=Pi-L

CS-476: _
Embedded System Design

Practical work 2

Profiling and custom instructions

Version:
1.0

EPFL CS-476 ESD Profiling and custom instructions

Contents

1 Introduction 1
1.1 Beforeyoustart 1
1.2 Setting up your hardware 1

2 Exercises 2
2.1 Prerequisites e 2
2.2 Profiling custom instruction hardware L Lo 2
2.3 Profiling of the grayscale conversion oL 4
24 Handingin e 4
25 Nextweek 4

page Il of I Last change: 06/03/2025 Version: 1.0

EPFL CS-476 ESD Profiling and custom instructions

1 Introduction

1.1 Before you start

In this practical work we are going to add modules to our base system. Before continuing with the
exercises it is important to read the README.md file which you will find in the zip-file of the virtual
prototype. Make sure that you can build the virtual prototype and can run the helloWorld and camera
program.

Important: Upload the .cmen file to your virtual prototype and not the .mem file!

1.2 Setting up your hardware

You have to build-up your hardware as shown below:

a— long USB-cable to your laptop

HDMI-grabber

camera module

\

HDMI cable

The HDMlI-grabber will show itself as a webcam on your machine and the image can be shown by any
program that can show the contents of a webcam.

Version: 1.0 Last change: 06/03/2025 page 1 of 4

EPFL CS-476 ESD Profiling and custom instructions

2 Exercises

2.1 Prerequisites

Download the grayscale.zip file from moodle and unzip it in the programms/-directory of your
virtual prototype. This zip-file contains all the source file required to grab an image from the camera,
convert it to grayscale, and show it on the HDMI-screen /grabber.

Compile the program and run it on your virtual prototype.

2.2 Profiling custom instruction hardware

To be able to know what is going on during execution of the grayscale conversion, we are going to
implement profiling counters as a custom instruction. We are going to implement four 32-bit counters,
where:

Counter0: Counts the number of CPU-cycles when enabled.
Counterl: Counts the pC stall cycles when enabled.
Counter2: Counts the bus-idle cycles when enabled.
Counter3: Counts the number of CPU-cycles when enabled.

The module definition of the profiling module hardware is given by:

module profileCi #(parameter[7:0] customld = 8'h00)
(input wire start ,
clock ,
reset ,
stall ,
busldle ,
input wire [31:0] valueA,
valueB ,
input wire [7:0] ciN,
output wire done,
output wire [31:0] result);

Where:

customId: The identifier to which this custom instruction should react. Make sure that this
identifier does not collide with an already attached custom instruction!

start: The start indicator of the uC.
clock: The system clock (s_systemClock).
reset: The system reset signal (s_cpuReset).

stall: The stall indicator of the ;C. In the toplevel found in:
virtual_prototype/systems/singleCore/verilog

the pC is the component cpul. The stall indicator is the output cpuIsStalled. This output is
currently not connected.

busIdle: The bus-idle indicator (s_busIdle).
valueA: The value of register A (s_cpulCiDataA).
page 2 of 4 Last change: 06/03/2025 Version: 1.0

EPFL CS-476 ESD Profiling and custom instructions

valueB: The value of register B (s_cpulCiDataB).

cilN: The custom instruction identifier (s_cpulCiN).

done: The done-indicator that needs to be or-ed to the signal s_cpulCiDone.

result: The custom instruction result that needs to be or-ed to the signal s_cpulCiResult.

Important:

The output done should only be asserted when the signal ciN equals to customId and start is
asserted!

The output result should always contain the value 0x00000000, unless the signal cilN equals
to customId and start is asserted!

Hint: You can use the counter module that we have seen last week. For the functionality, we will:

Use valueA[1:0] to select which counter-value to put on the result-output. Where valueA[1:0]
== 2°d0 selects counter0, valueA[1:0] == 2’d1 selects counterl, etc.

Use valueB[11:0] to control the counters, where:

] bit: | function:

valueB[0] A 1 enables counter0, a 0 does nothing.
valueB[1] A 1 enables counterl, a 0 does nothing.
valueB[2] A 1 enables counter2, a 0 does nothing.
valueB[3] A 1 enables counter3, a 0 does nothing.
valueB[4] A 1 disables counter0, a 0 does nothing.
valueB[5] A 1 disables counterl, a 0 does nothing.
valueB[6] A 1 disables counter2, a 0 does nothing.
valueB[7] | A 1 disables counter3, a 0 does nothing.
valueB[8] A 1 resets counter(Q, a O does nothing.
valueB[9] | A 1 resets counterl, a O does nothing.
valueB[10] | A 1 resets counter2, a O does nothing.
valueB[11] | A 1 resets counter3, a O does nothing.

Note: disabling a counter has precedence over enabling the counter.

Implement the required verilog description for this module and integrate the module into the toplevel

(or1420SingleCore.v) verilog file. Build the new system and check that the grayscale program is
still running correctly.

Important: Do not forget to add your verilog files to the project.files-file.
Hint: Check the correct functionality of your module by making a simple testbench.

Version: 1.0 Last change: 06/03/2025 page 3 of 4

CS-476 ESD

=PrL

2.3 Profiling of the grayscale conversion

Profiling and custom instructions

Now that we have the hardware for the profiling, we can use it to profile our program. To control the

profiling module, we can use following constructs:

To control the counters you can use:

1fuint32_t control = 7;
asm volatile

("I.nios_rrr r0,r0,%[in2],0xB"::[in2]"r"(control));

To read a counter you can use:

uint32_t
>l asm volatile

result , counterid = 1;

printf("%d\n",

result);

("I.nios_rrr %[outl],%[inl],r0,0xB":[outl]"=r"(result):

[in1]"r"(counterid));

To read a counter and control all counters, you can use:

uint32_t result, counterid = 1;
ol uint32_t control = 7<<4;

asm volatile
4 [outl]"=r"(result):
[in1]"r"(counterid),
6 [in2]"r"(control));
printf("%d\n", result);

("I.nios_rrr %[outl],%[inl],%[in2],0xB":

In all the above examples 0xB should correspond to the value that you specified as customId in your

hardware!

Modify your grayscale program such that it prints for the conversion from rgh565 to grayscale:

The number of C execution cycles.
The number of uC stall cycles.

The number of bus-idle cycles.

2.4 Handing in

This is part 1 of 2 parts for this graded PW. You have to hand-in the results of this exercise by zipping
the verilog and c-files in a single zip archive and upload it to moodle. Next week a solution to this
exercise will be available. Not uploading your work before the start of the lecture of next week will cost

you 5% of the 15% this PW stands for.

2.5 Next week

Next week we are going to look how we can speed-up the grayscale conversion by using a custom

instruction.

page 4 of 4 Last change: 06/03/2025

Version: 1.0

	Introduction
	Before you start
	Setting up your hardware

	Exercises
	Prerequisites
	Profiling custom instruction hardware
	Profiling of the grayscale conversion
	Handing in
	Next week

