Rate model:
active = high rate = many spikes per second

- Continuous real-valued variables v]?”"e yPost




Previous slide.
In this section we consider synaptic plasticity in a rate model. In a rate model we

do not describe single spikes but only the ‘rate’ of spike arrival. The rate v IS
a continuous variable.

We focus on the directed connection from a neuron | to a neuron I. The connection
point is called the synapse. It's strength is described by the weight Aw;;

Neuron j and | are called the presynaptic and postsynaptic neuron, respectively.

Donald Hebb proposed a rule of synaptic changes in form of a written statement.

The essence iIs:

(1) only the activity of the presynaptic neuron | and the state of the postsynaptic
neuron | should matter for the change of the connection from jto 1. (but not
that of another neuron k. Hence the rule only uses locally available
iInformation.

(1) Both neurons should be active to generate an increase In the synapse.



Rate-based Hebbian Learning

re
~ P
wy, BN
O | o
post
ocal rule:

Aw;j= F(w;j, MOD; vP™, vPo%)

g l

Modulator MOD=const
Taylor expansion:
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Aw;; = agy + azf ]p +a]”" v+ ag"’"’"vf VP 4 al (VP +al (V)

a = a(wj)
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Previous slide.
Let us formulate these insights mathematically.
() Local rule implies that the weight change Aw;; depends explicitly only on

th firing rate of the pre- and postsynaptic neuron. It can also depend on
the momentary value of the synaptic weight w;; itself. Finally, it could

also depend on other factors, for example on the presence or absence of
a neuromodulator such as dopamine, called MOD. At the moment we
assume that the value of MOD does not change so that we can disregard
It.

(i) The Hebbian rule says little about the function F. We assume that F
allows a Taylor expansion. We expand F with respect to the two firing
rates, but not with respect to the weight value itself. As a result we have
expansion coefficients that still carry the weight-dependence as an
argument.



Rate-based Hebbian Learning
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Previous slide.

Let us now focus on some terms in the expansion.

We first focus on the ‘correlation’ between presynaptic and postsynaptic rate
and set all other coefficients in the expansion to zero.

To keep things simple, we assume that the firing rates are either high (say
20Hz) or zero. In the first case, we say that the neuron is ‘on’; in the second
case that it is ‘off".

We can then construct a table of four different combinations of on and off.

For this first correlation-based rule we find that a synapse either increases or
does not change.

This looks potentially problematic bit then a synapse could never increase!



2. Rate-based Hebbian Learning
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Previous slide.
In the second line of the table, we now use a negative expansion coefficient
ao = —C < O

pre

In the third line of the table we use instead a; = = —Ya;°"" < 0.

In the fourth line we combine terms a, , a?”*, a?** , a$°™ in a specific form

All four examples are Hebbian rules. Indeed, in all four examples the joint activity
of pre- and postsynaptic neuron leads to a positive weight change.

Therefore, there are many different Hebbian rules! Experimental data should be
used to decide which of these rules (if any) Is implement in the brain.

As computer scientists or theoreticians we can also use simulations and
mathematical arguments to find out which one of these four Hebbian rules will

'work’ or is the ‘best’ in achieving good learning results — in ways that we need to
define.



. Presynaptically gated plasticity rule

pre

presynaptically gated Assume activity v, > 0
r .
Aw;; = ago"m (v, — 19)1/]?"3 Aw;j
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Previous slide (not shown In class).

Let us focus for a moment on the third line of the table and plot the weight
post

change as a function of the postsynaptic rate v;
Let us assume that the presynaptic activity Is nonzero.
The threshold parameter 9 indicates the critical postsynaptic rate where the

weight change switches from negative to positive.

In the absence of presynaptic activity there is no weight change. Therefore
we call this the presynaptically gated plasticity rule.



Bienenstock-Cooper-Munro rule and Oja rule

L — post~2_  pre Bienenstock, Cooper
AWU // (Vli ) Vi, Munro, 1982
Oja: self-normalizing
Oja, 1982

Hebbian term)drives weilght increase if both neurons are active
@g@drives weight decrease



Previous slide.

A variant of the presynaptically gated plasticity rule is the BCM rule, named
after Bienenstock, Cooper, and Munro, the authors of a paper in 1982.

The two main differences to the presynaptically gated rule are that
(i) It contains an extra rate factor v’°*".
(i) The threshold value ¥ Is taken to be a function of the low-pass-filtered

rate v°°“. This leads a so-called ‘sliding threshold’.

If we neglect the sliding threshold, the BCM rule can be mapped directly to
the Taylor expansion.

The BCM rule 1s another example of a Hebbian rule!

And the Oja rule as well. We will come back to the Oja rule later in this
lecture.



Functional Consequence of Hebbian Learning

Fixed rate { . | l 8

| || O

L 2=
Jointly variing rate ]

Hebbian Learning detects correlations in the input

- Development of Receptive Fields
(‘filters’)

Example: input natural images - = Il

Image:
Brito&Gerstner 2016




Previous slide.
How can a Hebbian rule be useful?
Suppose a single postsynaptic neuron receives input from several presynaptic

neurons.
Let us assume that the top half of the presynaptic neurons just send random

spikes whereas the lower half of the presynaptic neuron send highly correlated
spikes, because the spike rates of this second group increase and decreases

together.

In this case a useful Hebbian learning rule will strengthen the synapses that see
the jointly varying firing rate and set the other synapses to very small values or

even zero.
Loosely speaking, a good Hebbian learning rule will focus on the parts of input

with ‘interestingly correlated’ signals.

For example, If the input consists of small patches of natural images, then the
learning rule will develop specific two-dimensional filters that are adapted to the
image statistics. In neuroscience, these filters are called ‘receptive fields’



- Synaptic Changes for Development of Cortex

BCM leads to specialized
Neurons (developmental learning);

Initial: .
Bienenstock et al. 1982
random .
. unselective |
connections NEUTONS Development and learning rules:

Willshaw&Malsburg, 1976
Linsker, 1986
K.D. Miller et al., 1989

\ \ output
‘ - { neurons
NP { .
\

output neurons specialize:
—->Receptive fields

Correlated input



Previous slide.

The BCM rule from 1982 is an example of such a ‘good’ Hebbian rule.
Willshaw and von der Malsburg formulated in 1976 a slightly different
mathematical learning rule; since 1986 dozens of scientific papers have
explored Hebbian learning rules that lead to nice receptive fields.



-~ Summary: Models for Hebbian Learning

- Afamily of ‘Hebbian’ rules
- Considered as models for LTP and LTD
- BCM and Oja rule are well-known examples

- Competition: some synapses grow (l.e., show LTP)
at the expense of others (which show LTD

- Detect correlated inputs -2 relation to PCA?



Previous slide.
- Hebbian learning refers to a family of learning rules, rather than one

specific rule.
- Rules can be classified by mapping them to a Taylor explansion.

- Terms with a negative coefficient induce Long-Term Depression (LTD).

- Aclever combination of LTP and LTD can explain the development of
receptive fields (RF) in Visual Cortex = filters that are typical for the first
layer in a deep convolutional network trained on images. g
4/

- Aclever combination of LTP and LTD leads to synaptic competition:
some synapses grow at the expense of others. A well-known example
of a Hebbian rule Is the Bienenstock-Cooper-Munro (BCM) rule.



Learning in Neural Networks: Lecture 1
Hehbian Learning ruies

Wulfram Gerstner
EPFL, Lausanne, Switzerland

1. Synaptic Plasticity: Learning
rules of the brain

2. Hebbian Learning Rules

3. PCA as Hebbian Learning



Previous slide.
In this section we want to mathematically formalize the consequences of
Hebbian Learning in a first oversimplified model.



Hebbian Learning for PCA: notation
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Previous slide.

We consider a single postsynaptic neuron driven by input from N presynaptic
neurons.

Presynaptic inputs arise from input patterns x*.

- We work in discrete time. In each time step of duration At we apply one of
the patterns. Patterns are selected either randomly or one of the other for
several cycles.



Hebbian Learning for PCA

: Theorem: ASSUME
—— - linear neuron model
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Previous slide.

The specific assumptions are

- We assume that the patterns have mean zero (normally firing rates should
be positive but we ignore this for the moment.

- The simplest Hebbian learning rule

- Alinear neuron model.

- Avery small learning rate (or time steps going to zero)

A blackboard calculation then yields that the weight vector converges
towards the eigenvector of the correlation matrix.

In theory this result is valid only for the expected weight change. However,
for small learning rate, weights hardly change during one time step.
Therefore, before a significant change is implemented all patterns have been
applied several times as inputs. In this limit the actual weight change
becomes very close to the expected weight change.



Analysis: Hebbian Learning for PCA

Fixed rate | | | | 8 VipOSt — zwik v};{?'re
| | | O | k
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- T O
Jointly variing rate O O— model

Detects correlations in the input

learning rule (Hebb) Aw;; = agorrvipostv]pre
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k
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expected weight change ElAw;j] = a3™"" lpgwi E[vy, v 7]

correlation matrix -
K]



Previous slide.
After inserting the equation of the linear neuron into the learning rule, the
correlation matrix C appears naturally on the right-hand side.

We then write the expansion coefficient a5°"" = yAt .
This expresses that during longer presentation times weight changes are
longer.

Then we take the limit At - 0 and find a differential equation for the weight

vector w; = (w;{, Wiy, ..., w;y) Which we express in the coordinate system of
the eigenvectors of C.

The largest eigenvalue dominates the dynamics, and therefore we conclude
that w; aligns with e; .

However, we also not that the length of w; explodes.



correlation
p=1 c +C°
Co; = El(x — () (x5 — (x;))] ~ covariance

COle™ = nen
AA>4>... >N
X1

el (eigenvector of C with maximal eigenvalue)
Is called the Principal Component

/

In which direction
points the
eigenvector of C ?

Hebbian learning - weight vector w aligns with el



Previous slide.

If we drop the assumption that the input patterns have zero mean, the
correlation matrix is different from the covariance matrix.

Standard PCA assumes that the mean Is zero!

Zero-mean input Is therefore an important assumption of the theorem.



Summary: Hebbian Learning for PCA

_ 1| |

Sived rate | 8 linear neuron
L5 / model

Jointly variing rate | || || | O

- Hebbian learning detects correlations in the input

- with linear neuron model and simple plasticity
d
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Hebbian learning aligns weight vector with first PC
of correlation matrix

- BUT: length of weight vector explodes




Previous slide.



Ojarule: detects first principal comp.

] v_post _ Zk Wi vlzzre (1)
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ij Cin

d \

Converges to fixed point: 0 = Cw — Aw

Only w = e, isstable

E. Oja, Simplified Neuron Model as Principal Component
Analyser, J. Math. Biol. 15:267-263 (1982)



Previous slide.

The analysis from the Blackboard can be directly transferred to that of the Oja rule.
The Oja rule controls weight growth and avoids the explosion of weights.

1) We express the postsynaptic rate by Equation (1) and insert it several times.
2) We study the expected weight change.

3) We switch to vector notation.

4) We analyze the fixed point.

5) The term In the red oval Is a scalar number (called 1), since we apply from both

sides a vector to the matrix C. This yields an Eigenvalue equation for the fixed
point.

6) The result of the analysis (Exercises) Is that the weight vector asymptotically
approaches the first principal component. With the choice of parameters given
here, the weight vector at the stable fixed point Is normalized to a length of one.



suimmary Lecture 1

T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation and the brain.

- BackProp not bio-plausible because It needs four separate phases
and feedback architecture for vector feedback

- Brain consists of neurons organized in several brain areas

- Learning corresponds to changes In the synapses.

- Synaptic changes follow rules, called learning rules.

Hebblan Learning
- not a single learning rule but a family of rules!

- detects correlations in the input

- Is useful to drive the development of receptive fields

- bilinear Hebbian learning rule with linear neuron model
detects the first principal component

- The Oja rule Is a stable example of Hebbian learning.

E. Oja, Simplified Neuron Model as Principal Component
Analyser, J. Math. Biol. 15:267-263 (1982)



Previous slide.
Overall summary of the lecture.






Previous slide.
End of Lecture.
The following slides are an appendix and not covered In class.

1) Review of PCA as a standard method covered in introduction lectures to
sighal processing or data analysis. First you subtract the mean. Then you
calculate the eigenvectors. The eigenvector with the largest eigenvalue Is

called the principal component.

2) Atable of further well-known Hebbian rules.

3) Areview of standard BackProp

All three topics are covered In standard textbooks (e.g., Haykin, Neural
Networks and Learning machines)



1. Appendix: Review of Standard PCA algorithm

X3 9
R €1
1) Subtract mean , U
x—x —{x ) A G
2) Calculate covariance matrix AR X5
Crj = { (X — (e (x; — ()
3) Calculate eigenvectors X1

(elgenvector with maximal eigenvalue)
Is called the Principal Component



Previous slide.

PCA s a standard method covered in introduction lectures to signal
processing or data analysis.

First you subtract the mean. Then you calculate the eigenvectors. The
eigenvector with the largest eigenvalue Is called the principal component.



PCA for dimension reduction
X3
x: Subtract mean v 2\ Keep only 7
2i— | x5 S (’75)

Rotate via PCA = First components



Previous slide.

Preprocessing of data (to zero mean) Is equivalent to a shift of the coordinate
system.

PCA Is equivalent to a rotation of the coordinate system (blue axis).

For dimension reduction, one often keeps only the first few components



Review of for PCA

-PCA detects the direction of
maximal variance

-PCA give optimal reconstruction
(autoencoder)

X3

X2

Maximization principle in
Lecture 2. comparison
of PCA and ICA




Previous slide.



2. Appendix well-known Hebbian Learning rules:

pre
\ ] NN
ij
K post |
pre on |off [on |off
Linear neuron model, E[x;] =0, and:  post on ' on | off off
simple, Aw.. = n yPT€,Post lw;| explodes,
bilinear o =YY T 070 10 |pca
' . re_post post _ W
o Awij =n vV = ewip (P ?? |+ 0 0 IWstable
Covariance, B pre post + _ _ + w:| explodes,
Sejnowski Aw; _n(vj — ) — ) ‘PCLZ‘A ’
1977
BCM Aw:: = n yPTeyPoSt (POt _ g N _ 0 | |Wlstable
1982 g =y v : 0 ICAor PCA




Previous slide.
All these examples are Hebbian learning rules!

The Oja rule provides a simple modification which ensures that the norm of
the weight vector Is stable.

The covariance rule does not need the condition that the input is zero mean.
Otherwise same as simple rule

The BCM rule 1s nonlinear in the plasticity terms. We will see in the lecture on
|ICA that nonlinearities generically focus on ICA, but only If the mean input is
zero and If all eigenvalues of the correlation matrix are identical.



Wulfram Gerstner
EPFL, Lausanne, Switzerland

BackProp as Gradient Descent



Some error function,

also called Igss function

Ew) =5y [t 5]
u=1 1

gradient descent Aw, = —y
R

dE

de

Wi

Batch rule:
one update after all P patterns

(normal gradient descent)

Online rule:

one update after one pattern
(stochastic gradient descent)

Mini Batch rule:

one update after P’=P/K patterns
(minibatch update)

1 epoch = all patterns applied once.
Training over many epochs



E(w)

gradient descent
AWk a4

E

Some error function, also
called loss function

dE

de

Cconvergence

- To local minimum

- No guarantee to find global
minimum

- Learning rate needs to be
sufficiently small

- Learning rate can be further
decreased once you are
close to convergence

- See course: Machine Learning
(Jaggl-Urbanke)






Multilayer Perceptron: gradient descent

Quadratic error

E(w) = %2 D et =5t
u=1 i

gradient descent

E | 2




Exercise 1 now: Calculate gradient! We continue in 8 minutes!
Use Chain rule, be smart!

~U AU
C Y Y
1 o 1 2
Ew) =5 ), ) e 5t o @
= (2)
w..
(1) dE 1)] '
Aw = —
Ik " aw® (1)
Tk O Ch b O
" ()2 (1), (1) Wit ‘
N\ {/ ’
Vi = ¢ [§ W, q' (% Wi} 0] J
00 O_



gradient descent
Calculating a gradient in multi-layer networks:

- write down chain rule

- analyze dependency graph

- store intermediate results compare with
dynamic programming

- update intermediate results
while proceeding through graph

—

- update all weights together at the end



. Initialization of weights BackProp

. Choose pattern x*

. 0 |
input :L';(f) — .iz?ﬁ

(n—1) . x(n)

. Forward propagation of signals z; )

L.

w(n) (n—1) )

AL Ima
output 7 = g!"m

. Computation of errors in output

dj(”-nlax) _ g/ ( CLEnmaX)) [tél L Zg,u.] (2)

. Backward propagation of errors 52-(“) — (517(-”_1)

5§*r2.—1) _ g/(’n.—l)(a(n—l)) Zwij 52(”) (3)
;

. Update weights (for each (i, j) and all layers (n))

Aw(n) _ 5z(r2) x(n—l) ( 4)

L] J

. Return to step 1.

output
activity

(1
I Wik

INput
pattern

(2)

I Wi.j

1
R ROUS

—1
)



. Initialization of weights

BackProp

. Choose pattern x*

input :L';E?) — .iz:'f
. Forward propagation of signals a’;gz_l) — .Cli‘tg-n)
o = ") = g (S wlilaf ) 1)
AL (Mmax)
output y; = x;
. Computation of errors in output
dj(”-nlax) _ g/ ( ag’r?‘max)) [tﬁl L Zg,u.] (2)

. Backward propagation of errors dz(n)

5(72..—1) _ g/(n—l)(a(n—l)) Zwij 5(72..)

J
rz

. Update weights (for each (i, j) and all layers (n))

Aw(n) _ 5z(r2) x(n—l) ( 4)

L] J

. Return to step 1.

Calculate output error



. Initialization of weights BackProp

. Choose pattern x*

: 0
iput :L';(f) = ),

. Forward propagation of signals a’;g?_l) SN 335-”)

v = g (a)") = g (S wiilal ™) (1
(7 lm a.x)

output ¢! = z,

. Computation of errors in output
dj(’”-nlax) _ g/(al(nnnx)) [t,u L y,u] (2)
. Backward propagation of errors 52(”) — 0

5:5.72—1) _ g/(’n.—l)(a(’n—l)) Zwij 52(”) (3)
;

. Update weights (for each (i, j) and all layers (n))

Aw(n) — 6z(r2) x/(.n—l) ( 4)

LJ J

. Return to step 1.

update all weights

Aw (D= 5D



aw® =, 9E Y
g de(l? O O
(1) _ (1) _ (2)
_ _yE (W]k + E)ZEE (W]k 5) Wl,j '
1
S OWOIS
) p ' —1
calculate Ew) = —2 Z[t{‘ M1 (1) "
2 , Wi
u=1 i ]
> calculate ¥ for one pattern
l i 00 O

Blackboard 3: U
algorithmic complexity




Blackboard 3:
algorithmic complexity




Direct numerical evaluation: compiexity

P
1
calculate E(w) = EZ Z[ti” —5%-”]2

u=1 1
1) calculate ¥  for one pattern
- each weight Is touched once

2) for each change of weight,
evaluate E twice

dE (Wj(;) -+ 8) — dE (Wj(kl) — e)

(1)
Aw. ~ — _
Jk Y 2c

3) For n weights, order n-square!!!



Backprop: complexity Exercise 2 at home: show algo is of order n

0. Initialization of weights

1. Choose pattern x* ~ U AU
input x;(f)) = 1, yl yz
2. Forward propagation of signals :U,Ef?'_l) — :I;L,(]-”) ‘ ’
o = g"(a)") = g (S wlila") (1 w2
1,]

~ [ T ax
output ' = g/

3. Computation of errors in output (1)
O U
J

5572111&}{) _ g;(ag.;z.-n1a.x)) [t}u L @,u..] (2) ' — 1
4. Backward propagation of errors 6" — 615-”_1) (1)

(5](.;2-—1) _ g;(.n_—l)(a(n,—l)) Zwu 52(12) (3) ]’
;

5. Update weights (for each (i, j) and all layers (n))

Aufj! = o 2 () ! -1

6. Return to step 1.




Your friend claims the following; do you agree?

| | BackProp Is nothing else than the chain rule, handled well.

| | BackProp Is just numerical differentiation

| | BackProp Is a special case of automatic algorithmic differentiation

| | BackProp Is an order of magnitude faster than numerical
differentiation



Gonclusions: Multilayer Perceptron and Backprop

- Welghts can be adapted by gradient descent
- Backprop Is an implementation of gradient descent
- Gradient descent converges to a local minimum

- Big Multilayer perceptrons (and infinitely many
Network architectures) can be
trained by BackProp to minimize a loss function



BUT no BackProp please (in this class)

- BackProp needs four separate phases:
forward pass, mismatch calculation, backward pass, weight update.

- Backward pass needs specific feedback architecture
(e.q., all linear, and feedback weights = feedforward weights).

- The feedback architecture must enable vector feedback

T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation and the brain.
Nat. Rev. Neurosci., 21(6):335-346, 2020. ISSN 14710048. doi: 10.1038/s41583-020-0277-3.
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