EPFL
Lecture 2

Dr. Theo Kiuter

Embedded system design

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

CS476 - ESD
February 29, 2024

Dr. Theo Kluter
EPFL

15FPS (640x480) ~a, gy

L ™

SDRAM
controller

Instruction x
cache

74.25MHz

OpenRISC processor /

Last week we have seen that our system cannot calculate Sobel in real time.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer

FIFO-buffer

Testbench

Rev.1.0 - 2.2

=PrL

Embedded system
design

15FPS (640x480) ~a, gy

T

Dr. Theo Kiuter

SDRAM Memories
controller
Usage of memories
I Ping-pong buffer
I LIFO-buffer
FIFO-buffer
Instruction Testbench
estbencl
cache 74.25MHz
OpenRISC processor /

Last week we have seen that our system cannot calculate Sobel in real time.

We can accelerate the system by moving parts of the software to hardware.

Rev.1.0 - 2.2

=PrL

Embedded system
design
15FPS (640x480) ® - Dr. Theo Kluter
SDRAM Memories
controller
Usage of memories
I Ping-pong buffer
I LIFO-buffer
FIFO-buffer
Instruction Testbench
estbenc
cache 74.25MHz
OpenRISC processor /

Last week we have seen that our system cannot calculate Sobel in real time.
We can accelerate the system by moving parts of the software to hardware.
Ways to do this are custom instructions, accelerators, stream processing,

Rev.1.0 - 2.2

15FPS (640x480) ®
SDRAM l
L]
SDRAM
controller
|

Instruction
cache

OpenRISC processor

-~

Last week we have seen that our system cannot calculate Sobel in real time.
We can accelerate the system by moving parts of the software to hardware.
Ways to do this are custom instructions, accelerators, stream processing, ...

We will visit all these methods later on. But all have something in common: they often need

memory for temporal storage.

!

74.25MHz

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 2.2

[T i T}
[daT i}

i)
i3
: -
el

SsRAM 16x8

+ HIDdataout

In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 23

T

T

SsRAM 16x8

il

: O

:@ -
el

@

D dataout.

In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
datalOut.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 23

T

T

SsRAM 16x8

il
i3]
:@ -
el
@

D dataout.

In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.

The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 23

e Tugar
i Tugar

SsRAM 16x8

datars]
cloci]

D dataout.

In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.
Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.
The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.
There are two distinct behaviors in case of a
write:
Write before read: The value written to
the memory cell is also available on the
output.

EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 23

T
i
T i

SSRAM 16x8

il

:@]']

:@]
i

In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.
Typical for on-chip SSRAM'’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.
The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.
There are two distinct behaviors in case of a
write:
Write before read: The value written to
the memory cell is also available on the

output.
Read before write: The value in the
memory cell prior to the write operation
is available on the output.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 24

EPFL

Embedded system
design

Dr. Theo Kluter
A typical SSRAM write operation is given by:
[T o
acress
datan Memores

address [TU00>— writeEnable ~\ \ Usage of memories
= Ping-pong buffer
= LIFO-buffer
g memoryCellAO X DAO FIFO-buffer
w0 memoryCellA1 X DAt Testbench

[
L)
[

datara 0
clocl @

Rev.1.0 - 25

=PrL

Embedded system
design

Dr. Theo Kiuter

A typical SSRAM write operation is given by:

senan 16 ook LTI L
[T o
address YA) YAL)
dataln (DAO) DA1) Memories
writeEnable / \ / \ Usage of memories
Ping-pong buffer

adarass (STT>—
= — LIFO-buffer
g g memoryCellAO X DAO FIFO-buffer
memoryCellA1 X DAt Testbench

B
B
e

A typical SSRAM read operation is given by
(note the delay):

clock
adress

[
)
]
[
[

datara 0
clocl @

memoryCellAQ DAO
memoryCellA1 DA1
dataOut (DAo) " Xoai)

Rev.1.0 - 25

Synchronous Static Random Access Memories (SSRAM’s)

» SSRAM'’s can be found in different configurations, namely:

» single-ported

address
writeEnable
dataln dataOut e

>

» This is the smallest
memory and arguably
most used.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 26

SSRAM'’s can be found in different configurations, namely:

single-ported

my address
—{ writeEnable
— datain

—

dataOut e

This is the smallest
memory and arguably

most used.

semi-dual-ported

m addressA

—{ writeEnable

m—y dataln dataOutA
S

m addressB dataOutB jmmm
—t

Here we have two
read-ports, but we can
only write on the A-port.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 26

SSRAM'’s can be found in different configurations, namely:

single-ported

my address
—{ writeEnable
— datain

—

dataOut

This is the smallest
memory and arguably

most used.

semi-dual-ported

addressA
writeEnable
dataln

>

m addressB

>

dataOutA

dataOutB

Here we have two

read-ports, but we can
only write on the A-port.

true-dual-ported

 addressA
—{ writeEnableA
) datainA
—>

) addressB
—{ writeEnableB
m— atainB

—

dataOutA

dataOutB.

Here we have two
complete ports that
access the same

memory array.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 26

SSRAM'’s can be found in different configurations, namely:

single-ported

my address
—{ writeEnable
— datain

—

dataOut

This is the smallest
memory and arguably

most used.

semi-dual-ported

addressA
writeEnable
dataln

>

m addressB

>

dataOutA

dataOutB

Here we have two

read-ports, but we can
only write on the A-port.

And we can easily describe them in Verilog.

true-dual-ported

 addressA
—{ writeEnableA
) datainA
—>

) addressB
—{ writeEnableB
m— atainB

—

dataOutA

dataOutB.

Here we have two
complete ports that
access the same

memory array.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 26

Single ported SSRAM

module singlePortSSRAM # (parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0)
input wire

input wire [$clog2 (nrOfEntries)-1 : 0]
input wire [bitwidth-1 : 0]
output reg [bitwidth-1 : 0]

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always ((posedge clock)

begin
if (readAfterWrite != 0) dataOut = memoryContent [address];
if (writeEnable == 1’bl) memoryContent [address] = dataln;
if (readAfterWrite == 0) dataOut = memoryContent [address];
end
endmodule

clock,
writeEnable,
address,
dataln,
dataOut) ;

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 27

module semiDualPortSSRAM # (parameter bitwidth = 8,
parameter nrOfEntries = 512,

parameter readAfterWrite = 0)
input wire

clockA, clockB,

writeEnable,
input wire [$clog2 (nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataln,

output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always ((posedge clockAd)

begin
if (readAfterWrite != 0) dataOutA = memoryContent [addressA];
if (writeEnable == 1’bl) memoryContent [addressA] = dataln;
if (readAfterWrite == 0) dataOutA = memoryContent [addressA];
end

always @ (posedge clockB)
dataOutB = memoryContent [addressB];

endmodule

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 28

module dualPortSSRAM # (parameter bitwidth = 8,
parameter nrOfEntries = 512,

parameter readAfterWrite = 0)
input wire

input wire [$clog2 (nrOfEntries)-1
input wire [bitwidth-1 : 0]
output reg [bitwidth-1 : 0]

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always (@ (posedge clockAd)
begin

=PrL

Embedded system
design
Dr. Theo Kluter

clockA, clockB,
writeEnableA, writeEnableB,
addressA, addressB,
datalInA, datalnB,
dataOutA, dataOutB);

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

if (readAfterWrite != 0) dataOutA = memoryContent [addressA];
if (writeEnableA == 1’bl) memoryContent [addressA] = datalnh;
if (readAfterWrite == 0) dataOutA = memoryContent [addressA];

end

always (@ (posedge clockB)

begin
if (readAfterWrite != 0) dataOutB = memoryContent [addressB];
if (writeEnableB == 1’bl) memoryContent [addressB] = datalnB;
if (readAfterWrite == 0) dataOutB = memoryContent [addressB];

end

endmodule

Rev.1.0 - 29

SSRAM’s in ASIC and FPGA

S

In ASIC-design the size of the SSRAM'’s is dependent on the memory-generator and the area you
have available.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 210

In ASIC-design the size of the SSRAM'’s is dependent on the memory-generator and the area you
have available.

In FPGA-design it is more restricted, as the memories are already implemented. You can only use
what you have:

Table 1-1. Resources for the Cyclone IV E Device Family

Resources

EP4CE6
EPACE10
EPACE15
EP4CE22
EP4CE30
EPACE40
EPACES5
EPACE75

EP4ACE115

Logic elements (LEs) 6,272 | 10,320 | 15,408 | 22,320 | 28,848 | 39,600 | 55,856 | 75,408 | 114,480
Embedded memory

: 270 414 504 594 594 1,134 2,340 2,745 3,888
(Kbits)
Embedded 18 x 18 15 23 56 66 66 16 | 154 | 200 | 266
multipliers
General-purpose PLLs 2 2 4 4 4 4 4 4 4
Global Clock Networks 10 10 20 20 20 20 20 20 20
User 1/0 Banks 8 8 8 8 8 8 8 8 8
Maximum user 1/0 (") 179 179 343 153 532 532 374 426 528

Note to Table 1-1:

(1) The user I/0s count from pin-out files includes all general purpose 1/0, dedicated clock pins, and dual purpose configuration pins. Transceiver
pins and dedicated configuration pins are not included in the pin count.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 210

SSRAM’s in ASIC and FPGA

» For the FPGA we are using, following are the permissible nrOfEntries x bitwidth

configurations:
» 8192 x 1
» 4092 x 2
» 2048 x 4
» 1024 x 8
» 512 x 16
» 256 x 32

bit
bit
bit
bit or1024 x 9 bit
bitor512 x 18 bit
bit or 256 x 36 bit

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 211

=PrL

Embedded system

For the FPGA we are using, following are the permissible nrOfEntries x bitwidth design
Configurations: Dr. Theo Kluter
8192 x 1 bit
4092 x 2 bit
2048 x 4 Dbit Memories
1024 x 8 bitor1024 x 9 bit Usage of memories
512 x 16 bitor512 x 18 bit Ping-pong buffer
256 x 32 bitor256 x 36 bit HIFO-bulfer
FIFO-buffer
Other configurations are possible by using partially/multiple of these SSRAM’s. Testbench

Rev. 1.0 - 211

=PrL

Embedded system

For the FPGA we are using, following are the permissible nrOfEntries x bitwidth design
Configurations: Dr. Theo Kluter
8192 x 1 bit
4092 x 2 bit
2048 x 4 Dbit Memories
1024 x 8 bitor1024 x 9 bit Usage of memories
512 x 16 bitor512 x 18 bit Ping-pong buffer
256 x 32 bitor256 x 36 bit HIFO-bulfer
FIFO-buffer
Other configurations are possible by using partially/multiple of these SSRAM’s. Testbench

By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

Rev. 1.0 - 211

=PrL

Embedded system

For the FPGA we are using, following are the permissible nrOfEntries x bitwidth design
Configurations: Dr. Theo Kluter
8192 x 1 bit
4092 x 2 bit
2048 x 4 bit Memories
1024 x 8 bitor1024 x 9 bit Usage of memories
512 x 16 bitor512 x 18 bit Ping-pong buffer
256 x 32 bit Or256 x 36 bit o
Other configurations are possible by using partially/multiple of these SSRAM’s. Testbench

By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:
Explode the size of your design (often it cannot be mapped any more on the FPGA).
Have a severe impact on the critical path of your design (read the speed you can operate your
design).

Rev. 1.0 - 211

=PrL

Embedded system
design

For the FPGA we are using, following are the permissible nrOfEntries x bitwidth

Configurations: Dr. Theo Kluter
8192 x 1 bit
4092 x 2 bit
2048 x 4 bit Memories
1024 x 8 bitor1024 x 9 bit Usage of memories
512 x 16 bitor512 x 18 bit Ping-pong buffer
256 x 32 bit Or256 x 36 bit o
Other configurations are possible by using partially/multiple of these SSRAM’s. Testbench

By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:

Explode the size of your design (often it cannot be mapped any more on the FPGA).
Have a severe impact on the critical path of your design (read the speed you can operate your
design).
For small memories, most FPGA'’s provide also the so-called LUT-RAM’s. These have most of the
timea 16 x 1 bit configuration in a single-port or semi dual-port architecture.

Rev. 1.0 - 211

=PrL

Embedded system

For the FPGA we are using, following are the permissible nrOfEntries x bitwidth design
Configurations: Dr. Theo Kluter
8192 x 1 bit
4092 x 2 bit
2048 x 4 bit Memories
1024 x 8 bitor1024 x 9 bit Usage of memories
512 x 16 bitor512 x 18 bit Ping-pong buffer
256 x 32 bit Or256 x 36 bit o
Other configurations are possible by using partially/multiple of these SSRAM’s. Testbench

By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:

Explode the size of your design (often it cannot be mapped any more on the FPGA).
Have a severe impact on the critical path of your design (read the speed you can operate your
design).
For small memories, most FPGA'’s provide also the so-called LUT-RAM’s. These have most of the
timea 16 x 1 bit configuration in a single-port or semi dual-port architecture.

Note: the FPGA on our platform does not support LUT-RAM’s.

Rev. 1.0 - 211

LUT-RAM’s - EPFL

Embedded system

design
» The LUT-RAM’s have the same synchronous Dr. Theo Kluter
write as the SSRAM'’s:
clock
address (A0) X A1)
e dataln __YDAOY__)(DAT) | Memories
writeEnable / \ / \ Usage of memories
L 5 Ping-pong buffer
addrass [TT0T>— LIFO-buffer
e e memoryCellAO X DAO FIFO-buffer
memoryCellA1 YDAt Testbench
P g
H D aseaou
L

Rev. 1.0 - 212

LUT-RAM’s

[0 o
6 '
address 0000 >—¢
; H
; H
; H
dati!n@ =
D dataout
g

The LUT-RAM’s have the same synchronous
write as the SSRAM’s:
clock
address
dataln
writeEnable / \ / \

memoryCellAQ X DA0
memoryCellA1 YDAt

However, they provide an asynchronous read:

e inlipigipinlinh

aderess
memoryCellAO DAO
memoryCellA1 DA1

dataOur

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 212

=PrL

Embedded system

design
The LUT-RAM’s have the same synchronous Dr. Theo Kluter
write as the SSRAM’s:
clock
address
o e | o datain Memories
writeEnable / \ / \ Usage of memories

address [0080>—

Ping-pong buffer

LIFO-buffer
memoryCellAQ X DAO FIFO-buffer

8
[

memoryCellA1 X__DAt Testbench
[
[

However, they provide an asynchronous read:
clock
address

memoryCellAO DAO
dati!nB =
clock] memoryCellA1 DA1
D dataout
dataOut (DAo) Xoai)
g

Also LUT-RAMs can be easily described in
Verilog:

Rev. 1.0 - 212

Single ported LUT-RAM

module singlePortLUTRAM #(parameter bitwidth = 8
parameter nrOfEntries
(input wire

’

32)

input wire [$clog2 (nrOfEntries)-1
input wire [bitwidth-1 : 0]
output wire [bitwidth-1 : 0]
reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOut = memoryContent [address];

always ((posedge clock)

if (writeEnable == 1’bl) memoryContent [address] = dataln;

endmodule

0]

clock,
writeEnable,
address,
dataln,
dataOut) ;

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 213

Semi dual-ported LUT-RAM

module semiDualPortLUTRAM # (parameter bitwidth = 8,

parameter nrOfEntries 32)
(input wire clock,
writeEnable,
input wire [$clog2 (nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataln,
output wire [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOutA = memoryContent [addressA];
assign dataOutB = memoryContent [addressB];

always ((posedge clock)
if (writeEnable == 1’bl) memoryContent [addressA] = dataln;

endmodule

| EPFL

Embedded system
design

Dr. Theo Kiuter

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 214

But how to use those memories?

» We now have seen the on-chip memory architectures.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 215

But how to use those memories?

» We now have seen the on-chip memory architectures.
» We also have seen how to instantiate them in Verilog.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 215

=PrL

Embedded system
design

Dr. Theo Kiuter

We now have seen the on-chip memory architectures.
We also have seen how to instantiate them in Verilog.

Memories
We are now going to concentrate on how to use them, namely: Usage of memories
Ping—Pong buffers. i;giin(i:)uﬂer
Last-in First-out (LIFO) buffers. FIFO-buffer
First-in First-out (FIFO) buffers. Testbench

Rev.1.0 - 2.15

=PrL

Embedded system
design

Dr. Theo Kiuter

We now have seen the on-chip memory architectures.
We also have seen how to instantiate them in Verilog.

Memories
We are now going to concentrate on how to use them, namely: Usage of memories
Ping—Pong buffers. i;giinﬂge:)uﬂer
Last-in First-out (LIFO) buffers. FIFO-buffer
First-in First-out (FIFO) buffers. Testbench

Each of these buffers are used for particular data-accesses in our system.

Rev.1.0 - 2.15

=PrL

Embedded system
design

Dr. Theo Kiuter

We now have seen the on-chip memory architectures.
We also have seen how to instantiate them in Verilog.

Memories

We are now going to concentrate on how to use them, namely:

Usage of memories
[Ping-pong buffer

Ping .Pon‘g buffers. UEobufer

Last-in First-out (LlFO) buffers. FIFO-buffer

First-in First-out (FIFO) buffers. Testbench
Each of these buffers are used for particular data-accesses in our system.
Before starting with the buffers, some definitions:

Producer: a producer is an entity that generates data.

Consumer: a consumer is an entity that reads the data and does something with it.
Push: a push is a write of a datum by a producer.

Pop: a pop is a read of a datum by a consumer.

Rev. 1.0 - 215

SSRAM2

popAddress [00

clock[0>

switch[0)—

o

[20>poppata

In ping-pong buffers the producer writes it's
data in one memory, whilst the consumer

reads from the other memory. The moment
both are done, the memories are switched.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 216

=PrL

Embedded system
design

In ping-pong buffers the producer writes it's
data in one memory, whilst the consumer
reads from the other memory. The moment

Dr. Theo Kiuter

ar: both are done, the memories are switched.
Typical applications for these kind of buffers Memories
0x J= 70> popData are: Usage of memories
Ping-pong buffer
puen [0 Data-transfer calculation overlap. LIFO-bufer
The access pattern of the producer on o
= the data is different from the consumer. Testoench
I 5 The push/pop frequency is different,
| hence the producer/consumer have
ctea®> other timely accesses.
The consumer needs to access certain
switen (B data multiple times, whilst the producer
[Tis oo 2000030 ol only provides it once.

Rev.1.0 - 2.16

=PrL

Embedded system
design

In ping-pong buffers the producer writes it's
data in one memory, whilst the consumer
reads from the other memory. The moment

Dr. Theo Kiuter

o) ;
'—_IE both are done, the memories are switched.
Typical applications for these kind of buffers Memories
ox = 00D poppata are: Usage of memories
) Ping-pong buffer
puen [0 Data-transfer calculation overlap. LIFO-bufer
FIFO-buff
= The access pattern of the producer on o
the data is different from the consumer. Testoench
I The push/pop frequency is different,

hence the producer/consumer have
other timely accesses.

The consumer needs to access certain
data multiple times, whilst the producer
only provides it once.

clock[0>

switch[0)—

2a 00 00 00 00 00 00[=:- 1]

Of course, this only works if the consumer can
consume the data in the time-slot that the
producer requires to produce one block of
data!

Rev.1.0 - 2.16

Ping-pong buffers EPFL

Embedded system
design

Dr. Theo Kiuter

» The ping-pong buffers are arguably the most versatile kind of buffers. Memories

Usage of memories

LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 217

Ping-pong buffers =P-L

Embedded system
design

Dr. Theo Kiuter

» The ping-pong buffers are arguably the most versatile kind of buffers. Memories

» But how to determine the size of them? Usage of memories
LIFO-buffer
FIFO-buffer
Testbench

Rev.1.0 - 217

=PrL

Embedded system
design

Dr. Theo Kiuter

The ping-pong buffers are arguably the most versatile kind of buffers. Memories

But how to determine the size of them? Usage of memories
Ping-pong buffer

What about the inferred delay, as the consumer always performs the calculations when already one LIFO-bufer
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one FIFO-outter

time-slot behind. Testbench

Rev. 1.0 - 217

=PrL

Embedded system

design
Dr. Theo Kluter
The ping-pong buffers are arguably the most versatile kind of buffers. Memories
But how to determine the size of them? Usage of memories
Ping-pong buffer
What about the inferred delay, as the consumer always performs the calculations when already one LIFO-bufer

FIFO-buffer

set of data is provided by the producer. Otherwise formulated: the consumer always lacks one
time-slot behind.

Testbench

What is the influence on area, performance, and power consumption?

Rev. 1.0 - 217

=PrL

Embedded system
design

Dr. Theo Kiuter

The ping-pong buffers are arguably the most versatile kind of buffers.

Memories
But how to determine the size of them? Usage of memories
. . Ping-pong buffer
What about the inferred delay, as the consumer always performs the calculations when already one LIFO-bufer
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one FIFO-outter
time-slot behind. Testbench

What is the influence on area, performance, and power consumption?
Does it make sense.....

Rev. 1.0 - 217

The ping-pong buffers are arguably the most versatile kind of buffers.
But how to determine the size of them?

What about the inferred delay, as the consumer always performs the calculations when already one
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one
time-slot behind.

What is the influence on area, performance, and power consumption?
Does it make sense.....
All questions for which there is no simple answer, as it depends the requirements and trade-offs.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 217

=PrL

Embedded system
design
Dr. Theo Kluter
i enpty In LIFO buffers, the last value pushed is the Vemories
: first that is popped. This can easily be realized) ’)
to use an up/down counter that generates the | " ° """
address for the SSRAM. LIFO-buffer
FIFO-buffer
Testbench
::::%R
pushData [_00y [29Dpopbata
pop [>—]

Rev. 1.0 - 218

reset [0

push [€
cloc]
pushpata [00

pop [©>—

2a[00 00 00 00 00 00

TEELLLL

popData

In LIFO buffers, the last value pushed is the
first that is popped. This can easily be realized
to use an up/down counter that generates the
address for the SSRAM.

Typical applications for LIFO-buffers are:

Data reordering.
Temporal storage of values (think of the
stack).

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 2.18

=PrL

Embedded system
design

Dr. Theo Kiuter

e d e] . :,—I—Dempty In LIFO buffers, the last value pushed is the

first that is popped. This can easily be realized)
to use an up/down counter that generates the Uff’ggfof; emones

address for the SSRAM. LIFO-bufer

FIFO-buffer

Memories

Typical applications for LIFO-buffers are:

-~ In practice, the LIFO-buffers are not often
B T used, more appropriate are the FIFO-buffers.

Testbench
push [Data reordering.
Pusmii?% S o S Temporal storage of values (think of the
~o—Dt R stack).

Rev.1.0 - 2.18

=PrL

Embedded system
design

SSRAM Dr. Theo Kluter
address: Push pointer

0x0 :
0ox1

OX2 POP pOinter Usage of memories
0x3 Ping-pong buffer
0x5 =
016 Testbench

0x7
0x8
0x9
OxA
0xB
0xC
0xD
OxE
OxF

In a FIFO-buffer we transform the SSRAM

Memories

Rev.1.0 - 219

=PrL

Embedded system
design

Dr. Theo Kluter
In a FIFO-buffer we transform the SSRAM into
a circular buffer.

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

=PrL

Embedded system
design

Dr. Theo Kluter
In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

And the FIFO can even become empty again.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

And the FIFO can even become empty again.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

And the FIFO can even become empty again.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 219

First-in First-out (FIFO) buffers =PrL

Embedded system
design

Dr. Theo Kiuter

» FIFO-buffers are arguably the most used buffers in hardware.

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer

Testbench

Rev.1.0 - 220

FIFO-buffers are arguably the most used buffers in hardware.
Typical applications of FIFO-buffers are:

Timely access pattern buffering (e.g. the producer generates the data in another timely
manner as the consumer can handle them).

Save clock-boundary crossings.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 220

=PrL

Embedded system
design

Dr. Theo Kiuter

FIFO-buffers are arguably the most used buffers in hardware. Vemories
Typical applications of FIFO-buffers are: Usage of memories
Timely access pattern buffering (e.g. the producer generates the data in another timely [aens Bt
manner as the consumer can handle them). FIFO-buffer
Save clock-boundary crossings. Testbench

As you can imagine, we would like to have a generic description of a FIFO-buffer, something we
are going to do in today’s practical work.

Rev.1.0 - 220

=PrL

Embedded system
design

Dr. Theo Kiuter

FIFO-buffers are arguably the most used buffers in hardware. Vemories
Typical applications of FIFO-buffers are: Usage of memories
Timely access pattern buffering (e.g. the producer generates the data in another timely [aens Bt
manner as the consumer can handle them). FIFO-buffer
Save clock-boundary crossings. Testbench

As you can imagine, we would like to have a generic description of a FIFO-buffer, something we
are going to do in today’s practical work.

But there is one part that is missing, how to test?

Rev.1.0 - 220

Testing a unit by using a testbench

Iy

Vo

» We begin with our design.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev.1.0 - 221

—>» A X —>»
—»{8 DUT
—>»C Y >

We begin with our design. We call this the Device Under Test (DUT).

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 221

Testing a unit by using a testbench

DUT

—>
—>

» We begin with our design. We call this the Device Under Test (DUT).

» The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer

FIFO-buffer

Rev.1.0 - 221

Testing a unit by using a testbench

DUT

We begin with our design. We call this the Device Under Test (DUT).

The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev.1.0 - 221

Testing a unit by using a testbench

We begin with our design. We call this the Device Under Test (DUT).

The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

The Input stimuli generator and the Output reaction checker form the test-harnas.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev.1.0 - 221

Testing a unit by using a testbench

synthesizable Verilog non-synthesizable Verilog

A

B DUT
c

X

Y

We begin with our design. We call this the Device Under Test (DUT).

The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

The Input stimuli generator and the Output reaction checker form the test-harnas.

Whereas the DUT only uses synthesizable Verilog descriptions, the test-harnas uses
non-synthesizable Verilog descriptions.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev.1.0 - 221

Testing a unit by using a testbench

synthesizable Verilog non-synthesizable Verilog

A
B DUT
C

X

Y

We begin with our design. We call this the Device Under Test (DUT).

The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

» Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

The Input stimuli generator and the Output reaction checker form the test-harnas.

Whereas the DUT only uses synthesizable Verilog descriptions, the test-harnas uses
non-synthesizable Verilog descriptions.

» The test-harnas is described in a new module, where the DUT is used as a component. This
module is called the testbench.

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev.1.0 - 221

Our device under test

» Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,

parameter bitWidth = 32)

(input wire clock,
reset,
push,
pop,

input wire [bitWidth-1:0] pushData,

output wire full,
empty,
output wire [bitWidth-1:0] popData);
endmodule

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev. 1.0 - 222

Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,

parameter bitWidth = 32)

(input wire clock,
reset,
push,
pop,

input wire [bitWidth-1:0] pushData,

output wire full,
empty,

output wire [bitWidth-1:0] popData);
endmodule

We have 2 parameters, and several connections.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 222

Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,

parameter bitWidth = 32)

(input wire clock,
reset,
push,
pop,

input wire [bitWidth-1:0] pushData,

output wire full,
empty,

output wire [bitWidth-1:0] popData);
endmodule

We have 2 parameters, and several connections.
Note that we require a clock and a reset.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 222

Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,

parameter bitWidth = 32)

(input wire clock,
reset,
push,
pop,

input wire [bitWidth-1:0] pushData,

output wire full,
empty,

output wire [bitWidth-1:0] popData);
endmodule
We have 2 parameters, and several connections.
Note that we require a clock and a reset.
We can now build-up our basic testbench:

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 222

testbench

/% set the time-units for simulation =/

‘timescale lps/lps
module fifoTestbench;

reg reset, clock;
initial
begin

reset = 1'bl;

clock = 1'b0;

repeat (4) #5 clock = ~clock;

reset = 1'b0;

forever #5 clock = ~clock;
end

reg s_push, s_pop;

/% set the initial values +/

/* generate 2 clock periods */

/* de-activate the reset */

/% generate a clock with a period of 10 time-units */

wire s_full, s_empty; /* define the signals for the DUT »/

reg [7:0] s_pushData;
wire [7:0] s_popData;

fifo #(.nrOfEntries(32), /x instantiate the DUT as component =/

.bitWidth(8)) DUT
(.clock(clock),
.reset (reset),
.push (s_push),
-pop (s_pop) ,
.pushData (s_pushData) ,
.full(s_full),
.empty (s_empty),
.popData (s_popData)) ;

initial
begin
$dumpfile ("fifoSignals.ved");
$dumpvars (1,DUT) ;
end

endmodule

/+ define the name of the .vcd file that can be viewed by GTKWAVE */
/+ dump all signals inside the DUT-component in the .vcd file x/

| EPFL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Rev.1.0 - 223

Next we have to create the input stimuli generator, there are various ways to do this, namely:

A finite state machine that generates the required input values.
An initial block that generates the stimuli.

A model/files that contain the various values.

=PrL

Embedded system
design

Dr. Theo Kiuter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev. 1.0 - 224

=PrL

. Embedded
Next we have to create the input stimuli generator, there are various ways to do this, namely: mbedded system

design
A finite state machine that generates the required input values. Dr. Theo Kiuter
An initial block that generates the stimuli.
A modelffiles that contain the various values.
Memories

This time we will restrict ourselves to an initial block, like:

Usage of memories

o Ping-pong buffer
lnltlél LIFO-buffer
begin FIFO-buffer

s_push = 1'b0;

s_pop = 1’b0;

s_pushData = 8’d0;

@ (negedge reset); /* wait for the reset period to end =/
repeat (2) @ (negedge clock); /* wait for 2 clock cycles =/

s_push = 1'bl;

repeat (32) @ (negedge clock) s_pushData = s_pushData + 8’dl;

s_push = 1'b0;

Testbench

s_pop = 1’'bl;

repeat (32) @(negedge clock); /x wait for 32 clock cycles =/

s_pop = 1’b0;

$finish; /+ finish the simulation */
end

Rev. 1.0 - 224

=PrL

Next we have to create the input stimuli generator, there are various ways to do this, namely: B e ="
A finite state machine that generates the required input values. Dr. Theo Kluter

An initial block that generates the stimuli.
A model/files that contain the various values.

Memories

This time we will restrict ourselves to an initial block, like:

Usage of memories

initial iz(g]—zn”g;:mﬂer
begin FIFO-buffer
spush = 17b0; Testbench
s_pop 1"b0;
s_pushData = 8’d0;
@ (negedge reset); /* wait for the reset period to end =/

repeat (2) @ (negedge clock); /* wait for 2 clock cycles =/
s_push = 1'bl;
repeat (32) @ (negedge clock) s_pushData = s_pushData + 8’dl;
s_push = 1'b0;

s_pop = 1’'bl;

repeat (32) @(negedge clock); /x wait for 32 clock cycles =/

s_pop = 1’b0;

$finish; /+ finish the simulation */
end

The checker we leave for the moment and just look at the wave-files.

Rev. 1.0 - 224

	Memories
	Usage of memories
	Ping-pong buffer
	LIFO-buffer
	FIFO-buffer

	Testbench

