
CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercises for week 5
Reinforcement Learning: Q-value and SARSA

Exercise 1: SARSA algorithm
In the lecture, we introduced the SARSA (state-action-reward-state-action) algorithm, which (for
discount factor γ = 1) is defined by the update rule

∆Q(s, a) = η
[
r −

(
Q(s, a)−Q(s′, a′)

)]
, (1)

where s′ and a′ are the state and action subsequent to s and a. In this exercise, we apply a greedy
policy, i.e., at each time step, the action chosen is the one with maximal expected reward, i.e.,

a∗t = arg max
a

Qt(s, a) . (2)

If the available actions have the same Q-value, we take both actions with probability 0.5.

Consider a rat navigating in a 1-armed maze (=linear track). The rat is initially placed at the upper
end of the maze (state s), with a food reward at the other end. This can be modeled as a one-
dimensional sequence of states with a unique reward (r = 1) as the goal is reached. For each state,
the possible actions are going up or going down (Figure 1). When the goal is reached, the trial is
over, and the rat is picked up by the experimentalist and placed back in the initial position s and the
exploration starts again.

a. Suppose we discretize the linear track by 6 states, s1, . . . , s6 where s1 is the initial state and s6 is
the goal state. Initialize all the Q-values at zero. How do the Q-values develop as the rat walks
down the maze in the first trial?

b. Calculate the Q-values after 3 complete trials. How many Q-values are non-zero? How many
trials do we need so that information about the reward has arrived in the state just ‘below’ the
starting state?

c. What happens to the learning speed if the number of states increases from 6 to 12? How many
Q-values are non-zero after 3 trials? How many trial do we need so that information about the
reward has arrived in the state just ‘below’ the starting state?

s

a1 a2

s'

Q
(s
,a
)1

Q
(s

,a
)2

a1 a2

s''

Q
(s
,a
)1

Q
(s

,a
)2

'

'

''

a1 a2

s'''

Q
(s
,a
)

Q
(s

, a
) 2

''

'''

goal

1

R = 1

R =
 0

R =
 0

R =
 0

R =
 0

R =
 0

Figure 1: A linear maze. Figure 2: A tree–like environment.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercise 2: Bellman equation
Use the Bellman equation to calculate Q(s, a1) and Q(s, a2) for the environment shown in Figure 2.
Consider two different policies:

• Total exploration: All actions are chosen with equal probability.

• Greedy exploitation: The agent always chooses the best action.

Note that the rewards/next states are stochastic for the actions a1′, a2′ and a3′. Assume that the
probabilities for the outcome of these actions are all equal, and the discount factor γ is 1.

Exercise 3: Expected SARSA and a new variant of TD learning
We have seen the algorithm ‘Expected Sarsa’ and ‘TD-algorithm in the narrow sense’. Suppose you
invent a new algorithm that keeps tables of both Q-values and V -values. To do so consider the
following:

a. Rewrite the updated step of ‘Expected Sarsa’ using both Q-values and V -values in the update
rule.

b. Write down the full pseudo-algorithm.

Hint: (i) keep track of the sequence of update steps of Q-values and V-values in your new
algorithm. (ii) At which point in the sequence of online steps through the graph can you update
Q(s, a) and how far do you have to look backward?

c. Sketch the ‘back-up-diagram’ of your algorithm and compare it to that of SARSA. What are
the costs and benefits of your new algorithm compared to SARSA?

Exercise 4: Monte Carlo versus expected SARSA3

We compare two algorithms: The Batch-Monte-Carlo algorithm (around slide 47), and the Online-
Expected-SARSA (around slide 19). The aim of the exercise is to understand why bootstrap algorithms
(i.e., TD algorithms) perform, under some conditions, more efficiently than a naive estimation of Q-
Values via Monte-Carlo algorithms. We set the discount factor to γ = 1 and run 5 episodes in a given
environment:

1

a1 a1

2 3

4

a1

6 7 8

a2 a3

𝑅ଵ→ସ௔ଵ ൌ 0 𝑅2→ସ௔ଵ ൌ 0 𝑅2→ସ௔ଵ ൌ 0.5

𝑅ସ→଺௔2 ൌ 2 𝑅ସ→଼ଷ2 ൌ 0.4
𝑅ସ→଻௔2 ൌ 0

5 episodes, first action is always a1.

Episode 1: States 1-4-7 with action a2, Return=0

Episode 2: States 1-4-8 with action a3, Return=0.4

Episode 3: States 2-4-6 with action a2, Return=2

Episode 4: States 2-4-8 with action a3, Return=0.4

Episode 5: States 3-4-7 with action a2, Return=0.5
a3

Each episode starts in one of the states 1 or 2 or 3 with action a1. In state 4 there is a choice between
actions a2 and a3 which are taken with equal probability π = 0.5. The transition sequence and total

3The result of Exercise 4 will be used in the second lecture of this week.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

return for each of the 5 episodes is given in the figure above. All rewards are deterministic and only
depend on the transition (s, a, s′).

a. Calculate the Q-values in state 1, 2, 3, and 4 using Batch-Monte-Carlo (i.e., average total returns
from each starting state).

b. Calculate the Q-values in state 1, 2, 3, and 4 using Online-Expected SARSA. For a given Q-value
Q(s, a), use η1 = 1 the FIRST TIME you update this value and η ∈ [0, 0.5] for all later update
steps.

Hint: You can neglect terms of order η2.

c. You can choose the initial state for episode 6. Which initial state looks best in case a (Batch-
Monte-Carlo)? Which initial state looks best in case b (Online-Expected SARSA)?

Where does the difference come from? Which solution is closer to the exact Q-values under the
π = 0.5 policy in state 4? Why?

d. What happens qualitatively if the order of episodes 1 and 2 were switched? What would be the
value of Q(s = 1, a1) in this case? How would the other Q-values change?

Exercise 5: Computer exercises: Environment 1 (part 1)
Download the Jupyter notebook of the 1st computer exercise, setup your Python environment, and
complete ‘Exercise 0: One step horizon’.

