
Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.1

Lecture 5

Embedded system design

Bus architectures

CS476 - ESD
April 8, 2024

Dr. Theo Kluter
EPFL



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.2

Introduction

custom instruction interface

OpenRISC1000 ISA−based

5−stage pipelined architecture

(or1420)

graphics

controller

VGA text and

RS232

UART

8 kByte (max)

BIOS

Read Only Memory
Controller

SDRAMcamera

interface

bus

arbiter Simple 32−bit based bus architecture

Instruction cache

Scratch pad

memory

4 kByte

SPI−flash interface

▶ We have already seen a lot of parts of our embedded system.

▶ This week we are going to dive into the bus system.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.3

Simple bus architectures

▶ Let’s start out with the basic idea of a bus system.

▶ We need to exchange information from (a) master device(s) to (a) slave device(s).

▶ this information consists of:

▶ The memory address of the access.
▶ The type of access (read or write).
▶ The data (to/from the master).
▶ Some handshake signals.

▶ There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.3

Simple bus architectures

▶ Let’s start out with the basic idea of a bus system.

▶ We need to exchange information from (a) master device(s) to (a) slave device(s).

▶ this information consists of:

▶ The memory address of the access.
▶ The type of access (read or write).
▶ The data (to/from the master).
▶ Some handshake signals.

▶ There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.3

Simple bus architectures

▶ Let’s start out with the basic idea of a bus system.

▶ We need to exchange information from (a) master device(s) to (a) slave device(s).

▶ this information consists of:

▶ The memory address of the access.
▶ The type of access (read or write).
▶ The data (to/from the master).
▶ Some handshake signals.

▶ There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.3

Simple bus architectures

▶ Let’s start out with the basic idea of a bus system.

▶ We need to exchange information from (a) master device(s) to (a) slave device(s).

▶ this information consists of:

▶ The memory address of the access.
▶ The type of access (read or write).
▶ The data (to/from the master).
▶ Some handshake signals.

▶ There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.4

Simple bus architectures

Bus−In Bus−outrequest

Master

Bus−In Bus−outrequestrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

MasterCentralized arbiter

▶ The block diagram of the applied bus-system is shown above.

▶ This bus is working with a 74.25MHz clock.

▶ Note the OR-gates (sometime realize with AND-gates), this is typical for on-chip buses, as we do
not apply tri-state (bi-directional) buses as:

▶ They are slow (tri-state capacitance, etc.)
▶ They may cause short circuits if improper used.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.4

Simple bus architectures

Bus−In Bus−outrequest

Master

Bus−In Bus−outrequestrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

MasterCentralized arbiter

▶ The block diagram of the applied bus-system is shown above.

▶ This bus is working with a 74.25MHz clock.

▶ Note the OR-gates (sometime realize with AND-gates), this is typical for on-chip buses, as we do
not apply tri-state (bi-directional) buses as:

▶ They are slow (tri-state capacitance, etc.)
▶ They may cause short circuits if improper used.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.5

Simple bus architectures
▶ So which signals are defined in our bus?

▶ address_data : 32-bit channel that transports the address or data.
▶ byte_enables : 4-bit channel that indicates in a single transfer which bytes are valid.
▶ burst_size : 8-bit channel that indicates the number of words to transfer (value+1).
▶ read_n_write : 1-bit channel indicates a read (when 1) or write transaction (when 0).
▶ begin_transaction : 1-bit channel that indicates the beginning of a transaction.
▶ end_transaction : 1-bit channel that indicates the end of a transaction.
▶ data_valid : 1-bit channel that indicates a valid datum on the address_data lines.
▶ busy : 1-bit channel that indicates that the receiver cannot process yet the datum.
▶ error : 1-bit channel that indicates a bus error.

▶ All signals (50-bits) are active-high and should be forced to 0 when not in use (due to the or-gates).

Channel: master slave
Bus-in Bus-out Bus-in Bus-out

address_data required required required required
byte_enables X required required X
burst_size X required required X
read_n_write X required required X
begin_transaction X required required X
end_transaction required required required required
data_valid required required required required
busy required optional required optional
error required X X optional



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.6

Single word write transactions
clk

error

granted

request

address_data 0 Addr Data 0 Addr 0 Data 0 Addr Data 0 Addr Data 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation shortest write transaction general write transaction busy extended write transaction error in write transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ At the beginning of the transaction (yellow) all information is provided.

▶ In case of an “error” the master must end the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.6

Single word write transactions
clk

error

granted

request

address_data 0 Addr Data 0 Addr 0 Data 0 Addr Data 0 Addr Data 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation shortest write transaction general write transaction busy extended write transaction error in write transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ At the beginning of the transaction (yellow) all information is provided.

▶ In case of an “error” the master must end the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.6

Single word write transactions
clk

error

granted

request

address_data 0 Addr Data 0 Addr 0 Data 0 Addr Data 0 Addr Data 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation shortest write transaction general write transaction busy extended write transaction error in write transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ At the beginning of the transaction (yellow) all information is provided.

▶ In case of an “error” the master must end the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.6

Single word write transactions
clk

error

granted

request

address_data 0 Addr Data 0 Addr 0 Data 0 Addr Data 0 Addr Data 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation shortest write transaction general write transaction busy extended write transaction error in write transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ At the beginning of the transaction (yellow) all information is provided.

▶ In case of an “error” the master must end the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.7

Multiple words write transactions

clk

error

granted

request

address_data 0 Addr Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 Dat7 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP burst NOP burst end IDLE

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.7

Multiple words write transactions

clk

error

granted

request

address_data 0 Addr Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 Dat7 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP burst NOP burst end IDLE

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.8

Single word read transactions

clk

error

granted

request

address_data 0 Addr 0 Addr 0 Addr 0 Addr 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Data 0 Data 0 Data 0

end_transaction

data_valid

busy

error

explanation shortest read transaction general read transaction busy extended read transaction error in read transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.8

Single word read transactions

clk

error

granted

request

address_data 0 Addr 0 Addr 0 Addr 0 Addr 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Data 0 Data 0 Data 0

end_transaction

data_valid

busy

error

explanation shortest read transaction general read transaction busy extended read transaction error in read transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.8

Single word read transactions

clk

error

granted

request

address_data 0 Addr 0 Addr 0 Addr 0 Addr 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Data 0 Data 0 Data 0

end_transaction

data_valid

busy

error

explanation shortest read transaction general read transaction busy extended read transaction error in read transaction

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.9

Multiple words read transactions

clk

error

granted

request

address_data 0 Addr 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 Dat7 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP burst NOP burst end IDLE

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.9

Multiple words read transactions

clk

error

granted

request

address_data 0 Addr 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 Dat7 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP burst NOP burst end IDLE

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.10

Multiple words read aborted transaction

clk

error

granted

request

address_data 0 Addr 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP Abort IDLE

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ In case an error is detected the master must end the transaction.

▶ If the slave sees an end of transaction before the burst/single read is finished it must end the
ongoing transaction and release the bus.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.10

Multiple words read aborted transaction

clk

error

granted

request

address_data 0 Addr 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP Abort IDLE

A
rb

ite
r

M
a
st

e
r

S
la

ve

▶ In case an error is detected the master must end the transaction.

▶ If the slave sees an end of transaction before the burst/single read is finished it must end the
ongoing transaction and release the bus.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.11

Crossbar architectures

▶ Is this the only bus architecture, of course not, this is the one we started out with (the most simple
one).

▶ We will visit some more advanced architecture, the first one is the cross-bar (sometimes referred to
as point-to-point):

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out Bus−In Bus−outrequest request request request

Master

request

Master Crossbar&manager



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.12

Ring architectures

▶ The next one is the ring architecture.

▶ This architecture is sometimes also called streaming interface or network-on-chip (NOC).

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−out Bus−In

Master

Bus−out Bus−In

Master



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.13

Summary

▶ There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are:

▶ Arm’s AMBA bus that has all of the above topologies.
▶ IBM’s CoreConnect bus that is a bus-architecture.
▶ Altera/Intels Avalon bus that is a special version of a cross-bar architecture.
▶ Open Source Hardware’s Wishbone bus that allows for all of the above architectures.

▶ Now that we know how to transfer information let us look into some constructs that are often used:

void* memset(void* dest, register int val, register size_t len);
void* memmove(void* s1, const void* s2, size_t n);
void* memcpy(void* dst0, const void* src0, size_t length);

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf


Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.13

Summary

▶ There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are:

▶ Arm’s AMBA bus that has all of the above topologies.
▶ IBM’s CoreConnect bus that is a bus-architecture.
▶ Altera/Intels Avalon bus that is a special version of a cross-bar architecture.
▶ Open Source Hardware’s Wishbone bus that allows for all of the above architectures.

▶ Now that we know how to transfer information let us look into some constructs that are often used:

void* memset(void* dest, register int val, register size_t len);
void* memmove(void* s1, const void* s2, size_t n);
void* memcpy(void* dst0, const void* src0, size_t length);

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf


Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.14

Efficiency

custom instruction interface

OpenRISC1000 ISA−based

5−stage pipelined architecture

(or1420)

graphics

controller

VGA text and

RS232

UART

8 kByte (max)

BIOS

Read Only Memory
Controller

SDRAMcamera

interface

bus

arbiter Simple 32−bit based bus architecture

Instruction cache

Scratch pad

memory

4 kByte

SPI−flash interface

▶ These constructs execute very inefficient on a CPU...

void* memset(void* dest, register int val, register size_t len);
void* memmove(void* s1, const void* s2, size_t n);
void* memcpy(void* dst0, const void* src0, size_t length);



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.15

Direct Memory Access (DMA)

▶ Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

▶ A DMA-controller is a host that is connected to the bus.

▶ There are basically two types of DMA-controllers:

▶ General purpose DMA-controllers.
▶ Build-in peripheral DMA-controller.

▶ We start with the general purpose DMA-controller.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.15

Direct Memory Access (DMA)

▶ Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

▶ A DMA-controller is a host that is connected to the bus.

▶ There are basically two types of DMA-controllers:

▶ General purpose DMA-controllers.
▶ Build-in peripheral DMA-controller.

▶ We start with the general purpose DMA-controller.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.15

Direct Memory Access (DMA)

▶ Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

▶ A DMA-controller is a host that is connected to the bus.

▶ There are basically two types of DMA-controllers:

▶ General purpose DMA-controllers.
▶ Build-in peripheral DMA-controller.

▶ We start with the general purpose DMA-controller.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.15

Direct Memory Access (DMA)

▶ Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

▶ A DMA-controller is a host that is connected to the bus.

▶ There are basically two types of DMA-controllers:

▶ General purpose DMA-controllers.
▶ Build-in peripheral DMA-controller.

▶ We start with the general purpose DMA-controller.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

request the bus (arbitration)

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.

2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

get the data(burst)

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.

2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

request the bus (arbitration)

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

store the data(burst)

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.17

Direct Memory Access (DMA)

▶ To be able to use the DMA-controller, it has to be set up by the CPU.

▶ The minimal information the DMA-controller needs to have/provide is:

▶ The source Address.
▶ The destination Address.
▶ The amount of data to transfer.
▶ The mode of operation.
▶ The amount of data already transferred.
▶ The status of the controller.
▶ The interrupt control (later more on this).

▶ This information can either be provided in special purpose registers of the CPU, or

▶ as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.17

Direct Memory Access (DMA)

▶ To be able to use the DMA-controller, it has to be set up by the CPU.

▶ The minimal information the DMA-controller needs to have/provide is:

▶ The source Address.
▶ The destination Address.
▶ The amount of data to transfer.
▶ The mode of operation.
▶ The amount of data already transferred.
▶ The status of the controller.
▶ The interrupt control (later more on this).

▶ This information can either be provided in special purpose registers of the CPU, or

▶ as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.17

Direct Memory Access (DMA)

▶ To be able to use the DMA-controller, it has to be set up by the CPU.

▶ The minimal information the DMA-controller needs to have/provide is:

▶ The source Address.
▶ The destination Address.
▶ The amount of data to transfer.
▶ The mode of operation.
▶ The amount of data already transferred.
▶ The status of the controller.
▶ The interrupt control (later more on this).

▶ This information can either be provided in special purpose registers of the CPU, or

▶ as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.17

Direct Memory Access (DMA)

▶ To be able to use the DMA-controller, it has to be set up by the CPU.

▶ The minimal information the DMA-controller needs to have/provide is:

▶ The source Address.
▶ The destination Address.
▶ The amount of data to transfer.
▶ The mode of operation.
▶ The amount of data already transferred.
▶ The status of the controller.
▶ The interrupt control (later more on this).

▶ This information can either be provided in special purpose registers of the CPU, or

▶ as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.19

Polling

▶ As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

▶ By reading this register over and over again, it can see if the transfer has finished.

▶ We call this method polling.

▶ Of course this method is very inefficient as:

▶ Each request (poll) consumes energy.
▶ The CPU reads often exactly the same datum (busy).
▶ The CPU is busy with waiting instead of doing some "real work", defeating partially the

purpose of a DMA-controller.

▶ A solution to this might be to poll with lower frequency, however, this could lead to:

▶ Loosing data, as the next DMA-transfer is not started fast enough.
▶ Loosing performance, as the DMA-controller is ready directly after a poll.
▶ ...



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.19

Polling

▶ As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

▶ By reading this register over and over again, it can see if the transfer has finished.

▶ We call this method polling.

▶ Of course this method is very inefficient as:

▶ Each request (poll) consumes energy.
▶ The CPU reads often exactly the same datum (busy).
▶ The CPU is busy with waiting instead of doing some "real work", defeating partially the

purpose of a DMA-controller.

▶ A solution to this might be to poll with lower frequency, however, this could lead to:

▶ Loosing data, as the next DMA-transfer is not started fast enough.
▶ Loosing performance, as the DMA-controller is ready directly after a poll.
▶ ...



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.19

Polling

▶ As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

▶ By reading this register over and over again, it can see if the transfer has finished.

▶ We call this method polling.

▶ Of course this method is very inefficient as:

▶ Each request (poll) consumes energy.
▶ The CPU reads often exactly the same datum (busy).
▶ The CPU is busy with waiting instead of doing some "real work", defeating partially the

purpose of a DMA-controller.

▶ A solution to this might be to poll with lower frequency, however, this could lead to:

▶ Loosing data, as the next DMA-transfer is not started fast enough.
▶ Loosing performance, as the DMA-controller is ready directly after a poll.
▶ ...



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.19

Polling

▶ As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

▶ By reading this register over and over again, it can see if the transfer has finished.

▶ We call this method polling.

▶ Of course this method is very inefficient as:

▶ Each request (poll) consumes energy.
▶ The CPU reads often exactly the same datum (busy).
▶ The CPU is busy with waiting instead of doing some "real work", defeating partially the

purpose of a DMA-controller.

▶ A solution to this might be to poll with lower frequency, however, this could lead to:

▶ Loosing data, as the next DMA-transfer is not started fast enough.
▶ Loosing performance, as the DMA-controller is ready directly after a poll.
▶ ...



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.19

Polling

▶ As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

▶ By reading this register over and over again, it can see if the transfer has finished.

▶ We call this method polling.

▶ Of course this method is very inefficient as:

▶ Each request (poll) consumes energy.
▶ The CPU reads often exactly the same datum (busy).
▶ The CPU is busy with waiting instead of doing some "real work", defeating partially the

purpose of a DMA-controller.

▶ A solution to this might be to poll with lower frequency, however, this could lead to:

▶ Loosing data, as the next DMA-transfer is not started fast enough.
▶ Loosing performance, as the DMA-controller is ready directly after a poll.
▶ ...



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.20

Interrupt driven

▶ A better method is the interrupt driven approach.

▶ In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

▶ An interrupt-service routine can then handle the next transfer.

▶ Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

▶ What can happen is:

▶ The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
▶ IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ

comes in.
▶ The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.20

Interrupt driven

▶ A better method is the interrupt driven approach.

▶ In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

▶ An interrupt-service routine can then handle the next transfer.

▶ Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

▶ What can happen is:

▶ The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
▶ IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ

comes in.
▶ The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.20

Interrupt driven

▶ A better method is the interrupt driven approach.

▶ In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

▶ An interrupt-service routine can then handle the next transfer.

▶ Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

▶ What can happen is:

▶ The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
▶ IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ

comes in.
▶ The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.20

Interrupt driven

▶ A better method is the interrupt driven approach.

▶ In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

▶ An interrupt-service routine can then handle the next transfer.

▶ Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

▶ What can happen is:

▶ The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
▶ IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ

comes in.
▶ The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.20

Interrupt driven

▶ A better method is the interrupt driven approach.

▶ In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

▶ An interrupt-service routine can then handle the next transfer.

▶ Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

▶ What can happen is:

▶ The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
▶ IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ

comes in.
▶ The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".


	Introduction
	Bus architectures
	Basics
	Advanced

	DMA

