EPFL
Lecture 5

Dr. Theo Kiuter

Embedded system design

Bus architectures

CS476 - ESD
April 8, 2024

Dr. Theo Kluter
EPFL

custom instruction interface I

VGA text and
graphics
controller

SPI-flash interface

OpenRISC1000 ISA-based
5-stage pipelined architecture
(or1420)

4 kByte
Scratch pad
memory

Instruction cache I
bus
arbiter Simple 32-bit based bus architecture
8 kBgi) (smax) D SDRAM
Read Only Memory interface Eoiticley

We have already seen a lot of parts of our embedded system.

This week we are going to dive into the bus system.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.2

Simple bus architectures E PFL

Embedded system
design

Dr. Theo Kiuter

» Let’s start out with the basic idea of a bus system.

Introduction

Bus architectures

Advanced

DMA

Rev.1.0 - 53

Simple bus architectures E PFL

Embedded system
design

Dr. Theo Kiuter

» Let’s start out with the basic idea of a bus system.

Introduction

» We need to exchange information from (a) master device(s) to (a) slave device(s). Bus architectures

Advanced

DMA

Rev.1.0 - 53

=PrL

Embedded system
design

Dr. Theo Kiuter

Let’s start out with the basic idea of a bus system.

Introduction
We need to exchange information from (a) master device(s) to (a) slave device(s). Bus architectures
o . . Basics
this information consists of: Advanced
The memory address of the access. DMA

The type of access (read or write).
The data (to/from the master).
Some handshake signals.

Rev.1.0 - 5.3

=PrL

Embedded system
design

Dr. Theo Kiuter

Let’s start out with the basic idea of a bus system.

Introduction
We need to exchange information from (a) master device(s) to (a) slave device(s). Bus architectures
. . . . Basics
this information consists of: Advanced
The memory address of the access. DMA

The type of access (read or write).
The data (to/from the master).
Some handshake signals.

There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.

Rev.1.0 - 5.3

| EPFL

Embedded system
design

Simple bus architectures

Dr. Theo Kiuter

Introduction

Bus architectures

Advanced

DMA

OR

I Bus-In IBus-oulI I Bus-In IBus-outI I Bus-In IBus-oulI Bus-In_| | Bus—out | ates

» The block diagram of the applied bus-system is shown above.
» This bus is working with a 74.25MHz clock.

Rev.1.0 - 54

Simple bus architectures EPFL

Embedded system
design

Dr. Theo Kiuter
| request |

Introduction

Bus architectures

Advanced

DMA
] OR

gates

I Bus-In IBus—oulI I Bus-In IBus—outI I Bus-In IBus—oulI Bus-In m

The block diagram of the applied bus-system is shown above.
This bus is working with a 74.25MHz clock.

Note the OR-gates (sometime realize with AND-gates), this is typical for on-chip buses, as we do
not apply tri-state (bi-directional) buses as:

» They are slow (tri-state capacitance, etc.)
» They may cause short circuits if improper used.

Rev.1.0 - 54

So which signals are defined in our bus?
address_data : 32-bit channel that transports the address or data.

byte_enables : 4-bit channel that indicates in a single transfer which bytes are valid.
burst_size : 8-bit channel that indicates the number of words to transfer (value+1).
read_n_write : 1-bit channel indicates a read (when 1) or write transaction (when 0).
begin_transaction : 1-bit channel that indicates the beginning of a transaction.
end_transaction : 1-bit channel that indicates the end of a transaction.

data_valid : 1-bit channel that indicates a valid datum on the address_data lines.
busy : 1-bit channel that indicates that the receiver cannot process yet the datum.

error : 1-bit channel that indicates a bus error.

All signals (50-bits) are active-high and should be forced to 0 when not in use (due to the or-gates).

master slave
Channel: Bus-in | Bus-out Bus-in | Bus-out
address_data required | required required | required
byte_enables X required required X
burst_size X required required X
read_n_write X required required X
begin_transaction X required required X
end_transaction required | required required | required
data_valid required | required required | required
busy required | optional required | optional
error required X X optional

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev.1.0 - 55

Arbiter

Master

Slave

error L L L L L L L
granted L L L L L L L
request /N
address_data 0 YAddr)(Data) Jo YAddr)— 0/)Data)(‘Addr) Data Jo ‘Addr)Data)_0
byte_enables 0 YBEY J off JBEY J J/) J BE J BE 0
burst_size i i i i q i i
read_n_write
begin_transaction
end_transaction I I I I I I I
data_valid I I I I I I I
busy
address_data i i i i q i i
end_transaction I I I I I I I
data_valid
busy
error L L L L L L L
explanation ___shortest write transaction) general write transaction busy extended write transaction error in write transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

of these signals).

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 56

Arbiter

Master

Slave

ok ARy Ry ARy ANy ANy NN RN R NN R /AN
error Vi Vi L L L L L
granted L L L L L L L
request /
address_data 0 YAddr)(Data) Jo YAddr)— 0/)Data)(‘Addr) Data o AddrfData)_0
byte_enables 0 YBEY i off JYEBEY i J/) J BE Ji BE 0
burst_size i i i i q i I
read_n_write
begin_transaction
end_transaction L Vi Vi Vi L L L
data_valid // // // // // // //
busy
address_data I I i i q i I
end_transaction Vi Vi L L L L L
data_valid
busy
error Vi L L L L L L
explanation shortest write transaction X general write transaction busy extended write transaction error in write transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

of these signals).

At the beginning of the transaction (yellow) all information is provided.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 56

Arbiter

Master

Slave

ok ARy Ry ARy ANy ANy NN RN R NN R /AN
error Vi Vi L L L L L
granted L L L L L L L
request []
address_data 0 YAddr)(Data) Jo YAddr)— 0/)Data)(‘Addr) Data o AddrfData)_0
byte_enables 0 YBEY i off JYEBEY i J/) J BE Ji BE 0
burst_size i i i i q i I
read_n_write
begin_transaction
end_transaction L Vi Vi Vi L L L
data_valid // // // // // // //
busy
address_data I I i i q i I
end_transaction Vi Vi L L L L L
data_valid
busy
error Vi L L L L L L
explanation shortest write transaction X general write transaction busy extended write transaction error in write transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

of these signals).

At the beginning of the transaction (yellow) all information is provided.

In case of an “error” the master must end the transaction.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.6

Arbiter

Master

Slave

ok ARy Ry ARy ANy ANy NN RN R NN R /AN
error Vi Vi L L L L L
granted L L L L L L L
request []
address_data 0 YAddr)(Data) Jo YAddr)— 0/)Data)(‘Addr) Data o AddrfData)_0
byte_enables 0 YBEY i off JYEBEY i J/) J BE Ji BE 0
burst_size i i i i q i I
read_n_write
begin_transaction
end_transaction L Vi Vi Vi L L L
data_valid // // // // // // //
busy
address_data I I i i q i I
end_transaction Vi Vi L L L L L
data_valid
busy
error Vi L L L L L L
explanation shortest write transaction X general write transaction busy extended write transaction error in write transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

of these signals).

At the beginning of the transaction (yellow) all information is provided.

In case of an “error” the master must end the transaction.

Note: The minimal time of a transaction is 5 clock-cycles.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.6

Multiple words write transactions E PFL

Embedded system
design

Dr. Theo Kiuter

§ error
5{ granted \
request [\
address_data 0 YAdar)Dato) Dati YDat2)Dat3}77)Data) Dals) oas) oati) 0
byte_enables 0 A 0 Introduction
s burst_size 0 7 X 0 Bus architectures
2 read_n_write
| bogin_ransaction \ Advanced
end_transaction
data_valid / / \ [\ /o \ DMA
busy
address_data 0
end_transaction
;;; data_valid
busy T\ [\
error

explanation IDLE_)_request){(info (burst_busywait(1))} burst)NOP)purst__ busywait(s)) NOP {burst__NOP_ J(burst) end) IDLE

» The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

Rev.1.0 - 57

Multiple words write transactions EPFL

Embedded system
design

S 3 I U O O O O O O I I I Iy

Dr. Theo Kiuter

I3 error
2 granted \
request
address_data 0 YAdar)Dato) Datt \Dat2)Pat3}7Z)pata) Dats A SED CE, 0 .
byte_enables 0 A, 0 Introduction
. burst_size 0 7 X 0 Bus architectures
E read_n_write
begin_transaction [\ Advanced
end_transaction
data_valid DMA
busy
address_data 0
end_transaction
;;; data_valid
busy / \ / \
error

explanation IDLE_)_request){(info (burst_busywait(1))} burst)NOP)purst__ busywait(s)) NOP burst__NOP_)(burst) end X IDLE

» The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

» Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

Rev.1.0 - 57

Arbiter

Master

Slave

RN Ry EaEy ARy ANy ARy ARy SRR RNy

error

granted

request [T\ |y [L

address_data 0 YAddr)(0 YAddr)(0 ‘Adar) 0 ‘Adar) 0
byte_enables 0 YBEY 0 YBEY 0 BE 0 BE

burst_size 0

readn e [[
AR 1 i [

end_transaction

data_valid

sy [[

address_data 0)Data) 0 Data) 0 Data 0

end_transaction
data_valid [[
sy Y [

error

explanation shortest read transaction X general read transaction busy extended read transaction error in read transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.8

Arbiter

Master

Slave

RN Ry EaEy ARy ANy ARy ARy SRR RNy

error

granted

request / \ I]

address_data
byte_enables
burst_size
read_n_write
begin_transaction
end_transaction
data_valid

busy

address_data
end_transaction
data_valid

busy

error

explanation

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

0 YAddr)(0 YAddr)(‘Adar) ‘Adar) 0
0 YBEY 0 YBEY BE BE 0
0)Data) Data) Data 0

shortest read transaction

X

general read transaction

busy extended read transaction

error in read transaction

of these signals).

In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev.1.0 - 5.8

Arbiter

Master

Slave

RN Ry EaEy ARy ANy ARy ARy SRR RNy

error

granted
request
address_data 0 YAddr)(0 YAddr)(0 ‘Adar) 0 ‘Adar) 0
byte_enables 0 YBEY 0 YBEY 0 BE 0 BE 0
burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0)Data) 0 Data) 0 Data 0

end_transaction

data_valid

busy

error

explanation shortest read transaction X general read transaction busy extended read transaction error in read transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.
Note: The minimal time of a transaction is 5 clock-cycles.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures

Basics

Advanced

DMA

Rev.1.0 - 5.8

Multiple words read transactions EPFL

Embedded system
design

Dr. Theo Kiuter

I3 error
2 granted \
request
address_data 0 YAddr()
byte_enables 0 A, 0 Introduction
. burst_size 0 7 X 0 Bus architectures
E read_n_write [\
begin_transaction [\ Advanced
end_transaction
data_valid DMA
busy / \ / \
address_data 0 YDato). Dat1 \Dat2)Dat3d}7ZZ) Data)_ Dat5 i CER A LB, 0
end_transaction
®
r%s data_valid / (- \ /A / A\
busy

error

explanation IDLE_)_request){(info (burst_busywait(1))} burst)NOP)purst__ busywait(s)) NOP {burst__NOP_ J(burst) end) IDLE

» The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

Rev.10 - 59

Multiple words read transactions

S 3 I U O O O O O O I I I Iy

I3 error
5{ granted \
request [\
address_data 0 YAddr(0
byte_enables 0 U 0
_ burst_size 0 7 X 0
% read_n_write I\
2| vogin_ransaction M\
end_transaction
data_valid
busy [\ [\
address_data 0 YDato)___Dati Ybatz)Dat3}777)Data) Dat5) CEBY T, 0
end_transaction
é data_valid / (- \ [\ [\
busy
error

explanation IDLE_)_request){(info (burst_busywait(1))} burst)NOP)purst__ busywait(s)) NOP burst__NOP_)(burst) end X IDLE

» The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

» Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures

Advanced

DMA

Rev.10 - 59

Multiple words read aborted transaction

Arbiter

Master

Slave

error I\
granted I\
request [\
address_data 0 YAddrY 0
byte_enables 0 U 0
burst_size 0 7 X 0
read_n_write I\
begin_transaction I\
end_transaction
data_valid
busy [\ [\
address_data 0 YDato) Datl Datz)Dat3Y7Z)Data) Dat5 7777 Date) 0
end_transaction
data_valid / () \ /\
busy
error
explanation IDLE_)_request_){(info (burst_busywait (1))} burst NOP)burst{__ busywait(s)) NOP__{Abori(IDLE

» In case an error is detected the master must end the transaction.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures

Advanced

DMA

Rev.1.0 - 5.10

Multiple words read aborted transaction

>

>

I3 error
H aranted \
request / \
address_data 0 YAddrY 0
byte_enables 0 U 0
_ burst_size 0 7 X 0
5
2 read_n_write I\
=2
begin_transaction I\
end_transaction
data_valid
busy / \ / \
address_data 0 Ybato) Dati Dat2)at3}77Z) Data) Dat5 2772227777/ Dat6) 0
end_transaction
©
k4
& data_valid / " \
busy
error
explanation IDLE_)_request_){(info (burst_busywait (1))} burst NOP)burst{__ busywait(s)) NOP IDLE

In case an error is detected the master must end the transaction.

If the slave sees an end of transaction before the burst/single read is finished it must end the

ongoing transaction and release the bus.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures

Advanced

DMA

Rev.1.0 - 5.10

Crossbar architectures

» Is this the only bus architecture, of course not, this is the one we started out with (the most simple

one).

» We will visit some more advanced architecture, the first one is the cross-bar (sometimes referred to

as point-to-point):

_ Bus-In

Crossbar&manager

I Bus-In IBus—outII Bus-In IBus—outII Bus-In IBus—outI m Bus-out

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics

DMA

Rev.1.0 - 511

Ring architectures

» The next one is the ring architecture.
» This architecture is sometimes also called streaming interface or network-on-chip (NOC).

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics

DMA

Rev. 1.0 - 5.12

=PrL

Embedded system
design

Dr. Theo Kiuter

There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are: Introduction
Bus architectures

Arm’s AMBA bus that has all of the above topologies. e
IBM’s CoreConnect bus that is a bus-architecture. Advanced
Altera/Intels Avalon bus that is a special version of a cross-bar architecture. DMA
Open Source Hardware’s Wishbone bus that allows for all of the above architectures.

Rev.1.0 - 5.3

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf

There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are:

Arm’s AMBA bus that has all of the above topologies.

IBM’s CoreConnect bus that is a bus-architecture.

Altera/Intels Avalon bus that is a special version of a cross-bar architecture.

Open Source Hardware’s Wishbone bus that allows for all of the above architectures.

Now that we know how to transfer information let us look into some constructs that are often

voidx memset (voidx dest, register int val, register size_t len);
voidx memmove (voidx sl, const voidx s2, size_t n);
voidx memcpy (voidx dst0, const voidx src0O, size_t length);

=PrL

Embed
d

ded system
lesign

Dr. Theo Kiuter

Introduction

Bus arch
Basics
Advanced

DMA

used:

itectures

Rev.1.0 - 5.3

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf

Efficiency

I custom instruction interface

graphics
controller

VGA text and OpenRISC1000 ISA-based

5-stage pipelined architecture
(or1420)

i Instruction cache I I I
bus | | | |
arbiter Simple 32-bit based bus architecture
8 kByte (max) T
EES interface
Read Only Memory

» These constructs execute very inefficient on a CPU...

voidx memset (voidx dest,
voidx memmove (void* sl1,
voidx memcpy (voidx dstO,

register int val, register size_t len);
const void* s2, size_t n);
const voidx src0, size_t length);

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics

DMA

Rev.1.0 - 5.14

Direct Memory Access (DMA)

» Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.15

=PrL

Embedded system
design

Dr. Theo Kiuter

Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory Iniroduction
Access (DMA). Bus architectures
Basics
A DMA-controller is a host that is connected to the bus. Advanced
DMA

Rev.1.0 - 5.15

=PrL

Embedded system
design

Dr. Theo Kiuter

Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory Iniroduction
Access (DMA). Bus architectures
Basics
A DMA-controller is a host that is connected to the bus. Advanced
DMA

There are basically two types of DMA-controllers:

General purpose DMA-controllers.
Build-in peripheral DMA-controller.

Rev.1.0 - 5.15

=PrL

Embedded system
design

Dr. Theo Kiuter

Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory Iniroduction
Access (DMA). Bus architectures
Basics
A DMA-controller is a host that is connected to the bus. Advanced
DMA

There are basically two types of DMA-controllers:

General purpose DMA-controllers.
Build-in peripheral DMA-controller.

We start with the general purpose DMA-controller.

Rev.1.0 - 5.15

Direct Memory Access (DMA) E PFL

Embedded system
design

request Bus-in W Bus-out Dr. Theo Kiuter

Introduction

Bus architectures
Basics

Advanced

]
I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI Bus-In Em ggtnes _

» The general purpose DMA-controller basically has two phases of transfer:

Rev.1.0 - 5.16

Direct Memory Access (DMA) EPFL

Embedded system
design

[Busin [l Bus-ou] Dr. Theo Kuter

request the bus (arbitration)

Introduction

Bus architectures
Basics

Advanced

-
I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI Bus-In Em ggtnes _

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.

Rev.1.0 - 5.16

Direct Memory Access (DMA) E PFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics

Advanced

I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.

Rev.1.0 - 5.16

Direct Memory Access (DMA)

request [Bus-in || Bus-out]
]

request the bus (arbitration)

I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI Bus-In m

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

OR
gates

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.16

Direct Memory Access (DMA)

Bus-out

store the data(burst)

—

—_—
>

I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI

OR
gates |

Bus-In

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.16

| EPFL

Embedded system
design

Direct Memory Access (DMA)

Dr. Theo Kiuter

Bus-In || Bus-out]

Introduction

Bus architectures
Basics
Advanced

=] or owa

I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI Bus-In Em s

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

» Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

Rev.1.0 - 5.16

Direct Memory Access (DMA)

Bus-in || Bus-out]

OR
gates

I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI Bus-In

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.16

Direct Memory Access (DMA)

C1i{|Lk

I Bus-In IBus—oulI I Bus-In I Bus—outI I Bus-In IBus—oulI I Bus-In IBus—oulI gg!Res

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

» The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.

=PrL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.16

Direct Memory Access (DMA)

» To be able to use the DMA-controller, it has to be set up by the CPU.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.17

=PrL

Embedded system
design

Dr. Theo Kiuter

To be able to use the DMA-controller, it has to be set up by the CPU.

The minimal information the DMA-controller needs to have/provide is: Introduction
The source Address. Bus architectures
The destination Address. Basics

Advanced

The amount of data to transfer.

The mode of operation.

The amount of data already transferred.
The status of the controller.

The interrupt control (later more on this).

DMA

Rev.1.0 - 5.17

=PrL

Embedded system
design

Dr. Theo Kiuter

To be able to use the DMA-controller, it has to be set up by the CPU.

The minimal information the DMA-controller needs to have/provide is: Introduction
The source Address. Bus architectures
The destination Address. Basics

Advanced

The amount of data to transfer.

The mode of operation.

The amount of data already transferred.
The status of the controller.

The interrupt control (later more on this).

DMA

This information can either be provided in special purpose registers of the CPU, or

Rev.1.0 - 5.17

=PrL

Embedded system
design

Dr. Theo Kiuter

To be able to use the DMA-controller, it has to be set up by the CPU.

The minimal information the DMA-controller needs to have/provide is: Introduction
The source Address. Bus architectures
The destination Address. Basics

Advanced

The amount of data to transfer.

The mode of operation.

The amount of data already transferred.
The status of the controller.

The interrupt control (later more on this).

DMA

This information can either be provided in special purpose registers of the CPU, or

as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).

Rev.1.0 - 5.17

=PrL

Embedded system
design

Dr. Theo Kiuter

A DMA-controller supports different modes of operations:

Single address to single address: In this case both the source- and destination address are Iniroduction
kept constant. Bus architectures
Basics
Advanced
DMA

Rev.1.0 - 5.18

=PrL

Embedded system
design

Dr. Theo Kiuter

A DMA-controller supports different modes of operations:

Introduction

Single address to single address: In this case both the source- and destination address are
kept constant. Bus architectures
Single address to memory block: In this case the source address is kept constant, and the pasles

destination address is auto-incremented.

Advanced

DMA

Rev.1.0 - 5.18

=PrL

Embedded system
design

Dr. Theo Kiuter

A DMA-controller supports different modes of operations:

Single address to single address: In this case both the source- and destination address are

kept constant.
Single address to memory block: In this case the source address is kept constant, and the e

destination address is auto-incremented. S
Memory block to single address: In this case the source address is auto-incremented, and

the destination address is kept constant.

Introduction

Bus architectures

Rev.1.0 - 5.18

=PrL

Embedded system
design

Dr. Theo Kiuter

A DMA-controller supports different modes of operations:

Single address to single address: In this case both the source- and destination address are
kept constant.

Single address to memory block: In this case the source address is kept constant, and the e
destination address is auto-incremented. S
Memory block to single address: In this case the source address is auto-incremented, and

the destination address is kept constant.

Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

Introduction

Bus architectures

Rev.1.0 - 5.18

=PrL

Embedded system
design

Dr. Theo Kiuter

A DMA-controller supports different modes of operations:

Single address to single address: In this case both the source- and destination address are
kept constant.

Single address to memory block: In this case the source address is kept constant, and the o
destination address is auto-incremented. S
Memory block to single address: In this case the source address is auto-incremented, and

the destination address is kept constant.

Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

Introduction

Bus architectures

Depending on the source and destination device one of these modi might be required.

Rev.1.0 - 5.18

=PrL

Embedded system
design

Dr. Theo Kiuter

A DMA-controller supports different modes of operations:

Single address to single address: In this case both the source- and destination address are
kept constant.

Single address to memory block: In this case the source address is kept constant, and the o
destination address is auto-incremented. S
Memory block to single address: In this case the source address is auto-incremented, and

the destination address is kept constant.

Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

Introduction

Bus architectures

Depending on the source and destination device one of these modi might be required.
But how does the CPU know when the operation is completed?

Rev.1.0 - 5.18

Polling

» As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 5.19

=PrL

Embedded system
design

Dr. Theo Kiuter

As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

By reading this register over and over again, it can see if the transfer has finished. Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.19

=PrL

Embedded system
design

Dr. Theo Kiuter

As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

By reading this register over and over again, it can see if the transfer has finished.
We call this method polling.

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.19

=PrL

Embedded system
design

Dr. Theo Kiuter

As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

By reading this register over and over again, it can see if the transfer has finished.
We call this method polling.

Introduction

Bus architectures
Basics
Of course this method is very inefficient as:

Advanced

DMA
Each request (poll) consumes energy.
The CPU reads often exactly the same datum (busy).

The CPU is busy with waiting instead of doing some "real work", defeating partially the
purpose of a DMA-controller.

Rev.1.0 - 5.19

=PrL

Embedded system
design

Dr. Theo Kiuter

As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

By reading this register over and over again, it can see if the transfer has finished. Introduction
We call this method polling. BBt:irchilectures
Of course this method is very inefficient as: Advanced

DMA

Each request (poll) consumes energy.

The CPU reads often exactly the same datum (busy).

The CPU is busy with waiting instead of doing some "real work", defeating partially the
purpose of a DMA-controller.

A solution to this might be to poll with lower frequency, however, this could lead to:

Loosing data, as the next DMA-transfer is not started fast enough.
Loosing performance, as the DMA-controller is ready directly after a poll.

Rev.1.0 - 5.19

Interrupt driven EPFL

Embedded system
design

Dr. Theo Kluter
» A better method is the interrupt driven approach. eo e

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 - 520

=PrL

Embedded system
design

A better method is the interrupt driven approach. Pr. Theo Kluter
In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 5.20

=PrL

Embedded system
design

A better method is the interrupt driven approach. Pr. Theo Kluter
In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

Introduction

An interrupt-service routine can then handle the next transfer.)
Bus architectures

Basics
Advanced

DMA

Rev.1.0 - 5.20

=PrL

Embedded system
design

A better method is the interrupt driven approach. Pr. Theo Kluter
In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

Introduction

An interrupt-service routine can then handle the next transfer.)
Bus architectures

Also this method can have some draw-backs, as: Basics

Advanced

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the DMA
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

Rev.1.0 - 5.20

=PrL

Embedded system
design

A better method is the interrupt driven approach. Pr. Theo Kluter
In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

Introduction

An interrupt-service routine can then handle the next transfer.
Bus architectures

Also this method can have some draw-backs, as: Basics

Advanced

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the DMA
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

What can happen is:

The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ
comes in.

The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".

Rev.1.0 - 5.20

	Introduction
	Bus architectures
	Basics
	Advanced

	DMA

