
CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

Exercises for week 2
Hebbian rules and ICA

Exercise 1: Optimality criteria for PCA: variance and optimal recon-
struction
In lecture 1 we found that PCA is a result of Hebbian learning. We now ask whether PCA (and
Hebbian learning rules!) can be derived from optimality criteria.

As usual we have a set of P input patterns xµ with 1 ≤ µ ≤ P . We assume that Edata[x] = 0.

A (i) Define an output y =
∑

k wkxk.

Derive the batch update rule then the single-sample update rule to maximize the variance Edata[y
2]

by gradient ascent.

(ii) Turn the update equation of gradient ascent into a differential equation. Compare your result to
the equation we found in Lecture 1. want component-wise or matrix?

(iii) Assume now that the weight vector is normalized, i.e., we maximize variance for a normalized
vector. Express the weight vector in terms of the Eigenvectors of the correlation matrix. Convince
yourself that the variance is maximal if the only nonzero component is the projection on the first
Eigenvector.

(iv) Go back to point (i) and switch to a presentation in terms of the vector component. Intepret the
result as a Hebbian learning rule and identify the presynaptic and postsynaptic terms.

B. The aim of an autoencoder is to compress a set high-dimensional data points into a low-dimensional
representation such that a reconstruction of the input is possible at minimal loss. Assume a linear
autoencoder consisting of one hidden layer of a single neuron y =

∑
k wkxk. The weights from the

hidden layer to the output are wout
k = wk.

Figure 1: Architecture of an autoencoder with one hidden layer of two hidden neurons.

(i) Minimize the reconstruction error

1
P

∑
µ[xµ − x̂µ]2

where x̂µk = wout
k y.

Derive first two separate batch rules, one for the output weights and one for the input weights.

(ii) Then turn to a presentation in terms of the vector component. Intepret the result as a Hebbian
learning rule and identify the presynaptic and postsynaptic terms. What is the difference between the
two rules? How are they related to the Oja rule?

(iii) Repeat the same calculation but assuming that there are two neurons in the hidden layer. Interpret
the resulting online-rule as an interaction between the two hidden neuron. What is this interaction?

(iv) Think about the relevance of these results for the interpretation of the learning rule. Would you
agree with the following statement: “Hebbian learning rules are able to find ’good representations’,

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

in the sense that an optimal reconstruction of the stimulus WOULD be possible (even if we do not
implement the reconstruction process)’.

Exercise 2: Some important fun facts about independence and cor-
relation
2.1 Prove that if x1 and x2 are statistically independent, they are also uncorrelated:

p(x1, x2) = p1(x1)p2(x2)⇒ 〈(x1 − 〈x1〉)(x2 − 〈x2〉)〉 = 0.

2.2 Prove: Given two functions h1, h2 and two independent random variables x1 and x2, the expec-
tation value of the product of h1 and h2 factorizes in the product of the expectation values :

p(x1, x2) = p1(x1)p2(x2) ⇒ E{h1(x1)h2(x2)} = E{h1(x1)}E{h2(x2)}

2.3 For N -dimensional data, the Gaussian distribution has the form:

p(~x) =
1√

(2π)Ndet(C)
exp

(
−1

2
(~x− ~µ)TC−1(~x− ~µ)

)
,

where and ~µ is the mean of the data, C their covariance matrix, and det(C) its determinant.

Suppose that C has elements Cij 6= 0 for all i, j indicating that the variables xi and xj are correlated.
First, convince yourself (without calculation) that after transformation to the coordinate system of
Eigenvectors, the new coordinates x̃ are uncorrelated even if the Eigenvalues are not identical λn 6= λm
for all n,m.

Show with a short calculation (one line) that the variables are not just uncorrelated but also statisti-
cally independent. Hence, what you need to show is:

∀i, j : 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 0 ⇒ p(~x) =
∏
i

pi(xi) .

2.4 Now assume that the data is whitened (each component has zero mean and unit variance, and
the components are pairwise decorrelated) so that λn = λm for all n,m. Show that any rotation
{~yµ = R~xµ} of the data is also whitened.

Hint: R is a rotation matrix, iff RRT = E, E being the identity matrix.

Exercise 3: ICA as Hebbian Learning

Consider an ICA algorithm that aims at maximizing J(~w) = 〈F (y)〉, where y = ~wT~x and F (y) =
1
a log cosh(ay). The maximization is done by gradient ascent.

3.1 Show that: dF
dy = tanh(ay).

3.2 Calculate dF
dwj

for y =
∑
wkxk.

3.3 Show that a gradient ascent on J(~w) = 〈F (~wT~x)〉 leads to a Hebbian rule.
(Hint: Make the transition from a batch rule to an online rule).

Exercise 4: A few fun facts on Kurtosis
Students who do not want to do the calculation can make use of the statements in 4.1-4.3 as a table
of results.

Variance is defined as var(x) = E{x2} − E{x}2, kurtosis as κ(x) = E{x4} − 3(E{x2})2.

CS-479 Learning in Neural Networks Pr. Gerstner, spring 2025

For each of the following distributions, calculate the variance and prove the given kurtosis:

4.1 the Gaussian distribution, with kurtosis κ = 0:

p(x) =

√
a

π
exp

(
−ax2

)
.

Hint: x2 exp(−ax2) = − d
da exp(−ax2) .

4.2 the uniform distribution, with kurtosis κ = −6
5 :

p(x) =

{
1

2
√
3

if |x| ≤
√

3

0 otherwise.

4.3 the exponential distribution (Laplace distribution), with kurtosis κ = 3:

p(x) =
1√
2

exp(−
√

2|x|).

4.4 In the above examples, do distributions with ’longer tails’ than the Gaussian yield smaller or
larger kurtosis? Do you think that this observation about ’tails’ and kurtosis can be transformed into
a general statement?

Exercise 5: Kurtosis maximization
Remember that the kurtosis is defined as κ(x) = E[x4]− 3E[x2]2. Suppose that we have two indepen-
dent variables x1 and x2 both of zero mean, but we measure some arbitrary mixture. In class we have
argued in a hand-waving fashion that Kurtosis is maximal (or sometimes minimal) if the direction of
projection yields one of the independent variables. In this exercise we have a special case, where we
can explicitly show this. We mix two variables of known kurtosis, and then apply a projection in an
arbitrary direction which gives a variable y. For this mixed variable y we maximize kurtosis. The
calculation is a bit lengthy, but for those of you who have doubts why ICA works, it may provide
useful insights. Here are the steps of the calculation:

5.1 Show that the kurtosis of y = x1 + x2 is given by κ(y) = κ(x1) + κ(x2).

5.2 Show that the kurtosis of y = αx is given by κ(y) = α4κ(x).

5.3 Use 1 and 2 to show that the kurtosis of y =
√
ax1 +

√
1− ax2, a ∈ [0, 1], is given by

κ(y) = a2κ(x1) + (1− a)2κ(x2) .

5.4 Let κ(x1) = c and κ(x2) = d be the kurtosis of x1 and x2. Assume that both signals are super-
Gaussian and that 0 < c < d. Show that the kurtosis of the mixture y =

√
ax1+

√
1− ax2 has maxima

for a = 0 and a = 1, and that a = 0 is the global maximum.

5.5 Which value(s) of a maximize the kurtosis if the signals x1 and x2 are sub-Gaussian: c < d < 0?

