CS-477: Virtualization

Lecture Notes
November 26, 2024

Contents

What is virtualization?
History

Types

Advantages
Applications

Virtualizing techniques
Trapandemulate e
Fullvirtualization e

CoMPariSON o e e e e e e e e e e e e e e e e e

Virtual memory mapping
Direct paging i i e e e e e
Shadow paging e e e e
Nested paging i i i e e e e e e e e

COMPAriSON o i e e e e e e e e e e e e e e e e

1/0 virtualization
Front-end/Back-end drivermodel
Emulation e e e
Hardware-assisted I/O virtualization

COMPAriSON o it e e e e e e e e e e e e e e e e

Paper: My VM is Lighter (and Safer) than your Container
Reducingthe VMssize e
Improving the performanceofXen

Evaluation e e e

What is virtualization?

Virtualization is about wanting to create a logical view of the physical resources that
exist. We virtualize resources: CPU, memory, I/O. We partition the resources in a
logical way instead of the physical reality. And this is mostly used for portability and
flexibility.

For instance, let’s say we have a whole machine with its resources. We want to mim-

ick the behavior of the physical entity.

Let’s compare a traditional operating system with virtual machines. In a traditional
OS, the kernel runs along the processes on the physical hardware. Instead, we have
two forms of virtual machines: either we have a kernel with another kernel running
inside, or we have a hypervisor that runs two or more virtual machines. Each VM has

its own kernel and apps.

Kernel

= = 0}

Traditional OS

Virtual machine

Figure 1: Comparison between a traditional OS and a virtual machine.

A virtual machine is an execution environment identical to a physical machine, with
the ability to execute a full OS. There is a virtualization layer called a virtual machine
monitor (VMM) or hypervisor. Itis to an operating system what an operating system is
toa process. Initially, when these terms were proposed, there was a slight difference
between the two, but today it is not really treated like that: a virtual machine monitor

is the same thing as an hypervisor, there is no difference today.

History

VM research started in the 60-70s. Back in the days, they had a very different rea-
son: they used mainframes systems that were bigger than this room and multiple
people working on it. We want people to be able to run multiple users one at the
time and multiplex them. This was the case for virtualization. In the 80s-90s, with
smaller machines people lost the interest in virtualization. Operating systems were
already multi-user, and we weren’t using machines to the extent of today. Now we
have data centers, and want horizontal scaling of resources, so companies and indus-
tries wanted to use it for their infrastructure. This is when virtualization came back.

It catered to different markets at the time and it is still happening today.

Types

With virtualizations, we can run OSes and user apps on the same hardware. There

are two ways to achieve virtualization:

« Type-1: The hypervisoractually runs on the hardware. Forinstance, Xen, VMWare
ESX, Microsoft Hyper-V. The host is the virtual machine monitor and the hard-

ware itself.

« Type-2: the hypervisor is working with the host OS or in conjunction with. Your
VMM and OS are working together, not completely on top of it. For instance:
KVM, VMWare Workstation, Sun VirtualBox, QEMU.

Type 2

Process VMM
oS

Guest

d

Xen, VMware ESX, Microsoft Hyper-V KVM, VMware Workstation, Sun VirtualBox, QEMU

Host

Figure 2: Types of virtualization

Xen was the one that was used a lot in the early 2000s. KVM came from a startup.

In 2009 they merged this whole project to the Linux mainline, and became what is
known as KVM today. As of now, KVM is the most widely used hypervisor by almost
all of the hyperscalers except Microsoft and VMWare. Google, Oracle and Amazon all
use KVM or a sort of it. It’s used a lot because of the support it has. Xen is not used

as much except for a few companies.

Advantages

Virtualization provides many advantages:

- Isolation: we want to provide isolation for security.

« Rollback: virtual machines make it easier to rollback environments. Since they
are logical representations, we don’t have to think about the underlying hard-

ware.

- Abstraction: since you’re abstracting hardware out, you can run a virtual ma-
chine any way you want, you don’t need to rely on a specific sort of hardware or
OS. For instance, if you boot a machine and want to run images, they would not
necessarily work on the hardware itself. But with virtualization, you can come
with a minimal representation that you can run across hypervisors and devices.
You can do this experiment when you can run a simple VM and run 1smod to
see the set of devices that have been set up. 1smod is the set of kernel mod-
ules that are running, so it is an indirect representation of the devices present
in your system. The other way would be to use 1spci, which will tell you about

all the PCI devices that are attached to the machine.

« Portability: with virtual machines you can easily switch to different VMs. Since
you are not specializing for a special hardware, you can distribute the workload
and run the VM anywhere. For instance today, you can run an app one any of
the datacenters in any region, it doesn’t matter, and it runs out of the box. It

might not be ultra-performant but it will work.

- Deployment: it gives you flexibility. You can have very fast development cycles.

It is a big advantage when you use VMs and virtualization.

Applications

There are a lot of applications that have been proposed. For example, you might have

seen:

 Server virtualization is something which you see every time you talk about the
Xen VM, all these kind of things.

- Desktop virtualization: you are just virtualizing the desktop (for instance Vir-

tualBox or Citrix).

« Mobile virtualization: you can have two different operating systems running

on the same hardware, even on mobile devices.
« Cloud computing is a category with many examples:
- IaaS (Infrastructure as a Service): you provide the whole VM to run.

- Paa$s (Platform as a Service), also called serverless.

- Saa$ (Software as a Service), you run your whole product, like for instance
Adobe Createive Cloud. The app can be virtualized and access online, you
don’t even need to install anything on your machines. Examples include
Microsoft Office 365 and Google Drive.

« Emulation can also be useful.

Virtualizing techniques

How can you implement virtualization?

Trap and emulate

The classic example is to use the trap and emulate model. When you design a hy-

pervisor you think in instructions.

There are instructions that are privileged and non-privileged. Privileged have to be
executed by the ring 0 and not in ring 3. There are also sensitive instructions, which
change the processor and modify the hardware. Their behavior is different in user
and kernel mode. But you might not trap if you execute it. It’s possible to do them
in userspace and it’s a huge problem with the classical approach to virtualization,

where you have to annotate these instructions and annotate them.

It’s similar to the link between process and OS. If the guest OS wants to change some-

thing about the hardware, it has to be handled by the hypervisor and trapped/emulated.

One way is paravirtualization. The guest OS knows it’s running as guest. Instead
of calling the privileged instruction cl11i, it does a hypercall, which is a syscall. The
hypervisor then does the operation on behalf of the guest OS. With paravirtualization,
you can get near-native performance and you don’t need hardware support, but you
need to modify all the apps. Xen uses paravirtualization, and KVM also provides a
paravirtualization interface which is used when the hardware does not support some

resources.

Full virtualization

There are three ways of implementing full virtualization:

« Emulation: In this case we’re emulating the whole CPU in software.

« Binary translation: we do some sort of just-in-time translation. The problem

is that it’s hard to implement. It’s faster than emulation but still slow.

- Hardware-assisted virtualization: the hardware itself provides ways to imple-
ment virtualization. What they dois that they define a different mode (VM/VMM
mode). When the VM runs it does a VM entry operation. It can still run in

hardware ring 0, but in a separate mode. You can have all the functionality the

guest OS should have. You can execute whenever you want with a VM exit. The

hardware does everything for you. By using this, you remove the restrictions of

paravirtualization and binary translation and it’s still extremely fast.

- Forinstance, Intel VMX (VM extension) supports root and non-root modes.

Root is for the host OS and non-root for the guest operating system. It’s

very similar to transfers from process to OS, but now from guest OS to hy-

pervisor. There is a special VM control structure maintained and updated

by the hypervisor to keep track for each CPU of the operations.

Modified Guest

User Application

Modified 0S

Modified Guest

User Application

Modified 0S

Hypercall Interface

Virtual Machine Monitor

Hardware

Guest

User Application

User
Application

Native 05

Virtual Machine Monitor

Operating System

Hardware

Guest Guest

User Application User Application
Native 0S Native 0S

Virtual Machine Monitor

Hardware

(Intel VT, AMD SVM support)

Para-virtualization

Full-virtualization

(Emulation, Binary Translation)

Full-virtualization

Figure 3: Comparison of virtualization techniques

(Hardware-assisted VT)

Comparison
Para-virtualization Full-virtualization (Emulation) Full-virtualization (Binary translation) Full-virtualization (Hardware-assisted VT)
Speed Very Fast (Almost Native) Very Slow Fast Fast
Guest Kernel Modification Yes No No No
Support Other Arch No Yes No No
Solutions Xen, VMware ESX Bochs VMware, QEMU KVM, Xen
Purposes Server virtualization Emulator Desktop virtualization

Desktop virtualization

Table 1: Comparison of Virtualization Types

Virtual memory mapping

How can memory get virtualized in a VM? The hypervisor has to give the illusion to the

guest OS that it is working with the physical address space, since operating systems

work with physical addresses.

Let’s say the hypervisor allocates some memory for the VM. It will allocate a block of
host virtual addresses and expose it to the VM. When the VM gets it, it thinks that it
has gotten a physical address. But it is not really a physical address, it is just a guest
physical address. And meanwhile, applications running on the VM have their own

layer, which is the guest virtual addresses.

When applications access something, the CPU will translate it to the guest physical

address, which is what the guest OS is going to work with.

Now if the page that you want to play with is not available, it has to ask the host to

get it. There are multiple ways to implement this.

Direct paging

In this approach, the guest OS maintains itself a mapping between its virtual ad-
dresses (guest virtual addresses) and the physical addresses of the host (host phys-
ical addresses). Whenever a logical access is happening, the hardware walks the

page tables to determine the host physical addresses to use.

The main issue with this approach is that you need to use a guest kernel that is aware
of the host physical memory, which means that you cannot use unmodified operating
systems. However, the performance is excellent, since there is no overhead induced

by virtualization. This approach isn’t used frequently.

Shadow paging

This approach consists of the virtual machine monitor monitoring the guests’s virtual
to physical address mapping, and creating shadow page tables that it exposes to the
hardware. This causes some overhead because there are two levels of page tables
being used (the one created by the guest OS and the shadow page table created by
the VMM). The VMM marks the guest page tables as read-only, so that it can trap

whenever they change and synchronize the shadow page tables. However, this ap-

proach is commonly used because it does not require support from the guest OS and

hardware.

Nested paging

The VMM can maintain a mapping (“nested page tables”) from the guest pyhsical
addresses to the host physical addresses, which is then handled by the hardware
itself. The hardware sees both the guest page tables and the nested page tables:
when a logical address is accessed by the VM, the hardware will walk both the guest
page table and then the nested page table to determine the host physical address to

use.

This approachis simple toimplement and supports all guest operating systems, but it
requires hardware support and takes more space in the TLB since information about

both page tables is needed.

Extended page tables (EPT) is the implementation used by some CPUs made by In-
tel. The hypervisor has an EPT base pointer in the VM control structure that points
to the extended page tables. They are used along with the guest page tables to re-
solve addresses when the VM is running. The guest OS has full control over its page
tables, the related control registers (CRO, CR3, CR4 paging bits), and events such as
page faults and TLB invalidation. The EPT entries also specify the privilege level that
the software has when accessing the addresses (disallowed accesses are called EPT

violations and cause VM exits).

Guest Linsar Address

Figure 4: Address translation using extended page tables

Comparison

Direct Paging

Shadow Paging

Nested Paging

Very Fast (Almost

Speed Native) Very Slow Fast
Guest Kernel
Modification ves No No
Need H/W No No Yes
Support
Complexity Simple Complex Very Simple

Table 2: Comparison of implementations of memory mapping virtualization

Of course, nested paging is the best when the hardware supports it. Otherwise, di-
rect paging is the fastest but necessitates changes in the guest kernel, which are not

required when using shadow paging.

I/0 virtualization

How do we handle I/0 interrupts? There are three models to handle them.

Front-end/Back-end driver model

The guest OS uses a paravirtualized frontend driver, which talks to the backend driver.
The backend driver can be DomO (a privileged Xen domain) and the front-end driver
is DomU (the same domain as the one the VM itself is running on). The backend driver
serves as a server who receives all incoming requests and applies them to the actual

hardware.

This model is used by a lot of hypervisors, such as Xen and basic usages of gemu.

Dom0 (Secure Domain) f DomU (General Domain)

1 Process 'T Process JIl | Process || Process J
Modified Linux Kernel | | Modified Linux Kernel
| Backend Driver e > Frontend Driver
(Native Driver] | [
! .
- Xen(Hypervisor)
Safe HW IF Virtual CPU Virtual MMU
CPU Memaory Storage Netwark

Figure 5: The front-end/back-end driver model in Xen

Emulation

The entire device is emulated in software itself. The guest OS accesses the device
using the regular device driver, and the VMM will intercept device interrupts. It’s used

alotin gemu.

Normal [Guest 0S QEMU
Process | Process Process |

Linux Kernel {Guest) Emulated

| Device Drivers Device

A = 4
Linux Kernel e .-~ pr ',/
Device Drivers

CPU Memory Storage Network

Figure 6: I/0 virtualization by emulation

Hardware-assisted I/0 virtualization

The hardware used on the machine can actually support requests coming from mul-

tiple guest OSes, who use the regular device drivers.

Guest VM

Guest VM

Process | Process Process Process
Guest Kernel Guest Kernel
| Device Drivers Device Drivers |
- -‘.
T s .
Hypervisof~ . _ =
T . Y
.................. Y
CPU Memaory Storage Network

Figure 7: Hardware-assisted I/O virtualization

Comparison

Front-end/Back- Emulation H/W Assisted 10 Vir-
end Driver Model tualization

Speed Very Slow Very Slow Fast

Device Driver Modifi- | Yes No No

cation

Need H/W Support | No No Yes

Complexity Simple Complex Simple

Paper: My VM is Lighter (and Safer) than your Container

This week’s paperis the easiest paper to understand and read. It took me 25 minutes

to read.

When you want to virtualize workloads, you have two models: virtualization or con-

tainers.

Containers work by compiling an application, and having a framework with names-

paces, which is the basic abstraction used to give the illusion to the app it’s being ran

separately.

But there are issues with containers:

- They must handle the interaction at the difficult syscall ABI instead of the sim-

pler APIs from x86

« There are many exploits that could exist

« They can exhaust resources

The main question being addressed by this paper is: can we get the performance of
containers with the security of VMs? In order to achieve this, the solution would need
to be lightweight, provide fast instantiation, run hundreds of instances at the same

time, and allow them to be paused/unpaused rapidly.

Reducing the VM size

One key observation is that the boot time increases when we increase the VM image
size. For instance, you have to interact with the VMM to initialize resources, which
causes many interrupts. And by increasing the VM image size, you have to allocate
more stuff.

1000
800 |
600

400
200

Boot time (ms)

0 200 400 600 800 1000
VM image size (MB)

Figure 8: The size of the guest VM image increase the boot time.

But most of the VM is not used! So we would like to minimize the size of the guest

OS. The paper proposes ways to have small OS images:

A unikernel, which is a VM that contains a single app with a minimalistic OS

implementation. The OS is directly linked to the application.

« Tinyxis a Linux distribution that only includes the minimal rqeuirements for the

app by finding its dependencies and cleaning up all the rest.

Improving the performance of Xen

The paper also explores ways of improving the performance of Xen.

The important observation that the paper makes is that as the number of VM in-
creases, the creation time of a new VM becomes dominated by the device creation
and XenStore. XenStore is responsible for creating the virtual machines, which in-
cludes creating devices and updating data structures about the VM. The time taken
by XenStore is increasing more than linearly, because there are a lot of parts of Xen-
Store that don’t scale well (e.g. reading a linked list each time a unique name must
be generated). The entire stack is also quite inefficient, creating a lot of XenStore

entries for each device and accessing it frequently.

1800

T
1600 | config

hypervisor

1400 | Xenstore N

devices mmm—m
1200 [|0ad []
1000 toolstack m—

800 |
600 |
400 |
200 |

0

Time [ms]

0 200 400 600 800 1000

Figure 9: Breakdown of the creation time of a single VM, when the number of created
VMs increases.

To improve the situation, the authors of the paper designed LightVM, a redesign of
the Xen control plane where Xenstore is bypassed for VM creation and boot using a

lean driver called NoXS (no XenStore).

They also use libchaos, a tool they created to improve the creation time of VMs. The
idea is that when VMs are created, a lot of operations are common to all virtual ma-
chines, and could be made quicker if they were done in advance. It does so by running
a daemon that pre-creates optimistically a template of the future virtual machines,
that can then be used when the machine is actually needed. During the run-time
phase, only the operations that need to be made on top of the common operations

are done, which saves time.

VM create
command

VM creation calls
(standard toolstack)

UM CREATE PROCESS

1. HYPERVISOR RESERVATION

2. COMPUTE ALLOCATION

3. MEMORY
fl... N

2. MEMORY
fnl... N
5. DEVICE PRE-CREATION
6. CONFIGURATION PARSING
7. DEVICE INTIALIZATION
fl.. faN
8.IMAGE BUILD
fl.. faN

9. VIRTUAL MACHINE BOOT
l.. faN

COMMON TO ALL
GUESTS

- &

VM creation calls
(split toolstack)
1. HYPERVISOR RESERVATION

2. COMPUTE ALLOCATION
L. N

RY RESERVATION

6. CONFIGURATION PARSING

S (NOW3VQ)3SVHd 1V3HI34d

<
g
aw

7. DEVICE INITIALIZATION

8. IMAGE BUILD.

9, VIRTUAL MACHINE BOOT.

35VHA INL-NNY

Figure 10: The split toolstack, including th pre-create
phasee.

phase and the run-time

Evaluation

Creating VMs using unikernels gives much better performance and scales better than

Docker. Using Tinyx gives times that are close to the instantiation times of Docker

containers.
1024
512 !,C
256 . " -
128 |
g 64 Tinyx over LightVM ——
) 32 Unikernel over LightVM ——
E 16 Docker
= 8
4
2
1]
0 200 400 600 800 1000

Number of Running VMs/Containers

Figure 11: VM instantiation

When creating a very high number of VMs (using a no-operation unikernel), the uniker-
nel performs quicker than Docker, while Docker’s times increase with the number of

VMs and runs out of memory quickly.

65536
16384
4096

LightVM ——
Docker

Docker: 150 ms-666ms
Out of memory

@
E 1024
g 256
=
64
l Unikernel: 5.2ms-8.6ms ‘
16

4

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Running VMs/Containers

Figure 12: Instantiation in high density

The techniques in this paperalso provide good performance and scalability for saving

a checkpoint of the VM state and performing it, as well as migrating VMs.

%5 - T g — 1024 ¢
- ! e - 2561
.E 2 _"_7_“«__ Ll _E. 64 |- L) |
e Bl xl e B x
= 4 chaos+xenstore E S 4+ ,:h:::?:gig} —_—
? - I ‘ LtglhtVM r— 1 } \ LightVM ——
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Running VMs Number of Running VMs
(a) Save (b) Restore
Figure 13: Checkpointing
4096 1 1 [.
g 256 i
S 64 b
e 16| X :
1= i chaos [XS] —— 7]
= 4 + chaos [NoXS] —— -
1L LightVM —— |
1 1

1 |

0 200 400 600 800 1000
Number of Running VMs

Figure 14: Migration

The memory footprint using the VM creation techniques discussed in the paper is
lower than using a regular Debian image, and the CPU usage is comparable to Docker
and scales well.

o
=
©
(9]
(0]
[%2]
-]
sl .-
8 16 Docker Micropython ------- 1
> 4 Minipython
= 1 Micropython Process - ----
0 200 400 600 800 1000
VM/Container/Process #
Figure 15: Memory footprint
2 :
— . Debian
& 201 Tinyx
g Unikernel
= 15 Docker ««--«es-
N
5 10 - J
2 5
O

L || a

0 200 400 600 800 1000
Number of Running VMs/Containers

Figure 16: CPU usage

	What is virtualization?
	History
	Types
	Advantages
	Applications
	Virtualizing techniques
	Trap and emulate
	Full virtualization
	Comparison

	Virtual memory mapping
	Direct paging
	Shadow paging
	Nested paging
	Comparison

	I/O virtualization
	Front-end/Back-end driver model
	Emulation
	Hardware-assisted I/O virtualization
	Comparison

	Paper: My VM is Lighter (and Safer) than your Container
	Reducing the VM size
	Improving the performance of Xen
	Evaluation

