
Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.1

Lecture 6

Embedded system design

Serial protocols

CS476 - ESD
April 16, 2024

Dr. Theo Kluter
EPFL

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.2

Introduction

▶ Now that we have seen most of the interior of
an embedded system we are going to look into
the peripherals.

▶ Many peripherals are based on serial
protocols, like I2C, I2S, RS232, CAN,

▶ To be able to convert parallel data to serial and
vice versa, a shift register is used.

▶ Note that shifting to the left or shifting to the
right is basically the same circuit!

▶ In this lecture we are going to visit some of
these protocols.

0

R

SD Q

0

MUX

0

R

SD Q

0

MUX

0

MUX

0

R

SD Q

0

R

SD Q

0

MUX

0

1

2

3

h0 parallelOut

b0 SerialClock

b0 SerialOut

b0Clock

b00SerialMode

b0SerialIn

0

1

2

3

h0parallelIn

SerialMode: Function:

00
01
10

Keep current value
Load parallel data
Shift Data

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.3

History: RS-232 still a protocol to be found everywhere

▶ Arguably the “oldest” serial protocol is the RS-232 introduced by the Electronic Industries
Association (EIA) in 1960.

▶ It is an asynchronous point-to-point protocol that still is very “active” today. Note that it was the
“enabler” for the internet as we know it today.

▶ RS-232 is also know as Universal Asynchronous Receiver/Transmitter (UART).

▶ Although the protocol dates from 1960, the latest “update” dates from 2012.

▶ It is a “proven protocol” that can be even found in current server systems as “backup” interface in
case something went wrong.

▶ And you are using it each time for uploading your program to the VP. So how does it work....

▶ The original interface was:

Signal: Function:
TxD Transmit Data
RxD Receive Data
DTR The slave is ready to receive, initiate, or continue a call
DCD The slave is detecting a carrier from the remote device
DSR The slave is ready to receive and send data
RI The slave detected an incoming call
RTS The slave is ready to receive data
CTS The master is ready to send data

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.4

Today: RS-232 still a protocol to be found everywhere

▶ Although most of the signals are “obsolete”, even most interfaces found nowadays provide them for
back-ward compatibility.

▶ However, most of the time we only use the TxD and RxD signals. These are cross-connected
between the two devices allowing for full-duplex communication.

▶ The RS-232 sends the information by frames:

source: Opencircuits

▶ There are 8 data-bits shown above, however, the protocol allows for 5 to 9 data bits.
▶ The parity-bit is optional and can be odd, even, mark(1), or space(0).
▶ The frame is ended by one or two stop bit(s).

▶ The speed of the communication is defined by the baudrate. Basically this measures the bits
transferred per second.

▶ Note that the voltage levels are nowadays also be allowed to be GND and VCC.

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.5

RS-232 is robust but slow

▶ Although the RS-232 is so wide spread, it is relatively slow.

▶ Let’s take a baudrate of 115200 baud and a frame as depicted below:

source: Opencircuits

As the frame consist of 11 bits (containing one data byte), we can transfer a maximum of:

115200
11 ≈ 10472.7 bytes

s ≈ 10.5 kBytes
s

▶ Hence we require more performing protocols.

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.6

Serial Peripheral Interface (SPI)

▶ The arguably “simplest” serial interface to implement is the Serial Peripheral Interface (SPI).

▶ The SPI is a synchronous serial communication interface specification.

▶ Developed by Motorola in the mid 1980s and nowadays a de facto standard.

▶ The SPI has following signals:

SCLK

MOSI

MISO

SS

SPI

Master

SCLK

MOSI

MISO

SS

SPI

slave

▶ SCLK: Serial CLocK (output from the master).

▶ MOSI: Master Out Slave In (data output from the master).

▶ MISO: Master In Slave Out (data input to the master).

▶ SS: Slave Select (often active-low). Output(s) from the master
to select the slave to communicate with.

▶ Signal/pin names as well as their timing constraints vary among manufacturers. Always check the
device data sheet!

▶ Most slave devices have tri-state outputs, i.e., their MISO output becomes high impedance if their
SS input is not active. This allows that in a multiple-slave system all MISO signals can be connected
together.

Notes

Notes

Notes

https://opencircuit.shop/blog/rs232-protocol-de-gids-voor-beginners
https://opencircuit.shop/blog/rs232-protocol-de-gids-voor-beginners

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.7

SPI configurations with multiple slaves

▶ A SPI configuration with independent slaves: ▶ Daisy-chained SPI configuration with
cooperative slaves:

SCLK

MOSI

MISO

SPI

Master

SCLK

MOSI

MISO

SS

SPI

slave

SCLK

MOSI

MISO

SS

SPI

slave

SCLK

MOSI

MISO

SS

SPI

slave

SS0

SS1

SS2

SCLK

MOSI

MISO

SS

SPI

Master

SCLK

MOSI

MISO

SS

SPI

slave

SCLK

MOSI

MISO

SS

SPI

slave

SCLK

MOSI

MISO

SS

SPI

slave

▶ This configuration requires one dedicated SS
line per slave.

▶ All slaves need to use the same SPI mode,
need to use the same data word length, and
need to send out during second/third group of
clock pulses an exact copy of the data
received during first/second group of clock
pulses.

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.8

SPI data transmission
▶ The SPI-protocol defines four modes of operation. The slave device(s) define which mode to use

(see the datasheets of the slave device(s)). Hence it is well possible that a master device requires
in a multiple-slave configuration to “talk” in different modi to the different slave.

▶ Furthermore, the slave device(s) determine the maximum SCLK-frequency that can be used during
the communication (see the datasheets of the slave device(s)). In case of a daisy-chain, the
slowest device restricts the communication speed.

▶ The four SPI-modi are defined by the polarity and phase of the clock (note: a communication is
started/ended by the SS signal (in the timing diagram below the low-active CS-signal):

SPI Mode: CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

source: wikipedia

▶ CPOL: Clock POLarity

▶ CPOL=0: clock idles at 0, each cycle is a pulse of 1
with a leading rising and a trailing falling edge.

▶ CPOL=1: clock idles at 1, each cycle is a pulse of 0
with a leading falling and a trailing rising edge.

▶ CPHA: Clock PHAse

▶ CPHA=0: Data on the MOSI/MISO is clocked out on
the second clock-edge, and data on the
MISO/MOSI is clocked in on the first clock-edge.

▶ CPHA=1: Data on the MOSI/MISO is clocked out on
the first clock-edge, and data on the MISO/MOSI is
clocked in on the second clock-edge.

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.9

SPI: Applications

▶ Very simple and efficient for single master/single slave applications (e.g., digital audio, DSP,
telecommunication channels) due to its full- duplex capability and high achievable clock speeds
compared to UART.

▶ Widely used in embedded systems to interconnect components on PCBs and inside FPGAs due to
considerable savings in board estate / routing resources.

▶ Microcontrollers and Systems on Chips (SoCs) typically contain SPI controller(s) to communicate
with attached peripherals such as:

▶ ADCs, DACs, audio codecs.
▶ Sensors: temperature, pressure, distance, sound, touch.
▶ Transceivers for other communication standards (Ethernet, USB, CAN, etc.).
▶ Memories: EEPROM, Flash, SD cards
▶ Displays/cameras: for configuration and sometimes even pixel data.

Notes

Notes

Notes

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

Embedded system
design

Dr. Theo Kluter

Introduction

RS-232

SPI

Rev. 1.0 – 6.10

SPI: Extensions

▶ Although the SPI-interface is relatively “fast”, it only transports 1-bit each clock cycle. Especially for
devices as Flash and SD-cards, this might be limiting as most of the time we only "read" their
contents. This has lead to some extension to the SPI-protocol (note: not all slaves support these
modes, you always have to consult the datasheets!).

▶ Note that these extensions need to be activated in the slave device; all slave devices start out with
the “standard” SPI-configuration!

▶ These extensions are:

▶ Dual SPI: In this case the MOSI and MISO wires are transformed to a bi-directional
communication channel. This allows to read or write 2 bits each clock cycle, doubling the
data-throughput.

▶ Quad SPI: In this case we require two more connection (often the reset and write-protect
signal). Here the MOSI, MISO, and the two extra signals are used as bi-directional
communication channel. This allows to read or write 4 bits each clock cycle. This is used for
example with SD-cards and the SPI-Flash that is on your GECKO4.

▶ Octal SPI: I think that you get the idea. It requires six more connections that are not used in
“normal” SPI-mode.

Notes

Notes

Notes

	Introduction
	RS-232
	SPI

