CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercises for week 6
Variants of TD-learning methods and eligibility traces

Exercise 1: Eligibility traces

Last week, we applied the SARSA algorithm to the case of a linear track with actions ‘up’ and ‘down’.
We found that it takes a long time to propagate the reward information through state space. The
eligibility trace is introduced as a solution to this problem.

Reconsider the linear maze from Figure 1 in exercise 2, but include an eligibility trace: for each state s
and action a, a memory e(s,a) is stored. At each time step, all the memories are reduced by a factor
A < 1: e(s,a) = Ae(s,a), except for the memory corresponding to the current state s* and action a*,
which is incremented:

e(s*,a") = de(s*,a") + 1. (1)

Now, unlike the case without eligibility trace, all Q-values are updated at each time step according to
the rule

V(s,a) AQ(s,a) =n[r— (Q(s*,a") — Q(s',d))] e(s,a). (2)

where s*, a* are the current state and action, and s, a’ are the immediately following state and action.

We want to check whether the information about the reward propagates more rapidly. To find out,
assume that the agent goes straight down in the first trial. In the second trial it uses a greedy policy.
Calculate the Q-values after two complete trials and report the result.

Hint: Reset the eligibility trace to zero at the beginning of each trial.

Exercise 2: Eligibility traces in continuous space

Il
o

n=4 n

x A Q(s,a)
N

X=0.3 oo \

Q(0.3,down)

up down

Figure 1: Figure for Exercise 2

The left part of Figure 1 shows a different representation of last week’s “linear track” exercise: the
vertical divisions represent different states, and the two column correspond to the two possible actions
available to the agent: go up or down. Each square represents a possible state-action combination,
and thus a @-value. (Note that the uppermost “up” action and the lowermost “down” action should
be “greyed out”: they are impossible. But this is not relevant to the rest of this exercise.)

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Suppose now that the agent moves in a continuous 1-dimensional space 0 < x < 1, with the target
located at © = 0. Separate this state space into n equal bins of width Az = 1/n. In each time step,
the agent moves by one bin. Vary the discretization by varying n: n =4,8,16...

a. Suppose that one action (such as move down) corresponds to one time step At in ‘real time’.
How should we rescale the parameter At, so that the speed v = Az /At remains constant when
we change the discretization?

b. We use an eligibility trace with decay parameter A\. How should we rescale A, in order that the
“speed of information propagation” in SARSA(\) remains constant?

Hint: Consider the Q-value at a fixed z, for example at z = 0.5, after 2 complete learning trials.

Exercise 3: 2-step SARSA algorithm

In class we have discussed the SARSA algorithm and shown that, after convergence, the resulting
Q-values solve (in expectation) the Bellman equation for neighboring states (Variant A in the slides,
fixed /non-fluctuating Q-values after convergence). Your friend claims that a 2-step SARSA for

AQ(st,ar) =1 [re + yrig1 + 7V Q(s142, arr2) — Q(se, ar)] (3)

should work just as well.

To simplify the analysis, we assume that the environment has no loops (i.e., the graph is directed) so
that we can consider v = 1.

a. Assume that the 2-step SARSA algorithm converges in expectation. Proceed as during the
lecture to show that E[AQ(st, at)] = 0 implies

Q(St> at) = Z Pé‘itﬁs’

s’

@%+mewwwi
al
where

&@ﬁ:ngwww+Zﬂ&wmﬂw]
S// a//

By(s",ad") = Z PY

e a'

g'/'/_m”' + Z 7((3///7 CLH,)Q(S/H, a///)]

b. Show the equivalence of the previous equation to the 1-step Bellman equation.

Exercise 4: Computer exercises: Environment 1 (part 2)!

Complete the computer exercise for environment 1.

IStart this exercise in the second exercise session of week 3.

