CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercises for week 4
Reinforcement Learning: Basics

Exercise 1: Iterative update’

We consider an empirical evaluation of Q(s,a) by averaging the rewards for action a over the first k

trials:
k
>
i=1

We now include an additional trial and average over all k + 1 trials.

Qr =

T =

a. Show that this procedure leads to an iterative update rule of the form

AQy = (e — Qr—1),
(assuming Qo = 0).
b. What is the value of n;?

c. Give an intuitive explanation of the update rule.
Hint: Think of the following: If the actual reward is larger than my estimate, then I should ...

Exercise 2: Greedy policy and the two-armed bandit

In the “2-armed bandit” problem, one has to choose one of 2 actions. Assume action a; yields a
reward of » = 1 with probability p = 0.25 and 0 otherwise. If you take action as, you will receive a
reward of » = 0.4 with probability p = 0.75 and 0 otherwise. The “2-armed bandit” game is played
several times and Q values are updated using the update rule AQ(s,a) = n[ry — Q(s,a).

a. Assume that you initialize all Q values at zero. You first try both actions: in trial 1 you choose
a; and get r = 1; in trial 2 you choose ag and get » = 0.4. Update your Q values (n = 0.2).

b. In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has the
highest Q-value). Which action has the higher Q-value after trial 57 (Assume that the actual
reward is r = 0 in trials 3-5.)

c. Calculate the expected reward for both actions. Which one is the best?

d. Initialize both @-values at 2 (optimistic). Assume that, as in the first part, in the first two trials
you get for both actions the reward. Update your Q values once with n = 0.2. Suppose now that
in the following rounds, in order to explore well, you choose actions a; and as alternatingly and
update the Q-values with a very small learning rate (n = 0.001). How many rounds (one round
= two trials = one trial with each action) does it take on average, until the maximal Q-value
also reflects the best action?

Hint: For n < 1 we can approximate the actual returns r; with their expectations E[r].

Exercise 3: Batch vesrsus online learning rules: Recap

'The result is also used in class; the calculation is analog to a calculation that was done for online k-means clustering.
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We define the mean squared error in a dataset with P data points as

11 .
EMSE (1) = 5P Z(t“ — ")
m

where the output is

and the input is the @* with components zf ... /.

a. Calculate the update of weight w; by gradient descent (batch rule)

dE
wj = —ndTUj

A

Hint: Apply chain rule

3)

b. Rewrite the formula by taking one data point at a time (stochastic gradient descent). What is

the difference to the batch rule?

c. Rewrite your result in b in vector notation (hint: use the weight vector w and the input vector
). Show that the update after application of data point p can be written as

Aw = né(p)z"

where 0(u) is a scalar number that depends on p. Express 6(u) in terms of t#, g#, ¢’

/

d. The result is a non-Hebbian rule. Nevertheless, please try to identify the 'pre’ contribution and

the 'post’ contributions. Which term makes it non-Hebbian?
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Exercise 4: Geometric interpretation of an artificial neuron: Recap

Consider the single-neuron function in 2-D with

T
y =gz w) (4)
where ¢ is a strictily increasing activation function, £ = (z1,22,—1) € R?*! is the extended 2-
dimensional input (i.e., the threshold/bias value has been integrated as an extra input 3 = —1), and

w = (wy,ws,ws) € R3 is the weight vector. The hyperplane 7w = 0 describes the boundary between

where the neuron is on, i.e., z7w > 0, and where it is off, i.e., £7w < 0. Consider this hyperplane in
the 2-D space of (x1,x2) and answer the following questions:

a. The hyperplane is a line in 2-D. What is the slope of this line as a function of wy, we, and w3?
Where does the line intersect with the y-axis and where with the z-axis?

b. Is it possible to have two weight vectors w and w’ such that w # w’ but 27w = 0 and 7w’ =0
describe the same hyperplane? If yes, what conditions w and w’ must meet?

c. For the general case of x = (z1,...,2x,—1) € R¥T! what is the distance of the hyperplane

xTw = 0 from the origin in RY? Where does the hyperplane intersect with the x,-axis for

ne{l,..,N}?

d. Use the online learning rule you derived in Exercise 3¢ and describe, in words, how the separating
hyperplane in RY changes after each update. Make sure you consider the effects of both changing
bias/threshold on one side and changing weight parameter w on the other side.



