
CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solutions for week 4
Reinforcement Learning: Basics

Exercise 1: Iterative update1

We consider an empirical evaluation of Q(s, a) by averaging the rewards for action a over the first k
trials:

Qk =
1

k

k∑
i=1

ri.

We now include an additional trial and average over all k + 1 trials.

a. Show that this procedure leads to an iterative update rule of the form

∆Qk = ηk(rk −Qk−1),

(assuming Q0 = 0).

b. What is the value of ηk?

c. Give an intuitive explanation of the update rule.
Hint: Think of the following: If the actual reward is larger than my estimate, then I should ...

Solution:

a. We define ∆Qk as the difference between Qk and Qk−1, and we simplify:

∆Qk = Qk −Qk−1 =
1

k

k∑
i=1

ri −
1

k − 1

k−1∑
i=1

ri

=
1

k

(
rk +

k−1∑
i=1

ri

)
− 1

k − 1

k−1∑
i=1

ri

=
1

k

(
rk +

k − 1

k − 1

k−1∑
i=1

ri −
k

k − 1

k−1∑
i=1

ri

)

=
1

k

(
rk −

1

k − 1

k−1∑
i=1

ri

)
= ηk (rk −Qk−1) .

b. ηk = 1/k.

c. If the actual reward is larger than my estimate, then I should increase my estimate,
otherwise I should decrease it.

Exercise 2: Greedy policy and the two-armed bandit
In the “2-armed bandit” problem, one has to choose one of 2 actions. Assume action a1 yields a
reward of r = 1 with probability p = 0.25 and 0 otherwise. If you take action a2, you will receive a
reward of r = 0.4 with probability p = 0.75 and 0 otherwise. The “2-armed bandit” game is played
several times and Q values are updated using the update rule ∆Q(s, a) = η[rt −Q(s, a)].

1The result is also used in class; the calculation is analog to a calculation that was done for online k-means clustering.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

a. Assume that you initialize all Q values at zero. You first try both actions: in trial 1 you choose
a1 and get r = 1; in trial 2 you choose a2 and get r = 0.4. Update your Q values (η = 0.2).

b. In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has the
highest Q-value). Which action has the higher Q-value after trial 5? (Assume that the actual
reward is r = 0 in trials 3-5.)

c. Calculate the expected reward for both actions. Which one is the best?

d. Initialize both Q-values at 2 (optimistic). Assume that, as in the first part, in the first two trials
you get for both actions the reward. Update your Q values once with η = 0.2. Suppose now that
in the following rounds, in order to explore well, you choose actions a1 and a2 alternatingly and
update the Q-values with a very small learning rate (η = 0.001). How many rounds (one round
= two trials = one trial with each action) does it take on average, until the maximal Q-value
also reflects the best action?
Hint: For η � 1 we can approximate the actual returns rt with their expectations E[r].

Solution:

a. In the beginning, Q(a1, t = 0) = Q(a2, t = 0) = 0 (we dropped the state index s since
there is only a single state). After choosing action a1 and receiving a reward of r = 1, its
Q-value is updated to:

Q(a1, t = 1) = Q(a1, t = 0) + ∆Q(a1) = 0 + η(r −Q(a1, t = 0)) = 0 + 0.2 · 1 = 0.2.

After choosing action a2 and receiving a reward of r = 0.4, its Q-value is updated to:

Q(a2, t = 2) = Q(a2, t = 0) + ∆Q(a2) = 0 + η(r −Q(a2, t = 0)) = 0 + 0.2 · 0.4 = 0.08.

Continuing with a greedy method implies that in the next round, action a1 will be chosen.

b. In trial 3 you take action a1. If the return is 0,

Q(a1, t = 3) = Q(a1, t = 2)+η(r−Q(a1, t = 2)) = (1−η)·Q(a1, t = 2)+ηr = 0.8·0.2 = 0.16 .

Thus, in trial 4 we take again action a1. If the return is again 0,

Q(a1, t = 4) = (1− η) ·Q(a1, t = 3) = 0.8 · 0.16 = 0.128 .

In trial 5 we take again action a1. If the return is again 0,

Q(a1, t = 5) = (1− η) ·Q(a1, t = 4) = 0.8 · 0.128 = 0.1024 .

Thus, with a greedy policy, also in trial 6 action a1 will be taken. If by chance some of
the returns were 1 instead of 0, Q(a1, t = 5) would be even higher, while Q(a2, t = 5) =
Q(a2, t = 2) = 0.08 because action a2 was never taken.

c. For action a1, the expected reward per round is given by E[r1] = p·1+(1−p)·0 = 0.25. For
action a2, the expected reward per round is evaluated to E[r2] = 0.75 · 0.4 + 0.25 · 0 = 0.3.
The second action yields a higher reward on average.

d. Similarly as in a, we can compute the Q-values after the first step with η = 0.2. We obtain:
Q∗(a1) = 1.8 and Q∗(a2) = 1.68. We use the hint that for η � 1 we can approximate the
actual returns rt with their expectations E[r], i.e.

Q(ai, t) = (1− η)Q(ai, t− 1) + ηrt (1)

≈ (1− η)Q(ai, t− 1) + ηE[r] (2)

= (1− η) [(1− η)Q(ai, t− 2) + ηE[r]] + ηE[r] (3)

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

We continue by induction and arrive at

= η
t−1∑
s=0

(1− η)sE[r] + (1− η)tQ(ai, 0) (4)

= η
1− (1− η)t

η
E[r] + (1− η)tQ(ai, 0) (5)

= (1− γt)E[r] + γtQ(ai, 0), (6)

with γ = 1− η and using the formula for the geometric series. We search for the smallest
t such that

Q(a2, t) > Q(a1, t) (7)

(1− γt)E[r2] + γtQ∗(a2) > (1− γt)E[r1] + γtQ∗(a1) (8)

⇒ γt (Q∗(a1)−Q∗(a2) + E[r2]− E[r1]) < E[r2]− E[r1] (9)

⇒ t log(γ) < log

(
E[r2]− E[r1]

Q∗(a1)−Q∗(a2) + E[r2]− E[r1]

)
(10)

⇒ t > 1223.16 (11)

Exercise 3: Batch vesrsus online learning rules: Recap
We define the mean squared error in a dataset with P data points as

EMSE(w) =
1

2

1

P

∑
µ

(tµ − ŷµ)2 (12)

where the output is

ŷµ = g(aµ) = g(wTxµ) = g(
∑
k

wkx
µ
k) (13)

and the input is the xµ with components xµ1 . . . x
µ
d .

a. Calculate the update of weight wj by gradient descent (batch rule)

∆wj = −η dE
dwj

(14)

Hint: Apply chain rule

b. Rewrite the formula by taking one data point at a time (stochastic gradient descent). What is
the difference to the batch rule?

c. Rewrite your result in b in vector notation (hint: use the weight vector w and the input vector
xµ). Show that the update after application of data point µ can be written as

∆w = ηδ(µ)xµ

where δ(µ) is a scalar number that depends on µ. Express δ(µ) in terms of tµ, ŷµ, g′.

d. The result is a non-Hebbian rule. Nevertheless, please try to identify the ’pre’ contribution and
the ’post’ contributions. Which term makes it non-Hebbian?

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solution:

a.

dE

dwj
=

d

dwj

1

2

1

P

∑
µ

(tµ − g(
∑
k

wkx
µ
k))2

=
1

2

1

P

∑
µ

2(tµ − ŷµ)
d

dwj

(
tµ − g(

∑
k

wkx
µ
k)

)

=
1

P

∑
µ

(tµ − g(aµ))(−xµj)g′(aµ)

hence

∆wj = η
1

P

∑
µ

(tµ − g(aµ))xµj g
′(aµ)

b.
∆wj(µ) = η (tµ − g(aµ))g′(aµ)xµj

Here, the weight update is performed on the error signal of a single data point. While
in (a), the error signal is averaged over all data points. From a geometric perspective,
the batch rule updates the separation hyperplane in the direction so that the hyperplane
linearly separates all points. On the other hand, the stochastic online rule, will update
the hyperplane so that a single randomly chosen point is pushed on the correct side of the
hyperplane. Looking at the hyperplane updates, the stochastic rule leads to more noisy
updates (the hyperplane moves in many different direction depending on the selected
example) than the batch rule.

c. We know that w = [w1, . . . , wd] where d is the dimensionality of the input space. ∆w =
[∆w1, . . . ,∆wd] and therefore the update rule in b in the vector form can be written as

∆w = η [(tµ − g(aµ))g′(aµ)xµ1 , . . . , (t
µ − g(aµ))g′(aµ)xµd] .

Taking the common scalar terms outside and substituting g(aµ) with ŷµ, we have

∆w = η (tµ − ŷµ)g′(aµ)xµ

and thus δ(µ) = (tµ − ŷµ)g′(aµ).

d. Here xµ and ŷµ are the usual pre- and post-synaptic activities respectively. g′(aµ) is
the derivative of the postsynaptic activity and can be considered a postsynaptic term as
well. It is the term tµ, which is an external target value not dependent in the pre- or
post-synaptic activities, that makes this update non-Hebbian.

Exercise 4: Geometric interpretation of an artificial neuron: Recap
Consider the single-neuron function in 2-D with

y = g(xTw) (15)

where g is a strictily increasing activation function, x = (x1, x2,−1) ∈ R2+1 is the extended 2-
dimensional input (i.e., the threshold/bias value has been integrated as an extra input x3 = −1), and
w = (w1, w2, w3) ∈ R3 is the weight vector. The hyperplane xTw = 0 describes the boundary between
where the neuron is on, i.e., xTw > 0, and where it is off, i.e., xTw < 0. Consider this hyperplane in
the 2-D space of (x1, x2) and answer the following questions:

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

a. The hyperplane is a line in 2-D. What is the slope of this line as a function of w1, w2, and w3?
Where does the line intersect with the y-axis and where with the x-axis?

b. Is it possible to have two weight vectors w and w′ such that w 6= w′ but xTw = 0 and xTw′ = 0
describe the same hyperplane? If yes, what conditions w and w′ must meet?

c. For the general case of x = (x1, ..., xN ,−1) ∈ RN+1, what is the distance of the hyperplane
xTw = 0 from the origin in RN? Where does the hyperplane intersect with the xn-axis for
n ∈ {1, ..., N}?

d. Use the online learning rule you derived in Exercise 3c and describe, in words, how the separating
hyperplane in RN changes after each update. Make sure you consider the effects of both changing
bias/threshold on one side and changing weight parameter w on the other side.

Solution:

a. The line is described by

x2 = −w1

w2

x1 +
w3

w2

.

hence, its slope is a = −w1

w2
. The line meets the y-axis at w3

w2
and the x-axis at w3

w1
.

b. Yes, as long as we have

w1

w2

=
w′1
w′2

and
w3

w2

=
w′3
w′2
.

c. The intersect with the xn-axis is given by

xn =
wN+1

wn
.

To find the distance, we define w̄ = (w1, ..., wN) ∈ RN and x̄ = (x1, ..., xN) ∈ RN and
give two different solutions:

Solution 1 (Projection): Consider an arbitrary point x̄ on the hyperplane, i.e., x̄T w̄ =
wN+1. Then, the distance of any point x̄′ ∈ RN from the hyperplane is equal to the lenght
of the projection of the difference x̄− x̄′ on the hyperplane normal vector:

d = |
(
x̄− x̄′

)T w̄

||w̄||
|.

For the distance to the origin, we need to put x̄′ = 0:

d = | x̄
T w̄

||w̄||
| = |wN+1|

||w̄||
.

Solution 2 (Optimization): The distance of the hyperplane from the origin is given by

d = min
x̄ s.t. x̄T w̄=wN+1

||x̄||.

The solution to this constraint optimization problem should satisfy

∂

∂x̄

(
||x̄||2 − λ(x̄T w̄ − wN+1)

)
= 0,

where λ is the Lagrange multiplier. This condition combined with the hyperplane con-
straint, gives us

d = ||wN+1

||w̄||2
w̄|| = |wN+1|

||w̄||
.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

d. The updated hyperplane is charachterized by

(i) w̄ ← w̄ + ηδ(µ)x̄µ

(ii) wN+1 ← wN+1 − ηδ(µ).

Step (i) rotates the hyperplane in a direction to either have it aligned with x̄µ (if the target
is underestimated, i.e., δ(µ) > 0) or get aligned with −x̄µ (if the target is overestimated,
i.e., δ(µ) < 0). Given the rotated hyperplane, step (ii) moves the hyperplane either down
to decrease all the intersect points (if the target is underestimated, i.e., δ(µ) > 0) or up
to decrease all the intersect points (if the target is overestimated, i.e., δ(µ) < 0).

