
CS-476:
Embedded System Design

Practical work 4

Build-in peripheral DMA-controller

Version:
1.0

CS-476 ESD Build-in peripheral DMA-controller

Contents

1 Introduction 1

2 Exercises 2
2.1 Prerequisites . 2
2.2 CI-attached memory (3.5 points) . 2
2.3 DMA to the CI-memory (8 points) . 2
2.4 DMA from the CI-memory (6 points) . 4

page II of II Last change: 09/04/2024 Version: 1.0

CS-476 ESD Build-in peripheral DMA-controller

1 Introduction

In the last PW we designed a slave-device on the bus-infrastructure. This PW will concentrate on the
implementation of a 2kByte memory that is connected as a custom instruction. This 2 kByte memory
will be connected to a build-in DMA-controller that allows to transfer data (32-bit words) to and from
external memory to this local memory.

custom instruction interface

OpenRISC1000 ISA−based

5−stage pipelined architecture

(or1420)

8 kByte (max)

BIOS

Read Only Memory

graphics

controller

VGA text and

camera

interface Controller

SDRAM RS232

UART

bus

arbiter Simple 32−bit based bus architecture

Instruction cache

memory
2 kByte

DMA

4 kByte
Scratch pad

memory

SPI−flash interface

The DMA-controller is a master-device on the bus. For efficiency, the DMA-controller will support
burst-mode.
The structure that we are going to design is a basic block that is often used in accelerators or streaming
peripherals. Examples of a partial implementation of this block you can find in the camera interface:
virtual_prototype/modules/camera/verilog/camera.v
or in the hdmi-controller:
virtual_prototype/modules/hdmi_720p/verilog/graphicsController.v

Version: 1.0 Last change: 09/04/2024 page 1 of 4

CS-476 ESD Build-in peripheral DMA-controller

2 Exercises

2.1 Prerequisites

Before starting this practical work, make sure that:

You revisit the practical work on the grayscale custom instruction to make sure that you under-
stand this interface.

Go through the slides to familiarize yourself with the different bus-operations.

Visit the slides of week 2 explaining how to describe memories in Verilog.

2.2 CI-attached memory (3.5 points)

In a first step we are going to design a 2kByte memory that is attached to the custom instruction
interface. As the registers are 32-bit wide, this memory is arranged as 512x32-bit words. As we are
going to allow for a DMA-controller in a later step, and we want that the CPU and the DMA-controller
have direct access to the memory, we are going to use a dual-ported SSRAM. For this exercise you can
connect all inputs of the second (B-)port to a constant 0, and leave all outputs open. The CPU will
be connected completely to the first (A-)port. The module definition for this first exercise is:

1 module ramDmaCi #(paramete r [7 : 0] customId = 8 ’ h00)
(i n p u t w i r e s t a r t ,

3 c lock ,
r e s e t ,

5 i n p u t w i r e [3 1 : 0] valueA ,
valueB ,

7 i n p u t w i r e [7 : 0] ciN ,
output w i r e done ,

9 output w i r e [3 1 : 0] r e s u l t) ;

For this first exercise we are going to use register A (valueA) as address, and register B (valueB) as
data interface. As the memory has 512 entries, 9-bits are required to address it. We are going to use
the bits 8..0 of register A as address. Bit 9 of register A is the write-enable bit. All other bits of
register A need to be 0 to address the memory, hence bits 31..10 must be 0 to perform a memory
operation.
Important: As the dual-ported memory is a synchronous memory, a read action takes 2 cycles and the
write operation can be done in a single-cycle. We could circumvent this by clocking the first (A-)port
on the negative edge of the µC clock, however, you are not allowed to do this (the explanation will
follow later on).
Implement the complete system and test its proper functionality.

2.3 DMA to the CI-memory (8 points)

In this second exercise we are going to implement a DMA controller that allows to transfer data from
the bus towards the ci-memory. This DMA-controller will connect to the second (B-)port of the dual-
ported memory. This second (B-)port we are going to clock on the negative edge of the µC clock. This
to prevent the situation that both the µC and the DMA-controller write simultaneously to the same
memory location, hence we always have a defined behavior. To control the DMA we are going again to

page 2 of 4 Last change: 09/04/2024 Version: 1.0

CS-476 ESD Build-in peripheral DMA-controller

use register A (valueA) as address, and register B (valueB) as data interface. Bit 9 of register A is again
the write-enable bit. Bits 12..10 of register A (valueA) are now the DMA-controller configuration
registers, where:

A[12..10] A[9] Functionality:
000b 0b Read from memory location A[8..0]
000b 1b Write to memory location A[8..0]
001b 0b Read the bus start address of the DMA-transfer
001b 1b Write the bus start address of the DMA-transfer (B[31..0])
010b 0b Read the memory start address of the DMA-transfer
010b 1b Write the memory start address of the DMA-transfer (B[8..0])
011b 0b Read block size (nr. of words) of the DMA-transfer
011b 1b Write block size (nr. of words) of the DMA-transfer (B[9..0])
100b 0b Read the burst size used for the DMA-transfer
100b 1b Write the burst size used for the DMA-transfer (B[7..0])
101b 0b Read the status register
101b 1b Write control register

others - No function

To simplify your implementation you may, as for the previous exercise, have the read actions as 2-cycle
operation, and the write-actions as single-cycle operation.
For the different registers:

The bus start address: This is the address on the bus where the DMA-controller starts
transferring the data. This address is auto-incremented during the DMA-transfer.

The memory start address: This is the address on the ci-memory where the DMA-controller
starts writing the data. This address is auto-incremented during the DMA-transfer.

The block size: This is the number of 32-bit words that are transferred by the DMA-controller.
Note that if this register holds a 0, the DMA-controller will transfer no data.

The burst size: This is the number of 32-bit words plus one that are transferred during a burst
transaction on the bus (hence a 0 indicates 1 word, and 255 indicate 256 words). So the total
number of bus transfers required by the DMA-controller is given by:

⌈
blocksize

burstsize+1

⌉
.

The status register: Bit 0 of this register indicates if a DMA-transfer is in progress (1) or if
the DMA-controller is idle (0). Bit 1 of this register indicates if a bus-error occurred during the
transfer (1) or if the transfer was successful (0).

The control register: Writing a 1 to bit 0 of this register will start a DMA-transfer in case
the DMA-controller is idle. This transfer will be from the bus towards the CI-memory.

Some points to think about:

The DMA-controller has to accept the data coming from the slave the moment the dataValid
signal is active, hence it will never activate the busy signal.

In case the DMA-controller is active and a bus-error is detected (the busError signal is active),
the DMA-controller must end the current transaction, set the bus-error status bit and return to
idle.

The DMA-controller needs to request for the bus through the arbiter. This can be done by using
the signals s_busRequests[27] and s_busGrants[27] found in the top-level Verilog file:
virtual_prototype/systems/singleCore/verilog/or1420SingleCore.v

To reduce the critical path on the bus, all signals from the bus (hence all signals on the bus-in
port) need to be registered by using flipflops.

Realize this module by extending the previous module ramDmaCi with the given functionality. Make a
test program that shows the correct functionality. Note that the DMA-controller can only be used in
polling mode.

Version: 1.0 Last change: 09/04/2024 page 3 of 4

CS-476 ESD Build-in peripheral DMA-controller

2.4 DMA from the CI-memory (6 points)

Finally we are going to extend our module with the functionality that the data in the CI-memory can be
transferred to the bus. For this purpose we are going to extend the control register with one bit.
Writing a 1 to bit 1 of the control register will start a DMA-transfer from the CI-memory towards
the bus-system. Some points to think about:

Writing the value 3 to the control register should not activate the DMA-controller, as it is
unclear in which direction the data should be transferred. The only valid values for the control
register are 1 and 2.

During the data transfer a slave can activate the busy signal, the DMA-controller should react
correctly to this event.

In case the DMA-controller is active and a bus-error is detected (the busError signal is active),
the DMA-controller must end the current transaction, set the bus-error status bit and return to
idle.

It is up to the DMA-controller to transfer the correct number of words during a burst transfer.

To reduce the critical path on the bus, all signals to the bus (hence all signals on the bus-out
port) need to be registered by using flipflops.

As the dual-ported memory is clocked on the negative edge of the µC clock, the memory acts
like a memory with an asynchronous read, hence there is no latency during a read transaction.

Realize this module by extending the previous module ramDmaCi with the given functionality. Make a
test program that shows the correct functionality. Note that the DMA-controller can only be used in
polling mode.

page 4 of 4 Last change: 09/04/2024 Version: 1.0

	Introduction
	Exercises
	Prerequisites
	CI-attached memory (3.5 points)
	DMA to the CI-memory (8 points)
	DMA from the CI-memory (6 points)

