CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solutions for week 8
From Policy Gradient to Actor-Critic

Exercise 1: Computer exercises: Environment 2 (part 2)

Complete the computer exercise for environment 2.

Exercise 2: From Policy Gradient to eligibility traces

In this exercise you will show that eligibility traces appear naturally in any policy gradient algorithm.
Eligibility traces are nice because they lead to a transparent and easy—to—interpret algorithm. More-
over, eligibility traces enable a direct online implementation of the algorithm in distributed hardware
(or biology).

Consider a discrete multistep reinforcement learning problem with the usual graph, the usual notations
and transitions: an action a; leads you (stochastically) from state s; to s;+1 and on this transition you
collect the reward r;. Suppose that you always start in state s;—g = Sstart- We assume that there is a
simple terminal state Siarget- YOu get a particularly strong positive reward when you reach sgarget.

Your policy m(at|st; #) depends on parameters 6. For the moment your aim is to optimize the param-
eters of the policy such that you maximize the expected discounted reward

Eg[Return(ssart = Starget)] = Eq[ro + 71 +7°r2 + ...
We proceed in five steps.

a. Derive a batch version of the policy gradient algorithm over multiple time steps by optimizing
Eg[Return(sstart — Starget)] through gradient descent.

Hint: Use the log-likelihood trick and take the derivative with respect to parameter ¢;.

b. A batch algorithm means averaging over many episodes. Transform the batch algorithm into
an online algorithm where you consider one episode at a time. Assume that in one episode you
traverse the state-action sequence: sg,ag, 70; 1,01, 71; 52,02, 72} 53,03, 73} 54, A4, T4} S5 = Starget-

Show that the parameter updates can be written as

0
Af; = [ro 431 4 7%r2 477 4 7ra] 5 0= loglm (o s0; 0)]
J

0
+ [yry 4972 + 975 + y'tra] o - log[m (ar|s1; 0)]
J

0
N [,YQTQ + 737"3 + 74744]% log[ﬂ(CLQ’SQ; 9)]
J

0
+ [vPrs + 7'ra] - log[m (as|s3; 0)]
a6,

)
+ v'raz - loglm(aa|ss; 0)] (1)
09,

c. So far we were only interested in maximizing the discounted future reward from the INITIAL
state, with the discount factor computed relative to that state (¢ = 0). However, while you move
along the trajectory you pass by other states s1, so, 3, s4. For each of these states s;, you should
now also optimize the future expected discounted reward starting from s;; that is you want to
maximize

E@[Return(st — Starget)} = Eg [’I”t + Yre41 + ’72Tt+2 +]

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

More generally, you should optimize the future discounted returns from every step t, assuming
that the discounting started at the current step or at any possible step m in the past (i.e. m < t).
Assume that m runs from —oo to t.

Redo the calculation in (b), but calculate the parameter update resulting from returns starting
in arbitrary states.

Hint: Copy, but time-shift the results from (b).

d. Sum all the updates from (b) and (c) and reorder all terms such that updates that are multiplied
with the same reward are grouped together.

Show that this results in updates of the form
Ab; = (2)

0 0 0
c ;rt [89] log[m(at|se; 0)] + 7% log[m(at—1]st—1;0)] + 72% log[m(at—2|si—2;0)] + ...| (3)

with some constant ¢. What is this constant?

e. Now we introduce eligibility traces by defining for each parameter ¢; a ‘shadow variable’ z;
which, in each time step ¢, decreases by a factor A < 1

Zj &)\Zj (4)

and then (in the same time step) increase by an amount

0
Zj %log[ﬂ(aﬂst;@)] (5)

where a; is the action taken in time step t.
What is the relation of A and 47 What is the final weight update?

f. Suppose that all rewards are zero, except the reward in the final time step r4 > 0. Furthermore
suppose that parameter 6 is only sensitive to as, s3. To be specific, say 8%]_ log[m(az|s2;0)] > 0

and - log[r(a|s1; 6)] = 0 for 2.

How can you interpret the resulting algorithm? How much will the parameter 6; change?
Solution:

a. We show the total discounted reward from time t = 0 by
Go=ro+yri+¥re+....+~"rp,

where we assume that the episode had T steps. Our goal is to maximize the expected
return under the current policy

Vo (s0) = Eg[Golso).
We can use the law of total expectation and write

Eo[Go|so] = Eg [E[Go|s0.T, ao.r—1]|S0]

T-1

— [ElGalsur. avri) [] p(sesalar,so)mlar]s:i6) daos i,
=0
where we define ap.r—1 = {aog,...,ar_1} and so.r = {0, ..., s} and note that the term

E[Go|so.r, ao.r—1] does not depend on the parameters 6.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

We can now use log-likelihood trick and write

T-1

E
T = [aor gy T ponlan smtlss D duradsns @
T-1 T—1
0
= /E[Go\SO;T,ao:T_l] [[p(srsilar, so)m(arls,;6) [a0, log 7(ar|s7;0)| dagr-1dsir
7=0 =0
(7)
-1 4
=Ey |Go log m(a;|s-;0) 50] : (8)
=0 89
For a given t, the action a; given state s; is independent of the reward values rqg, ..., 1.

This implies that, for 7 < t,
0 0
Eg |7, = log m(ay|sy;)’50 = log m(a¢|se; 0) | po(rs, st, arlso) dr, ds; day,
00; 88
0
:/(89 log 7(ay|st;)) Po(r+]50)po(S¢|1+, So)m(ar|se; 0) drr dsy day,

0
= [t (sl so ([aulss) - ol f) dac) dredsi =0

el o
=%0; J 7r(at|st;0)dat:@~1:0

Hence, interestingly, we can write

19) [0
Eg {GO— log 7 (ay|s¢; 9))50} =Ey [(ro+yr1i+7°r2+....+7"r7) = 90, log m(ay|sy;)‘50}

00
8[):|

=, (fytrt + " g+ o+) = log magss; 6)

Z’WG v log 7(ar|sy; 9)’80] :

00,

0
=Ey |y th% log 7(ay|s; 0)

Therefore, Equation 8 can be simplified further as

8E9 G0|30 .

J

To do the batch update, we run M episodes. We use si and a; to denote the state and the
selected action at time ¢ in episode ¢ and use G} to denote the discounted return collected
from time t onwards in episode ¢. Therefore, we have

M T;—1

Ab; =37 Z > Wtht% log m(ay|s;; 0)

i=1 t=0

b. Transforming the batch algorithm into an online algorithm can be done by simply remov-
ing the averaging over M, i.e.

AQ = ZVth log7r Gt’b“ty)

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

For the given episode, we have

0 0
Ae = OGoﬁlogﬁ(aolso;O)+71G1%10g7r(a1\31;9)

0 0 0
+ ’yZGg% log 7(az|sq; 0) + 73(}’3% log 7(as|ss; 0) + 74G4% log m(ay|s4;0).

Evaluating Gy = r; + 741 + 140 ... gives the result above.

c. Optimizing for the returns starting from an arbitrary step m on the trajectory gives us
m — t—m a
AHJ = Z’}/ Gta—ejlogﬂ(at|st;0).
t=m

d. Summing over all possible values of m gives us

T-1 T-1 T-1
Z Aem = Z Z’Yt mGt—logW(atlst;H)
m=—00 m=—o00 t=m

T-1 ¢ 9
— t—m .
= Z Z v Gta_ejlogﬂ-(atlstye)

t=—00 m=—00

which can then be simplified further

Z Z y Gt— log 7(ay|sy; 0)

t=—o00 m=0
Z Gt g, losT (asls; 0).

We can now replace G; by Zf:t ATt and write

Z Z v trT— log 7(a¢|s; 0)

t*—oo T=t1
T

1

o,
-1 ", Z N7 89 log m(ay|s:; 6),

T=—00 t=—o0
where we assumed a dummy action ar with % log (ar|sr; @) = 0. The expression above
J
can be re-written as, with a change of variable n = 7 —t,
1 T

) . 9
Aej : rr (nz:_o 7 8_9] 1Og 71-(a7'—n|87'—”1; 0)> ’ (9)

T=—00

which is identical to the expression in the exercise with ¢ = 1%7

e. We can expand the shadow variables as

_ 0
2 = Az b 8_9J log 7(at|s; 0)

0 0
=\ t 24)\% log m(ai—1|st-1;0) + % log 7(a¢|s; 0)

= Z)\” 10g7r At—n|St—n;).

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

With v = A\, we note that this is equivalent to the last sum in Equation 9. In this case,
we can express the policy gradient update using our shadow variables as

Z (10)

t—foo

f. In this case, Equation 10 simplifies to

1 0
AG; = . _7r4z = mey logﬂ A4—n|S4—n;0) = 7 7”48—610%7(@2’32;9)-

Since it is assumed that % log 7(az|sqe; 0) > 0, an increase in the value of the parameter
J

6; will increase the probability of taking as in s, again. In addition, since r4 > 0, all terms
are positive and the value of ¢; will increase.

The magnitude of increase depends on the magnitude of r4. In other words, 6; will increase
more if it contributed to a larger reward, due to its effect on the policy 2 steps before
receiving the reward.

The magnitude of increase also depends on % If the discount factor v is small, it

suggests that earlier actions contribute little to later rewards; as a result, the gradient
will also be small since it relates to the policy several steps before actually receiving the
reward.

