
CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solutions for week 2
Hebbian rules and ICA

Exercise 1: Optimality criteria for PCA: variance and optimal recon-
struction
In lecture 1 we found that PCA is a result of Hebbian learning. We now ask whether PCA (and
Hebbian learning rules!) can be derived from optimality criteria.

As usual we have a set of P input patterns xµ with 1 ≤ µ ≤ P . We assume that Edata[x] = 0.

A (i) Define an output y =
∑

k wkxk.

Derive the batch update rule then the single-sample update rule to maximize the variance Edata[y2]
by gradient ascent.

Solution:

We want to minimize the loss L = Edata[y2].

∂

∂wk
Edata[y2] = E

[
∂

wk

∑
i,j

wiwjxixj

]

= E

[∑
i 6=k

wixixk +
∑
j 6=k

wjxjxk + 2wkx
2
k

]

= E

[
2xk

∑
i

wixi

]

In vector form, this is written ∂L
∂w

= E[2xwTx] = E[2xxT ]w = 2Cw. Therefore the update rule

is wnew = wold + 2γCwold.

The online rule is obtained by dropping the average and using a single sample estimator of ∂L
∂w

,

namely ∂L
∂w

online
= 2xwTx.

(ii) Turn the update equation of gradient ascent into a differential equation. Compare your result to
the equation we found in Lecture 1.

Solution:

For small enough γ, the batch and online rule respectively become the following differential
equations: ẇ = 2Cw and ẇonline = 2xwTx.

(iii) Assume now that the weight vector is normalized, i.e., we maximize variance for a normalized
vector. Express the weight vector in terms of the Eigenvectors of the correlation matrix. Convince
yourself that the variance is maximal if the only nonzero component is the projection on the first
Eigenvector.

Solution:

We assume that ||w||2 = 1 at each step (through renormalization). The eigen decomposition is
w =

∑
k〈w, ek〉ek where e1, e2, ...en are orthonormal because C is symmetric, with eigenvectors

e1, e2, ...en corresponding to eigenvalues λ1 ≥ ... ≥ λn. Then,

E[y2] = E
[
(wTx)2

]
= E

[
wTxxTw

]
= wTCw = wT

∑
k

λk〈w, ek〉ek =
∑
k

λk〈w, ek〉2



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Since
∑

k 〈w, ek〉
2 = ||w||2 = 1, the variance E[y2] is maximized when 〈w, e1〉2 = 1, i.e. when w

is colinear with e1 the eigenvector with maximal eigenvalue.

(iv) Go back to point (i) and switch to a presentation in terms of the vector component. Intepret the
result as a Hebbian learning rule and identify the presynaptic and postsynaptic terms.

Solution:

We write the result from (i) ∂L
w

online
= 2xwTx for each vector component i:

∂L
wi

online

= 2 xi︸︷︷︸
pre

wTx︸︷︷︸
post

B. The aim of an autoencoder is to compress a set of high-dimensional data points into a low-
dimensional representation such that a reconstruction of the input is possible at minimal loss. Assume
a linear autoencoder consisting of one hidden layer of a single neuron y =

∑
k wkxk. The weights from

the hidden layer to the output are wout
k = wk.

Figure 1: Architecture of an autoencoder with one hidden layer of two hidden neurons.

(i) Minimize the reconstruction error

1
2P

∑
µ ‖xµ − x̂µ‖2

where x̂µk = wout
k y.

Derive first two separate batch rules, one for the output weights and one for the input weights.

Solution:

In vector notation, we have L = 1
2
E [‖x− x̂‖22] with x = ywout and y = wTx. Now we

differentiate this loss with respect to weights (omitting the expectation sign):

∂L
∂wout

= (x− x̂) (−y) = −(x−wouty)y = −
(
xy −wouty2

)
(1)

This has the form of Oja’s rule but notice that for the weights that are being updated wout,
y is the input and x is not the input. Therefore the update based on (1) does not have the
pre × post form of a Hebbian learning rule.

Now for the input weights, using the fact that wout = w:

∂L
∂w

= − (x− x̂)>
∂x̂

∂w

= − (x− x̂)>wout ∂y

∂w

= − (x− x̂)>woutx

= −x>woutx + ywout>woutx

= −yx + y‖wout‖2x



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Here we can impose that the weights are normalized, so ‖wout‖2 = 1 and the two terms cancel
out: ∂L

∂w
= 0.

Since we impose that the input and output weights are equal, they need to follow the same
update rule to remain equal. Therefore they will both follow the learning rule

∆win/out = η
(
xy −wy2

)
(2)

This is truly Oja’s rule for the input weights (x and y are the input and output respectively);
we know from Week 1 that the corresponding batch update rule is ∆w = Cw −

(
w>Cw

)
w.

(ii) Then turn to a presentation in terms of the vector component. Intepret the result as a Hebbian
learning rule and identify the presynaptic and postsynaptic terms. What is the difference between the
two rules? How are they related to the Oja rule?

Solution:

We write the update of (2) per component:

∆wi = η
(
xiy − wiy2

)
As we said earlier, this is Oja’s rule where xi is the presynaptic term and y is the postsynaptic
term.

(iii) Repeat the same calculation but assuming that there are two neurons in the hidden layer. Interpret
the resulting online-rule as an interaction between the two hidden neuron. What is this interaction?

Solution:

We have x̂k =
∑

iw
out
ki yi, i.e. x̂ = W outy and yi =

∑
j wjixj, i.e. y = Wx. The loss to be

minimized is L = 1
2
E [‖x− x̂‖22].

∂L
∂woutki

= E

[
1

2

∂

∂woutki

∑
j

(xj − x̂j)2
]

= E

[
−
∑
j

(xj − x̂j)
(
∂
∑

l w
out
jl yl

)
∂woutki

]
= E [−(xk − x̂k)yi]

so

∂L
∂W out

= E
[
−(x− x̂)yT

]
= E

[
−xxTW T +W outWxxTW T

]
= −CW T +W outWCW T

and the online version can simply be written

∂L
∂woutki

= yi(−xk + w>·ky) (3)

This yields a learning rule like in the one-neuron case (2) except that both hidden neurons
appear.

For the input weights W :

∂L
∂wji

= −
∑
k

(xk − x̂k)
∑
l,m

woutkl

∂(wmlxm)

∂wji

= −
∑
k

(xk − x̂k)woutki xj

= −
∑
k

xkw
out
ki xj +

∑
k,l

woutkl ylw
out
ki xj



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Here we identify the expression of yi in the left term (using that woutki = wik) and in the second
term, since since l ∈ {1, 2} we suppose without loss of generality that i = 1. Moreover, we
impose again that each line of W is normalized.

∂L
∂wj1

= −
∑
k

xkwikxj +
∑
k

woutk2 y2w
out
ki xj +

∑
k

(
woutk1

)2
y1xj

= −xjy1 + xjy2
∑
k

woutk2 w
out
k1 + xjy1

= xjy2w
>
2·w1·

Again we see that y2 appears in the expression of the update rule of wj1. With the same
reasoning we can develop the result of (3) into the same form; this allows the two weights to
remain equal in the two-neuron case too. So for both weights, the update rule is:

∆w1j = −ηxjy2w2·w
>
1· (4)

We can look into the type of interaction that results from this expression. If both hidden neurons
have correlated features, w2·w

>
1· ≥ 0, and the interaction will be repulsive: w1j will follow an

inverse Hebbian rule when y2 is active, and vice-versa. Therefore this learning rule will drive
decorrelation of correlated neurons, and inversely drive increasing alignement of anti-correlated
neurons. Overall, this interaction results in decorrelation of the two units.

(iv) Think about the relevance of these results for the interpretation of the learning rule. Would you
agree with the following statement: “Hebbian learning rules are able to find ’good representations’,
in the sense that an optimal reconstruction of the stimulus WOULD be possible (even if we do not
implement the reconstruction process)’.

Solution:

The results above show that the Hebbian learning rule actually arises as the solution (gradient
descent) when trying to optimize stimulus reconstruction with an auto-encoder. So yes, Hebbian
learning rules are intrinsically able to find ’good representations’.

Exercise 2: Some important fun facts about independence and cor-
relation
2.1 Prove that if x1 and x2 are statistically independent, they are also uncorrelated:

p(x1, x2) = p1(x1)p2(x2)⇒ 〈(x1 − 〈x1〉)(x2 − 〈x2〉)〉 = 0.

Solution:

The definition of the expectation value1 of a random variable x with distribution probability
p(x) is

〈x〉 :=

∫
dx p(x)x,

1Here we use the notation 〈·〉 instead of the more formally correct E{·} for the expectation value.



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

so that we can rewrite the correlation term:

〈(x1 − 〈x1〉)(x2 − 〈x2〉)〉 =

∫
dx1

∫
dx2 p(x1, x2) (x1 − 〈x1〉)(x2 − 〈x2〉)

=

∫
dx1

∫
dx2 p(x1) (x1 − 〈x1〉) p(x2) (x2 − 〈x2〉)

=

(∫
dx1 p(x1) (x1 − 〈x1〉)

)(∫
dx2 p(x2) (x2 − 〈x2〉)

)
= (〈x1〉 − 〈x1〉)(〈x2〉 − 〈x2〉) = 0.

In the last step, we used the fact that 〈x〉 is independent of x, so that
∫
dx p(x) 〈x〉 =

〈x〉
∫
dx p(x) = 〈x〉 (since

∫
dx p(x) = 1).

2.2 Prove: Given two functions h1, h2 and two independent random variables x1 and x2, the expec-
tation value of the product of h1 and h2 factorizes in the product of the expectation values :

p(x1, x2) = p1(x1)p2(x2) ⇒ E{h1(x1)h2(x2)} = E{h1(x1)}E{h2(x2)}

Solution:

Again using the definition of the expectation value:

〈f(x)〉 :=

∫
dx p(x) f(x),

we can rewrite the expectation value of the product:

〈h1(x1)h2(x2)〉 =

∫
dx1

∫
dx2 p(x1, x2)h1(x1)h2(x2)

=

∫
dx1

∫
dx2 p(x1)h1(x1) p(x2)h2(x2)

=

∫
dx1 p(x1)h1(x1)

∫
dx2 p(x2)h2(x2)

= 〈h1(x1)〉〈h2(x2)〉.

2.3 For N -dimensional data, the Gaussian distribution has the form:

p(~x) =
1√

(2π)Ndet(C)
exp

(
−1

2
(~x− ~µ)TC−1(~x− ~µ)

)
,

where and ~µ is the mean of the data, C their covariance matrix, and det(C) its determinant.

Suppose that C has elements Cij 6= 0 for all i, j indicating that the variables xi and xj are correlated.
First, convince yourself (without calculation) that after transformation to the coordinate system of
Eigenvectors, the new coordinates x̃ are uncorrelated even if the Eigenvalues are not identical λn 6= λm
for all n,m.

Show with a short calculation (one line) that the variables are not just uncorrelated but also statisti-
cally independent. Hence, what you need to show is:

∀i, j : 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 0 ⇒ p(~x) =
∏
i

pi(xi) .

Solution:



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

If all the xi and xj variables are decorrelated, the Cij matrix must vanish outside the diagonal.
The diagonal elements correspond to the variances σ2

i , i.e.:

Cij =

{
σ2
i if i = j,

0 otherwise.

The inverse of such a matrix is a diagonal matrix with elements 1/σ2
i . Using these two facts,

we can rewrite p(~x)

p(~x) =
1√

(2π)Ndet(C)
exp

(
−1

2
(~x− ~µ)TC−1(~x− ~µ)

)
=

1∏
i

√
2πσ2

i

exp

(
−
∑
i

(xi − µi)2

2σ2
i

)

=
1∏

i

√
2πσ2

i

∏
i

exp

(
−(xi − µi)2

2σ2
i

)

=
∏
i

1√
2πσ2

i

exp

(
−(xi − µi)2

2σ2
i

)
=
∏
i

pi(xi)

where p(xi) is a 1-dim. gaussian distribution with mean µi and variance σ2
i .

2.4 Now assume that the data is whitened (each component has zero mean and unit variance, and
the components are pairwise decorrelated) so that λn = λm for all n,m. Show that any rotation
{~yµ = R~xµ} of the data is also whitened.

Hint: R is a rotation matrix, iff RRT = E, E being the identity matrix.

Solution:

By definition, a whitened data set has: 1) uncorrelated components and 2) variances of all its
components equal to 1. This means that its covariance matrix is the identity matrix E:

C :=
1

p

p∑
µ=1

(~xµ − 〈~x〉)(~xµ − 〈~x〉)T = E. (5)

We replace ~x by ~y = R~x and check its covariance matrix C∗:

C∗ =
1

p

∑
µ

(~yµ − 〈~y〉)(~yµ − 〈~y〉)T

=
1

p

∑
µ

(R~xµ −R〈~x〉)(R~xµ −R〈~x〉)T

=
1

p

∑
µ

R(~xµ − 〈~x〉)(~xµ − 〈~x〉)TRT

= R

(
1

p

∑
µ

(~xµ − 〈~y〉)(~xµ − 〈~x〉)T
)

︸ ︷︷ ︸
=E

RT

= RERT = RRT = E.



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercise 3: ICA as Hebbian Learning

Consider an ICA algorithm that aims at maximizing J(~w) = 〈F (y)〉, where y = ~wT~x and F (y) =
1
a log cosh(ay). The maximization is done by gradient ascent.

3.1 Show that: dF
dy = tanh(ay).

Solution:

We just derive F (y), remembering that (f(g(x)))′ = f ′(g(x)) g′(x), and that cosh′ = sinh:

d

dy

[
1

a
log cosh(ay)

]
=

1

a
· 1

cosh(ay)
· sinh(ay) · a = tanh(ay).

3.2 Calculate dF
dwj

for y =
∑
wkxk.

Solution:

This time we use the chain rule: since F depends on wj only through y, we can write

dF

dwj
=
dF

dy

dy

dwj︸︷︷︸
xj

= tanh(ay)xj.

3.3 Show that a gradient ascent on J(~w) = 〈F (~wT~x)〉 leads to a Hebbian rule.
(Hint: Make the transition from a batch rule to an online rule).

Solution:

The gradient ascent rule suggested above is:

∆wj = η
d

dwj
J(~w) = η

d

dwj
〈F (~wT~x)〉 = η 〈 d

dwj
F (~wT~x)〉 =

η

M

M∑
µ=1

tanh(ayµ)xµj ,

where η > 0 is a learning rate. To convert this into a neural Hebbian rule, we make two
hypothesis:

a. The learning rate η is small enough, so that we can approximate the current batch mode
(learning for all samples to be presented and update the weights only then) with an online
mode (weights are updated at each sample presentation) with learning rate η/M .

b. We define our output neuron rate to be xout = tanh(a~wT~x).

In that case the online version of the rule above becomes

∆wµj =
η

M
xoutx

µ
j ,

which is indeed a Hebbian learning rule.

Exercise 4: A few fun facts on Kurtosis
Students who do not want to do the calculation can make use of the statements in 4.1-4.3 as a table
of results.

Variance is defined as var(x) = E{x2} − E{x}2, kurtosis as κ(x) = E{x4} − 3(E{x2})2.
For each of the following distributions, calculate the variance and prove the given kurtosis:



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

4.1 the Gaussian distribution, with kurtosis κ = 0:

p(x) =

√
a

π
exp

(
−ax2

)
.

Hint: x2 exp(−ax2) = − d
da exp(−ax2) .

Solution:

Let’s compute the first, second and fourth moments of the Gaussian distribution. The mean is
immediately solved by noticing the symmetry in the distribution:

〈x〉 =

√
a

π

∞∫
−∞

dx x exp(−ax2) =

√
a

π

 0∫
−∞

dx x exp(−ax2) +

∞∫
0

dx x exp(−ax2)


=

√
a

π

 ∞∫
0

dx x exp(−ax2)−
∞∫
0

dx x exp(−ax2)

 = 0

Note that the same applies for all odd moments of any symmetric distribution.

For the second moment, we use the hint:

〈x2〉 =

√
a

π

∞∫
−∞

dx x2 exp(−ax2) = −
√
a

π

d

da

∞∫
−∞

dx exp(−ax2)

︸ ︷︷ ︸
=
√

π
a

= −
√
a

π

(
−1

2

√
π

a3

)
=

1

2a

For the fourth moment, we just use the same trick twice:

〈x4〉 =

√
a

π

∞∫
−∞

dx x4 exp(−ax2) = −
√
a

π

d

da

∞∫
−∞

dx x2 exp(−ax2)

=

√
a

π

d2

da2

∞∫
∞

dx exp(−ax
2

2
)

︸ ︷︷ ︸
=
√

π
a

=

√
a

π

(
3

4

√
π

a5

)
=

3

4a2

Using these results one can compute the variance var(x) = 1
2a

, and the kurtosis κ(x) = 3
4a2
−

3
(

1
2a

)2
= 0.

4.2 the uniform distribution, with kurtosis κ = −6
5 :

p(x) =

{
1

2
√
3

if |x| ≤
√

3

0 otherwise.

Solution:

Again, we compute the moments we need to compute the variance and the kurtosis. The first
moment is again 0 by symmetry. The second moment is

〈x2〉 =

√
3∫

−
√
3

dx
1

2
√

3
x2 =

1

2
√

3

[
x3

3

]√3
−
√
3

= 1 ,



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

and the fourth is

〈x4〉 =

√
3∫

−
√
3

dx
1

2
√

3
x4 =

1

2
√

3

[
x5

5

]√3
−
√
3

=
9

5
.

Thus the variance is var(x) = 1, and the kurtosis is κ(x) = 9
5
− 3 = −6

5
.

4.3 the exponential distribution (Laplace distribution), with kurtosis κ = 3:

p(x) =
1√
2

exp(−
√

2|x|).

Solution:

Here, because the distribution is symmetric, the first moment vanishes again. To compute the
second and fourth moments, it is easiest to use the same trick as for the Gaussian, i.e. to notice
that

− d

da

∫
dx xn−1 exp(−ax) =

∫
dx xn exp(−ax)

and that ∫
dx x0 exp(−ax) =

1

a
.

It is also nice to get rid of the absolute value. For any symmetric functions (f(x) = f(−x))
one can write

∞∫
−∞

f(x)dx =

0∫
−∞

f(x)dx+

∞∫
0

f(x)dx =

∞∫
0

f(−x)dx+

∞∫
0

f(x)dx = 2

∞∫
0

f(x)dx .

The terms we have to integrate for even moments of this distribution are symmetric. Computing
the second moment then reduces to

〈x2〉 =
2√
2

∞∫
0

dx x2 exp(−
√

2x) =
√

2

 d2

da2

∞∫
0

dx exp(−ax)


a=
√
2

=
√

2

[
2

a3

]
a=
√
2

= 1 ,

and the fourth

〈x4〉 =
2√
2

∞∫
0

dx x4 exp(−
√

2x) =
√

2

 d4

da4

∞∫
0

dx exp(−ax)


a=
√
2

=
√

2

[
24

a5

]
a=
√
2

= 6 .

The variance is var(x) = 1, and the kurtosis is κ(x) = 6− 3 = 3.

4.4 In the above examples, do distributions with ’longer tails’ than the Gaussian yield smaller or
larger kurtosis? Do you think that this observation about ’tails’ and kurtosis can be transformed into
a general statement?



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Solution:

The uniform distribution has no tail, since the probability density function (pdf) is 0 for
|x| >

√
3, and hence shorter tails than the Gaussian distribution. Correspondingly, the (ex-

cess) kurtosis is negative κ(x) < 0. On the contrary, for the Laplace distribution, the pdf

decays proportionally to e−|x| in contrast to e−x
2

for the Gaussian, and hence heavier tails. Its
associated kurtosis is positive κ(x) > 0.

This in fact can be generalized, distributions with shorter tails (faster decay of the pdf) than
the Gaussian distribution will have negative kurtosis, and those with longer tails will have
positive kurtosis.

This can be shown for centered distribution X by remarking that,

sign(E[X4]− 3E[X2]2) = sign(
E[X4]

E[X2]2
− 3) = sign(E[(

X

σ
)4]− 3),

where σ is the standard deviation of X. Hence, a positive (respectively negative) (excess)
kurtosis only occurs if the fourth standardized moment of X, E[(X

σ
)4] =

∫
R x

4p(x)dx is larger
(resp. smaller) than the fourth standardized moment of the Gaussian which is equal to 3. The
fourth moment for standardized random variables is dominated by large-valued outliers and
longer tails. Indeed any value comprised within the first standard deviation will be close to 0
in the integral due to the fourth power. On the contrary, large (absolute) values of X which
have more (resp. less) mass due to a slower (resp. faster) decay of the pdf will increase (resp.
decrease) the fourth standardized moment in comparison to that of the Gaussian.

Exercise 5: Kurtosis maximization
Remember that the kurtosis is defined as κ(x) = E[x4]− 3E[x2]2. Suppose that we have two indepen-
dent variables x1 and x2 both of zero mean, but we measure some arbitrary mixture. In class we have
argued in a hand-waving fashion that Kurtosis is maximal (or sometimes minimal) if the direction of
projection yields one of the independent variables. In this exercise we have a special case, where we
can explicitly show this. We mix two variables of known kurtosis, and then apply a projection in an
arbitrary direction which gives a variable y. For this mixed variable y we maximize kurtosis. The
calculation is a bit lengthy, but for those of you who have doubts why ICA works, it may provide
useful insights. Here are the steps of the calculation:

5.1 Show that the kurtosis of y = x1 + x2 is given by κ(y) = κ(x1) + κ(x2).

Solution:

Let’s calculate the second and fourth moments of y:

E[y2] = E[(x1 + x2)
2] = E[x21 + 2x1x2 + x22] = E[x21] + E[2x1x2] + E[x22]

= E[x21] + 2 E[x1]︸ ︷︷ ︸
0

E[x2]︸ ︷︷ ︸
0

+E[x22] = E[x21] + E[x22]

and

E[y4] = E[(x1 + x2)
4] = E[x41 + 4x31x2 + 6x21x

2
2 + 4x1x

3
2 + x42]

= E[x41] + 4E[x31]E[x2]︸ ︷︷ ︸
0

+6E[x21]E[x22] + 4E[x1]︸ ︷︷ ︸
0

E[x32] + E[x42]

= E[x41] + 6E[x21]E[x22] + E[x42].



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Thus the kurtosis of y is:

κ(y) = E[y4]− 3E[y2]2 = E[x41] + 6E[x21]E[x22] + E[x42]− 3
(
E[x21] + E[x22]

)2
= E[x41]− 3E[x21]

2︸ ︷︷ ︸
κ(x1)

+ 6E[x21]E[x22]− 6E[x21]E[x22]︸ ︷︷ ︸
0

+E[x42]− 3E[x22]
2︸ ︷︷ ︸

κ(x2)

= κ(x1) + κ(x2)

5.2 Show that the kurtosis of y = αx is given by κ(y) = α4κ(x).

Solution:

We simply calculate:

κ(y) = E[α4x4]− 3E[α2x2]2 = α4(E[x4]− 3E[x2]2) = α4κ(x)

5.3 Use 1 and 2 to show that the kurtosis of y =
√
ax1 +

√
1− ax2, a ∈ [0, 1], is given by

κ(y) = a2κ(x1) + (1− a)2κ(x2) .

Solution:

Thanks to 1 and 2 above, this is simply:

κ(y) = κ(
√
ax1 +

√
1− ax2) = κ(

√
ax1) + κ(

√
1− ax2) = a2 κ(x1) + (1− a)2 κ(x2).

5.4 Let κ(x1) = c and κ(x2) = d be the kurtosis of x1 and x2. Assume that both signals are super-
Gaussian and that 0 < c < d. Show that the kurtosis of the mixture y =

√
ax1+

√
1− ax2 has maxima

for a = 0 and a = 1, and that a = 0 is the global maximum.

Solution:

Since we want to find maxima and minima, let’s compute the derivative dκ(y)/da:

dκ(y)

da
=

d

da

[
a2 κ(x1) + (1− a)2 κ(x2)

]
= 2aκ(x1) + 2(a− 1)κ(x2) = 2ac+ 2(a− 1)d

This is 0 only if a = d
c+d

. To find whether this corresponds to a minimum or a maximum, we
compute the second derivative

d2κ(y)

da2
=

d

da
[2aκ(x1) + 2(a− 1)κ(x2)] = 2κ(x1) + 2κ(x2) = 2c+ 2d.

This positive for all allowed values of a, so the point a∗ = d
c+d

is a minimum. Thus the maximum
happen at the boundaries of the domain, a = 0 and a = 1. Since κ(x2) > κ(x1), the global
maximum happens for a = 0, y = κ(x2), see Figure 2.

This means that for linear, whitened mixtures of super-gaussian signals, maximizing the kurtosis
leads to the recovery of one of the two signal. Using an analytical method, as we did, we are
guaranteed to find the global minimum, but usually one would use a numerical gradient ascent
method on the data. Even then, the graph shows clearly that one would recover one of the two
statistically independent signals, although not necessarily the one with highest kurtosis.

5.5 Which value(s) of a maximize the kurtosis if the signals x1 and x2 are sub-Gaussian: c < d < 0?



CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Figure 2: The kurtosis of the mixture y as a function of a, in questions 4 and 5.

Solution:

Similarly as above, there is a fixed point in a∗ = d
c+d

, and the second derivative is d2κ(y)
da2

=
2κ(x1) + 2κ(x2). Since this time the second derivative is negative, this point is a local (and
global) maximum, see Figure 1.

In contrast to the situation of question 4, maximizing the kurtosis for a mixture of sub-gaussian
signals is a bad idea, since it finds the linear combination that is most gaussian! In that case,
the correct approach would be to minimize the kurtosis.


