
Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.1

Lecture 5

Embedded system design

Bus architectures

CS476 - ESD
April 8, 2024

Dr. Theo Kluter
EPFL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.2

Introduction

custom instruction interface

OpenRISC1000 ISA−based

5−stage pipelined architecture

(or1420)

graphics

controller

VGA text and

RS232

UART

8 kByte (max)

BIOS

Read Only Memory
Controller

SDRAMcamera

interface

bus

arbiter Simple 32−bit based bus architecture

Instruction cache

Scratch pad

memory

4 kByte

SPI−flash interface

▶ We have already seen a lot of parts of our embedded system.

▶ This week we are going to dive into the bus system.

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.3

Simple bus architectures

▶ Let’s start out with the basic idea of a bus system.

▶ We need to exchange information from (a) master device(s) to (a) slave device(s).

▶ this information consists of:

▶ The memory address of the access.
▶ The type of access (read or write).
▶ The data (to/from the master).
▶ Some handshake signals.

▶ There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.4

Simple bus architectures

Bus−In Bus−outrequest

Master

Bus−In Bus−outrequestrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

MasterCentralized arbiter

▶ The block diagram of the applied bus-system is shown above.

▶ This bus is working with a 74.25MHz clock.

▶ Note the OR-gates (sometime realize with AND-gates), this is typical for on-chip buses, as we do
not apply tri-state (bi-directional) buses as:

▶ They are slow (tri-state capacitance, etc.)
▶ They may cause short circuits if improper used.

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.5

Simple bus architectures
▶ So which signals are defined in our bus?

▶ address_data : 32-bit channel that transports the address or data.
▶ byte_enables : 4-bit channel that indicates in a single transfer which bytes are valid.
▶ burst_size : 8-bit channel that indicates the number of words to transfer (value+1).
▶ read_n_write : 1-bit channel indicates a read (when 1) or write transaction (when 0).
▶ begin_transaction : 1-bit channel that indicates the beginning of a transaction.
▶ end_transaction : 1-bit channel that indicates the end of a transaction.
▶ data_valid : 1-bit channel that indicates a valid datum on the address_data lines.
▶ busy : 1-bit channel that indicates that the receiver cannot process yet the datum.
▶ error : 1-bit channel that indicates a bus error.

▶ All signals (50-bits) are active-high and should be forced to 0 when not in use (due to the or-gates).

Channel: master slave
Bus-in Bus-out Bus-in Bus-out

address_data required required required required
byte_enables X required required X
burst_size X required required X
read_n_write X required required X
begin_transaction X required required X
end_transaction required required required required
data_valid required required required required
busy required optional required optional
error required X X optional

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.6

Single word write transactions
clk

error

granted

request

address_data 0 Addr Data 0 Addr 0 Data 0 Addr Data 0 Addr Data 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation shortest write transaction general write transaction busy extended write transaction error in write transaction

A
rb

ite
r

M
a

st
e

r
S

la
ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ At the beginning of the transaction (yellow) all information is provided.

▶ In case of an “error” the master must end the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.7

Multiple words write transactions

clk

error

granted

request

address_data 0 Addr Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 Dat7 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP burst NOP burst end IDLE

A
rb

ite
r

M
a

st
e

r
S

la
ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.8

Single word read transactions

clk

error

granted

request

address_data 0 Addr 0 Addr 0 Addr 0 Addr 0

byte_enables 0 BE 0 BE 0 BE 0 BE 0

burst_size 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Data 0 Data 0 Data 0

end_transaction

data_valid

busy

error

explanation shortest read transaction general read transaction busy extended read transaction error in read transaction

A
rb

ite
r

M
a

st
e

r
S

la
ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.

▶ Note: The minimal time of a transaction is 5 clock-cycles.

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.9

Multiple words read transactions

clk

error

granted

request

address_data 0 Addr 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 Dat7 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP burst NOP burst end IDLE

A
rb

ite
r

M
a

st
e

r
S

la
ve

▶ The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

▶ Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.10

Multiple words read aborted transaction

clk

error

granted

request

address_data 0 Addr 0

byte_enables 0 0

burst_size 0 7 0

read_n_write

begin_transaction

end_transaction

data_valid

busy

address_data 0 Dat0 Dat1 Dat2 Dat3 Dat4 Dat5 Dat6 0

end_transaction

data_valid

busy

error

explanation IDLE request info burst busy wait (1) burst NOP burst busy wait (5) NOP Abort IDLE

A
rb

ite
r

M
a

st
e

r
S

la
ve

▶ In case an error is detected the master must end the transaction.

▶ If the slave sees an end of transaction before the burst/single read is finished it must end the
ongoing transaction and release the bus.

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.11

Crossbar architectures

▶ Is this the only bus architecture, of course not, this is the one we started out with (the most simple
one).

▶ We will visit some more advanced architecture, the first one is the cross-bar (sometimes referred to
as point-to-point):

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out Bus−In Bus−outrequest request request request

Master

request

Master Crossbar&manager

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.12

Ring architectures

▶ The next one is the ring architecture.

▶ This architecture is sometimes also called streaming interface or network-on-chip (NOC).

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−out Bus−In

Master

Bus−out Bus−In

Master

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.13

Summary

▶ There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are:

▶ Arm’s AMBA bus that has all of the above topologies.
▶ IBM’s CoreConnect bus that is a bus-architecture.
▶ Altera/Intels Avalon bus that is a special version of a cross-bar architecture.
▶ Open Source Hardware’s Wishbone bus that allows for all of the above architectures.

▶ Now that we know how to transfer information let us look into some constructs that are often used:

void* memset(void* dest, register int val, register size_t len);
void* memmove(void* s1, const void* s2, size_t n);
void* memcpy(void* dst0, const void* src0, size_t length);

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.14

Efficiency

custom instruction interface

OpenRISC1000 ISA−based

5−stage pipelined architecture

(or1420)

graphics

controller

VGA text and

RS232

UART

8 kByte (max)

BIOS

Read Only Memory
Controller

SDRAMcamera

interface

bus

arbiter Simple 32−bit based bus architecture

Instruction cache

Scratch pad

memory

4 kByte

SPI−flash interface

▶ These constructs execute very inefficient on a CPU...

void* memset(void* dest, register int val, register size_t len);
void* memmove(void* s1, const void* s2, size_t n);
void* memcpy(void* dst0, const void* src0, size_t length);

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.15

Direct Memory Access (DMA)

▶ Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory
Access (DMA).

▶ A DMA-controller is a host that is connected to the bus.

▶ There are basically two types of DMA-controllers:

▶ General purpose DMA-controllers.
▶ Build-in peripheral DMA-controller.

▶ We start with the general purpose DMA-controller.

Notes

Notes

Notes

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf


Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.16

Direct Memory Access (DMA)

Bus−In Bus−outrequestrequestrequest

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

Bus−In Bus−out

Slave

OR
gates

request Bus−In Bus−out

Centralized arbiter Master

request

DMA−controller

▶ The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

▶ Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

▶ Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

▶ The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.17

Direct Memory Access (DMA)

▶ To be able to use the DMA-controller, it has to be set up by the CPU.

▶ The minimal information the DMA-controller needs to have/provide is:

▶ The source Address.
▶ The destination Address.
▶ The amount of data to transfer.
▶ The mode of operation.
▶ The amount of data already transferred.
▶ The status of the controller.
▶ The interrupt control (later more on this).

▶ This information can either be provided in special purpose registers of the CPU, or

▶ as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.18

Direct Memory Access (DMA)

▶ A DMA-controller supports different modes of operations:

▶ Single address to single address: In this case both the source- and destination address are
kept constant.

▶ Single address to memory block: In this case the source address is kept constant, and the
destination address is auto-incremented.

▶ Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

▶ Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

▶ Depending on the source and destination device one of these modi might be required.

▶ But how does the CPU know when the operation is completed?

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.19

Polling

▶ As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.

▶ By reading this register over and over again, it can see if the transfer has finished.

▶ We call this method polling.

▶ Of course this method is very inefficient as:

▶ Each request (poll) consumes energy.
▶ The CPU reads often exactly the same datum (busy).
▶ The CPU is busy with waiting instead of doing some "real work", defeating partially the

purpose of a DMA-controller.

▶ A solution to this might be to poll with lower frequency, however, this could lead to:

▶ Loosing data, as the next DMA-transfer is not started fast enough.
▶ Loosing performance, as the DMA-controller is ready directly after a poll.
▶ ...

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev. 1.0 – 5.20

Interrupt driven

▶ A better method is the interrupt driven approach.

▶ In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.

▶ An interrupt-service routine can then handle the next transfer.

▶ Also this method can have some draw-backs, as:

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

▶ What can happen is:

▶ The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
▶ IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ

comes in.
▶ The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".

Notes

Notes

Notes


	Introduction
	Bus architectures
	Basics
	Advanced

	DMA

