CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solutions for week 4
Reinforcement Learning: Basics

Exercise 1: Iterative update'

We consider an empirical evaluation of Q(s,a) by averaging the rewards for action a over the first k

trials:
1k
Qr = % Z Ti.
i=1
We now include an additional trial and average over all k£ + 1 trials.

a. Show that this procedure leads to an iterative update rule of the form
AQk = ni(rk — Qr—1),
(assuming Qo = 0).
b. What is the value of ;7

c. Give an intuitive explanation of the update rule.
Hint: Think of the following: If the actual reward is larger than my estimate, then I should ...

Solution:

a. We define AQy as the difference between Q) and Qy_1, and we simplify:

1 k 1 k—1
A = - -1 = 7 Y i
Qr = Qr — Q1 ki:lrr k_lzd?“
k—1 k—1
1 1
:E rk—i—Zm)—m T
i=1 =1
_1 +l{}—1k_1 k’ k—1
B U I A R A
=1 i=1
k—1
1 1
_E rk—m;ﬂ)
=Mk (Tk — Qr—1)

c. If the actual reward is larger than my estimate, then I should increase my estimate,
otherwise I should decrease it.

Exercise 2: Greedy policy and the two-armed bandit

In the “2-armed bandit” problem, one has to choose one of 2 actions. Assume action a; yields a
reward of r = 1 with probability p = 0.25 and 0 otherwise. If you take action as, you will receive a
reward of r = 0.4 with probability p = 0.75 and 0 otherwise. The “2-armed bandit” game is played
several times and Q values are updated using the update rule AQ(s,a) = n[r; — Q(s,a)].

LThe result is also used in class; the calculation is analog to a calculation that was done for online k-means clustering.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

a. Assume that you initialize all Q values at zero. You first try both actions: in trial 1 you choose
a; and get r = 1; in trial 2 you choose ag and get r = 0.4. Update your Q values (n = 0.2).

b. In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has the
highest Q-value). Which action has the higher Q-value after trial 57 (Assume that the actual
reward is r = 0 in trials 3-5.)

c. Calculate the expected reward for both actions. Which one is the best?

d. Initialize both @-values at 2 (optimistic). Assume that, as in the first part, in the first two trials
you get for both actions the reward. Update your Q values once with n = 0.2. Suppose now that
in the following rounds, in order to explore well, you choose actions a; and as alternatingly and
update the Q-values with a very small learning rate (n = 0.001). How many rounds (one round
= two trials = one trial with each action) does it take on average, until the maximal Q-value
also reflects the best action?

Hint: For n < 1 we can approximate the actual returns r; with their expectations E[r].

Solution:

a. In the beginning, Q(a;,t = 0) = Q(az,t = 0) = 0 (we dropped the state index s since
there is only a single state). After choosing action a; and receiving a reward of r = 1, its
Q-value is updated to:

Qar,t=1)=Q(a1,t =0) + AQ(a1) =0+ n(r —Q(a,t =0)) =0+0.2-1=0.2.

After choosing action as and receiving a reward of r = 0.4, its Q-value is updated to:
Qaz,t =2) = Qaz, t =0) + AQ(az) =0+ n(r — Q(az,t =0)) =0+0.2-0.4 = 0.08.
Continuing with a greedy method implies that in the next round, action a; will be chosen.
b. In trial 3 you take action a;. If the return is 0,
Qa1,t =3) = Q(ar,t = 2)4+n(r—Q(a1,t = 2)) = (1-n)-Q(a1,t = 2)+nr = 0.8:0.2 = 0.16.
Thus, in trial 4 we take again action a;. If the return is again 0,
Qa,t=4)=(1-n)-Qa;,t =3)=0.8-0.16 = 0.128.

In trial 5 we take again action a;. If the return is again 0,

Qay,t=5)=(1—n)-Qar,t =4) =0.8-0.128 = 0.1024 .

Thus, with a greedy policy, also in trial 6 action a; will be taken. If by chance some of
the returns were 1 instead of 0, Q(a;,t = 5) would be even higher, while Q(as,t = 5) =
Q(az,t = 2) = 0.08 because action ay was never taken.

c. For action ay, the expected reward per round is given by E[r;] = p-14+(1—p)-0 = 0.25. For
action ay, the expected reward per round is evaluated to E[ry] = 0.75-0.4+0.25-0 = 0.3.
The second action yields a higher reward on average.

d. Similarly as in a, we can compute the Q-values after the first step with n = 0.2. We obtain:
Q*(a1) = 1.8 and Q*(az) = 1.68. We use the hint that for < 1 we can approximate the
actual returns 7, with their expectations E[r], i.e.

Qai, t) = (1 =n)Q(as, t — 1) + 1y (1)
(1 =n)Q(ai,t — 1) +nE[r] (2)
(1 =n) [(1 = n)Q(ai t = 2) + nE[r]] + nE[r] (3)

Q

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

We continue by induction and arrive at

=03 (=)" Bl + (1~) Qlas, 0 (@)

=) () Qo))

= (1 =9")E[] +7'Q(a;,0), (6)

with v = 1 — n and using the formula for the geometric series. We search for the smallest
t such that

Q(CLQ, t) > Q(Cll, t) (7)

(1 =7)Elr] +79'Q"(a2) > (1 =) E[n] +7'Q(a) (8)

=1 (Q"(a1) = Q"(a2) + E[ra] — E[r1]) < Elra] — Elry] (9)

Elry] — Elr]
= tox0) < o8 (Gy =Gy £ =) (10
=t >1223.16 (11)

Exercise 3: Batch vesrsus online learning rules: Recap

We define the mean squared error in a dataset with P data points as

11
EMSE _ 2 12
() = 55 S~ 3) (12)
I
where the output is
9" = g(a") = g(w"z") = g wyat) (13)
k

and the input is the x* with components z/ ... /.

a. Calculate the update of weight w; by gradient descent (batch rule)

dFE
Awj = —n— 14
i g dw; (14)
Hint: Apply chain rule

b. Rewrite the formula by taking one data point at a time (stochastic gradient descent). What is
the difference to the batch rule?

c. Rewrite your result in b in vector notation (hint: use the weight vector w and the input vector
x#). Show that the update after application of data point p can be written as

Aw = né(p)z"

where §(1) is a scalar number that depends on p. Express §(u) in terms of t#, g#, ¢'.

d. The result is a non-Hebbian rule. Nevertheless, please try to identify the ’pre’ contribution and
the 'post’ contributions. Which term makes it non-Hebbian?

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solution:
a.
11 Sate -) (t“ _0> wwi))
= 5 "~ gla)) () (a")
u
hence 1
My =5 (0~ glat))kl (@)
p
b.

Aw;(p) = n (" — g(a"))g'(a")]

Here, the weight update is performed on the error signal of a single data point. While
in (a), the error signal is averaged over all data points. From a geometric perspective,
the batch rule updates the separation hyperplane in the direction so that the hyperplane
linearly separates all points. On the other hand, the stochastic online rule, will update
the hyperplane so that a single randomly chosen point is pushed on the correct side of the
hyperplane. Looking at the hyperplane updates, the stochastic rule leads to more noisy
updates (the hyperplane moves in many different direction depending on the selected
example) than the batch rule.

c. We know that w = [wy, ..., w,] where d is the dimensionality of the input space. Aw =
[Awy, ..., Aw,] and therefore the update rule in b in the vector form can be written as

Aw =n [(t" = g(a")g'(a*)z1, ..., (" = g(a"))g'(a")ag].
Taking the common scalar terms outside and substituting g(a*) with g*, we have
Aw =7 (" —§")g (a")z"
and thus o(p) = (t* — 9*)g'(a*).

d. Here x* and g* are the usual pre- and post-synaptic activities respectively. ¢'(a*) is
the derivative of the postsynaptic activity and can be considered a postsynaptic term as
well. It is the term ¢, which is an external target value not dependent in the pre- or
post-synaptic activities, that makes this update non-Hebbian.

Exercise 4: Geometric interpretation of an artificial neuron: Recap

Consider the single-neuron function in 2-D with

y=g(z"w) (15)
where g is a strictily increasing activation function, £ = (z1,29,—1) € R?*! is the extended 2-
dimensional input (i.e., the threshold/bias value has been integrated as an extra input x3 = —1), and

w = (wy, ws, ws) € R? is the weight vector. The hyperplane 7w = 0 describes the boundary between

where the neuron is on, i.e., 7w > 0, and where it is off, i.e., 27w < 0. Consider this hyperplane in
the 2-D space of (x1,x2) and answer the following questions:

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

a. The hyperplane is a line in 2-D. What is the slope of this line as a function of wy, ws, and ws?
Where does the line intersect with the y-axis and where with the z-axis?

b. Is it possible to have two weight vectors w and w’ such that w # w’ but 7w = 0 and 27w’ =0
describe the same hyperplane? If yes, what conditions w and w’ must meet?

c. For the general case of x = (z1,...,2x,—1) € R¥T! what is the distance of the hyperplane

xTw = 0 from the origin in RY? Where does the hyperplane intersect with the x,-axis for

ne{l,...N}?

d. Use the online learning rule you derived in Exercise 3c and describe, in words, how the separating
hyperplane in RY changes after each update. Make sure you consider the effects of both changing
bias/threshold on one side and changing weight parameter w on the other side.

Solution:

a. The line is described by

Wy w3
Ty = ——1x + —.
W2 W2
hence, its slope is a = — . The line meets the y-axis at 7* and the z-axis at 7.
b. Yes, as long as we have
w; W) ws W
— = —,1 and — = —‘?
c. The intersect with the z,-axis is given by
_ WN+1
n =)
Wn

To find the distance, we define w = (wy,...,wy) € RY and £ = (z1,...,2zy) € RY and
give two different solutions:

Solution 1 (Projection): Consider an arbitrary point Z on the hyperplane, i.e., ' w =
wn41. Then, the distance of any point &' € R from the hyperplane is equal to the lenght
of the projection of the difference & — &’ on the hyperplane normal vector:

d= |(o7: —w’)TﬁL

For the distance to the origin, we need to put &’ = 0:

Solution 2 (Optimization): The distance of the hyperplane from the origin is given by

d= min l|z||.
Z s.t. T w=wy 11

The solution to this constraint optimization problem should satisfy

0 (- 7

(12l = Ax@"® —wx)) = 0.

where A is the Lagrange multiplier. This condition combined with the hyperplane con-
straint, gives us

WN+1 _ ’wN+1‘
d= || || = 0N
||w][? ||w]|

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

d. The updated hyperplane is charachterized by

(i) w < w +no(p)z"

(i) wni1 <= Wy — no(W).

Step (i) rotates the hyperplane in a direction to either have it aligned with &* (if the target
is underestimated, i.e., 6(u) > 0) or get aligned with —&* (if the target is overestimated,
i.e., d(p) < 0). Given the rotated hyperplane, step (ii) moves the hyperplane either down
to decrease all the intersect points (if the target is underestimated, i.e., 6(x) > 0) or up
to decrease all the intersect points (if the target is overestimated, i.e., d(u) < 0).

