Notes

cPrL

Lecture 5 -

Dr. Theo Kluter

Embedded system design

Bus
Basics

Advanced

DMA

CS476 - ESD

April 8, 2024

Dr. Theo Kiluter

EPFL

Rev10 - 51

Notes
Introduction EPFL
Embedded system
custom instruction interface Dr. Theo Kiuter
Introduction |
VGA textand OpenRISC1000 ISA-based
graphics 5-stage pipelined architecture Bus
controller (or1420) ::j::ced
DMA
Instruction cache
bus
arbiter
8 kByte (max)
BIOS
Read Only Memory Interface
» We have already seen a lot of parts of our embedded system.
» This week we are going to dive into the bus system.
fev.10 - 52
Notes
Simple bus architectures EPFL
Embedded system
sign

Dr. Theo Kluter

» Let's start out with the basic idea of a bus system.

Introduction

» We need to exchange information from (a) master device(s) to (a) slave device(s). Bus
» this information consists of: vances
» The memory address of the access. DMA

» The type of access (read or write).

» The data (to/from the master).

» Some handshake signals.

» There are many different ways how we can set-up this transfer of information, let's start with the

bus realized in our system, a transaction based multi-master burst-enabled shared bus system.

Rew10 - 53

Notes

EPFL

Embedded system
design

Centralized arbiter

Dr. Theo Kluter

| reauest | Bus-in | us-out] [reauest] Bus-in | {Bus-out]
1

Introduction

Bus architectures
Basics.

Advanced

DMA

Bus-in_| | Bus—out

Slave

Bus-in_| | Bus—out

Slave

Bus-In_| | Bus-out

Slave

Bus-In_| | Bus-out

Slave

OR
gates

The block diagram of the applied bus-system is shown above.
This bus is working with a 74.25MHz clock.

Note the OR-gates (sometime realize with AND-gates), this is typical for on-chip buses, as we do
not apply tri-state (bi-directional) buses as:

They are slow (tri-state capacitance, etc.)
They may cause short circuits if improper used.

Notes
EPFL
So which signals are defined in our bus? Embedded system
address_data : 32-bit channel that transports the address or data.
byte_enables : 4-bit channel that indicates in a single transfer which bytes are valid. Dr. Theo Kluter
burst_size : 8-bit channel that indicates the number of words to transfer (value+1).
read_n_write : 1-bit channel indicates a read (when 1) or write transaction (when 0).
begin_transaction : 1-bit channel that indicates the beginning of a transaction. redustor
end_transaction : 1-bit channel that indicates the end of a transaction.
data_valid : 1-bit channel that indicates a valid datum on the address_data lines. S cniecues
busy : 1-bit channel that indicates that the receiver cannot process yet the datum. Advancec
error : 1-bit channel that indicates a bus error. DMA
All signals (50-bits) are active-high and should be forced to 0 when not in use (due to the or-gates).
master slave

Channel: Bus-in | Bus-out Bus-in | Bus-out

address_data required | required required | required

byte_enables X required required X

burst_size X required required X

read_n_write X required required X

begin_transaction X required required X

end_transaction required | required required | required

data_valid required | required required | required

busy required | optional required | optional

error required X X optional

Notes

EPFL

Etgigipiniaialydaliydpiaiyiaisiydpinlydpipiydpipiaiaininiaialy aRaiaialsl Embedded system
design

[1 I I I I I
E 7 I 1 1] I Or. Theo Kiuter
LT L L I I
P - - o A— o Y i E—— o e a— e
] YEEX I o] YEEX_ T /0 I JEEX T)
o I I I i I T Introduction
2 Bus architectures.
Sases
oMA
T I T T I T
i 1 1 1] 1
A 1 1 I 1
L1 I I I I
/AN 1 1 I 1

oxplanation X X X

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

At the beginning of the transaction (yellow) all information is provided.
In case of an “error” the master must end the transaction.
Note: The minimal time of a transaction is 5 clock-cycles.

Notes

cPrL

Embedded system

design
FECR U I T I T Y
. Dr. Theo Kluter
st

actoss cota —0 0 T T T D 7 0 o)) D) o

" - Introduction
. T — 7 0 Bus architectures
§ e —

begn_vansacion Advanced
DMA
-

ond ransncton

da_vas
busy S\ L

onplanaton TOLE Y Croquost (oo Yours)(By v (1]} _burst YNOPYbura__Busy vl NoP Yurs)(_NoP_eurs)(end}__oiE

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

Notes
Embedded system
mmmm%nn%nn%nn%nmulm%mm Dr. Theo Kluter
Vi L7\ Vi Vi I\ LT\
L7 I I I L\
y A—) - IT I o - $ S S— Introduction
- T T< 7 G i S —
 — I TIs i T Bus architectures
) T I\
)\)\ S | Advancea
S DMA
‘address data [} o) I I [} /I D - of D TR I 0
e Vi I Vi L[Vi
H N B [T\ 1 7 I 1
Vi I I I I I
Vi I Vi Vi I Vi I\
X X X
The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).
In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.
Note: The minimal time of a transaction is 5 clock-cycles.
oo - se
Notes

EPFL
Embedded system

Dr. Theo Kluter

Introduction

Bus architectures
Basics.
Advanced

oac_n e

begin_tansacton

ond vansacton
cata vaid DMA

busy S\ \

addoss daa T (0 e Bt)

rep——

dta_vals S

busy

oxplanaton OLE Y roquost (o Yours(B v (1]} _burst)NOPYburs)__busy wailfe T V) ST ()) G

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

Multiple words read aborted transaction

{ .=
oo
actoss e —T T
. | T
o s —— 7 T
B e
vagn_vansacion
ond vansacion
v
busy I\ \
B e — o 3
oo vansacton
by
planaton

» Incase an error is detected the master must end the transaction.

» If the slave sees an end of transaction before the burst/single read is finished it must end the
ongoing transaction and release the bus.

Crossbar architectures

» s this the only bus architecture, of course not, this is the one we started out with (the most simple
one).

» We will visit some more advanced architecture, the first one is the cross-bar (sometimes referred to
as point-to-point):

Crossbar&manager

| request | [Bus-in Bus-out | request | | Bus-in | Bus—out|

IBus—InIan—oulI [Bus-in [[Bus—out J| [Bus-in JTBus—out]| [Bus—in [TBus-out

Ring architectures

» The next one is the ring architecture.
» This architecture is sometimes also called streaming interface or network-on-chip (NOC).

s

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures

Advanced

DMA

Rev.10 - 510

cPrL

Embedded system

Dr. Theo Kluter

Introduction
Bus architectures

Basics

DMA

Rev10 - 511

cPrL

Embedded system
sign

Dr. Theo Kluter

Introduction
Bus architectures

Basics

DMA

Rev.10 - 512

Notes

Notes

Notes

Summary

» There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are:
» Arm’'s AMBA bus that has all of the above topologies.
» IBM’s CoreConnect bus that is a bus-architecture.
» Altera/Intels Avalon bus that is a special version of a cross-bar architecture.
» Open Source Hardware's Wishbone bus that allows for all of the above architectures.

» Now that we know how to transfer information let us look into some constructs that are often used:
voids memset (voids dest, register int val, register size_t len);

voids memmove (voids sl, const void+ s2, size_t n);
voids memcpy (voids dst0, const voids src0, size_t length);

Efficiency

custom instruction interface

OpenRISC1000 ISA-based
5-stage pipelined architecture.
(or1420)

Instruction cache

8kByte (may) camera
slos interface

Read Only Memory.

» These constructs execute very inefficient on a CPU...
void+ memset (voidx dest, register int val, register size_t len);

voids memmove (voids s1, const voids s2, size_t n);
voids memcpy (voids dst0, const voids srcO, size_t length);

Direct Memory Access (DMA)

» Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

» A DMA-controller is a host that is connected to the bus.
» There are basically two types of DMA-controllers:

» General purpose DMA-controllers.
» Build-in peripheral DMA-controller.

» We start with the general purpose DMA-controller.

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Notes

Rev.10 - 513

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Notes
Embedded system
Dr. Theo Kluter
Introduction
Fev.10 ~ 514
Notes

Bus
Basics
Advanced

Rev10 - 515

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf

Notes

cPrL

Embedded system
Centralized arbiter design
[request | [Bus-tn | [Bus-ou] [request] [Bus-in] [Bus-out . Theo Kiuter

Introduction

Bus architectures
Basis
L Advanced
= A
I Bus-In Iaus—oml Bus-in | | Bus-out Bus—in | | Busout] Bus-in | [Bus-out] oot

The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.

2. Transfer the data from the internal buffer to the destination device.
Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).
Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.

Rev10 - 516

Notes
Embedded system
Dr. Theo Kluter
To be able to use the DMA-controller, it has to be set up by the CPU.
The minimal information the DMA-controller needs to have/provide is: Introduction
The source Address. Bus architectures
The destination Address. o
The amount of data to transfer.
" DMA
The mode of operation.
The amount of data already transferred.
The status of the controller.
The interrupt control (later more on this).
This information can either be provided in special purpose registers of the CPU, or
as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).
Rev10 - 517
Notes

cPrL

Embedded system

Dr. Theo Kluter

A DMA-controller supports different modes of operations:

Single address to single address: In this case both the source- and destination address are Introduction
kept constant. Bus architectures
Single address to memory block: In this case the source address is kept constant, and the o
destination address is auto-incremented.

Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

Advanced

DMA

Depending on the source and destination device one of these modi might be required.
But how does the CPU know when the operation is completed?

As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

By reading this register over and over again, it can see if the transfer has finished.
We call this method polling.
Of course this method is very inefficient as:

Each request (poll) consumes energy.

The CPU reads often exactly the same datum (busy).

The CPU is busy with waiting instead of doing some "real work", defeating partially the
purpose of a DMA-controller.

A solution to this might be to poll with lower frequency, however, this could lead to:

Loosing data, as the next DMA-transfer is not started fast enough.
Loosing performance, as the DMA-controller is ready directly after a poll.

A better method is the interrupt driven approach.

In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

An interrupt-service routine can then handle the next transfer.
Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

What can happen is:

The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ
comes in.
The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".

EPFL

Embedded system
design

Dr. Theo Kluter

EPFL
Embedded system

Dr. Theo Kluter

ntroduction

Bus architectures

DMA

Notes

Notes

Notes

	Introduction
	Bus architectures
	Basics
	Advanced

	DMA

