

CS-476: Embedded System Design

Practical work 1

Simulation, testbenches and FIFO

Version:
1.0

Contents

1	Simulation	1
2	Exercise	2
2.1	Task1	2
2.2	Task2	2

1 Simulation

We are going to simulate with Icarus Verilog. The documentation can be found [here](#). To perform this first exercise download the counter with it's testbench from moodle. There are some steps to follow to simulate:

1. execute:

```
iverilog -s counterTestBench -o testbench counter.v counter_tb.v
```

in a terminal. the option -s defines the toplevel, and -o the name of the simulation executable.

2. perform the simulation by:

```
./testbench
```

This will generate a file called `counterSignals.vcd`.

3. Now we can observe the timing-diagram by:

```
gtkwave counterSignals.vcd
```

This will open a graphical window. The user manual of gtkwave can be found [here](#).

Look at the timing diagram and try to match it with the given testbench. These programms we are going to use a lot during this course, so make sure that you understand the flow.

2 Exercise

Now that you are familiar with the simulation process we are going to implement a FIFO-buffer. The inputs, outputs, and parameters are given by:

```
1 module fifo #(parameter nrOfEntries = 16,
2   parameter bitWidth = 32)
3   (input wire
4    clock,
5    reset,
6    push,
7    pop,
8    input wire [bitWidth-1:0] pushData,
9    output wire [bitWidth-1:0] full,
10   empty,
11   output wire [bitWidth-1:0] popData);
12
13 endmodule
```

2.1 Task1

Write the complete verilog code that realizes the correct functionality of the fifo. Hint: the verilog function `$clog2(N)` determines $\left\lceil \frac{\ln(N)}{\ln(2)} \right\rceil$. You will require 2 counters, an SSRAM and some glue logic.

2.2 Task2

Write a simple testbench for the FIFO and simulate the FIFO with it's testbench.