Notes

EPFL
Lecture 4 A

Dr. Theo Kluter

Embedded system design

Clock Trees

Timing closure
Fined-grain paralyzing
Pipelining
Muttcycing

Conclusion

CS476 - ESD
March 11, 2024

Dr. Theo Kiluter
EPFL

Rev10 - 41

Notes
Introduction EPFL
Embedded system
I custom instruction interface
Dr. Theo Kluter
| I |
VN OpenRISC1000 ISA-based
graphics 5-stage pipelined architecture Introduction |
controller (ERED Clock Trees
Instruction cache Timing closure
{_instruction cache | Finecgrain parlyzing
bus ipelining
roter
Conclusion
8KByte (max)
s e
Read Only Memory
» Once we finished our architectural choices, we have to get the system running at the required
frequency.
» We have to go into a phase which is called timing closure.
» To fully understand the timing closure we have first to go into some details of the final ASIC to be
able to understand what is going on.
Rev10 - 42
Notes

Remember: RTL design EPFL
Embeddef system
sign

Dr. Theo Kluter

Introduction

Timing closure
Fined-grain paralyzing
Pipeliing
Multcycing

clock_to_output clock_to_output

» All our designs we design synchronously using the Register Transfer Level (RTL) methodology.

v

Hence all our circuits look like the simplified circuit above, where all flipflops are connected to the Conclusion
same clock source (throughout our chip).

We know that due to transistor capacitance’s all gates have a gate delay that causes hazards.
The longest combinational path hence represents the critical path.

The one thing that we did not consider yet is the question: What happens with the clock line?
Just putting a wire over the whole chip probably will not work as:

1. The clock line would have a big capacitive load.
2. The RTL-design method assumes that the rising edge of the clock arrives at all flipflops at the
same time.

vvyVvyy

Rev10 - 43

Avoiding big capacitive load

t
=Tty
skew

» Let’s look into the first point: reducing the big capacitive load:

» Using a binary tree of inverters will reduce the load on each output, however, what is the result of

this operation?

» We will introduce at the flipflop levels a clock-skew due to the fact that not all inverters have the

same delay and line-length-mismatches.

» We also will have a jitter.

» Note that we can also have a negative skew that reduces the influence of the jitter.

Reducing jitter and skew

/N

i T

il eyl e

/
B
85

i

oFirls o7l el SEpehe
o el | o e
oFirle iyl eyl st
o e o ol o ol o ol

Clock insertion point

» One of the methods is to make a clock tree in form of a H-tree.
» However, we still have a clock-uncertainty of approx. 2 - tskew + litter-

Remember: Setup and hold

=
telock_to_output

1.

setup 'hold

clock

!
| T
1

1
;__"_‘I_
1

I g Y o e, B

/_"_"_
Lelock_to_output

» Remember: a real flipflop has a setup and hold time in which the D-input needs to be kept stable

(otherwise the flipflop goes into meta stable state).

» So which kind of situation we now can have in the real-world taking into account the clock tree:

1. The path is too fast (race-condition).
2. The path is too slow (frequency cannot be met).

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Timing closure
Fined-grain paralyzing
Pipelining
Muitcycling

Conclusion

Rov10 - 44

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Timing closure
Fined-grain paralyzing
Pipelining
Mutcycling

Conclusion

Rev.10 - 45

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Timing closure
Fined-grain paralyzing
Pipeliing
Multcycing

Conclusion

Rev10 - 45

Notes

Notes

Notes

cPrL

Embedded system
design

Dr. Theo Kluter

‘Dsiable

t

clock_to_output clock_to_output,

Introduction

Clock Trees.

Timing closure
Fined-grain paralyzing

Pipelining
I I totup Muticycing
Yuncertainty Conclusion
Putting it all together gives us the above timing diagram.
Let's take as example a shift-register, there are now two situation that can happen:
1. The output of flipflop ¢ changes before the setup-time of flipflop B, hence we have a
functional error as the data is too early available!
2. The output of flipflop ¢ changes during tpstapie Of flipflop B which goes in meta stable state
(Note that this situation will always happen independent of the clock frequency!).
This problem can be solved by inserting a delay between the flipflops ¢ and B. Fortunately this is
done for us by the synthesis and/or P&R-tools.
Rout0 - 47

cPrL

Embedded system

Dr. Theo Kluter

clock_to_output,
l Introduction

Clock Trees.

tDslable

1 clock_to_output Yeritical t

Y 2
]

Timing closure
Fined-grain paralyzing

Pipeining
T T E T tsetwp Mulicyclng
tyncertainty Leritical_path,max tuncertainty Conclusion
The other situation is shown above (hence &, ciock = toiock_to_output + Teritical,max + tsetup + tuncertainty)-
We know that during the critical path time we may have hazards on the D-input of flipflop ¢, and
that the correct value is available after tciticar_path-
Note that the synthesizer and/or P&R-tool might insert in front of the combinational logic some
inverters to prevent flipflop ¢ from going into meta stable state due to tpgape Violation caused by
hazards!
Timing is not met when there exists at least one combinational logic path with a
toritical_path > leritical_path,max- T

cPrL

Embedded system

Dr. Theo Kluter

t

critical

Y otock to_output

L
AW /

Y elock to_output

/ Glock Trees
B
2 Timing closure
Fineranparahzing
Pipeiing
: = H Tt Moy
tuncertainty crtcal_path,max tuncortainty Conelusion

Timing closure is the process of getting all tciticar paths < teritical_path, max-
But that's not all, we have two more timings that need attention, namely:
1. The latest arrival of an external input signal (t,;) to the flipflop with respect to the positive
clock edge.
2. The latest arrival of the signal from a flipflop to the edge of the package (t4,) with respect to
the positive clock edge.
These two numbers depend on the chips connected to this one and are in general more difficult to
determine.

Rev10 - 48

Notes

Notes

Notes

Timing closure off-chip

Avoid any
combinational
t

critieal Letock_to_output

k — T F T teowp

t, Yeritical_pathmax 1,

uncertainty uncertainty

» The later aspect is “easily” solved by not using any combinational logic between the input(s) and
the fist flipflop(s) and no combinational logic between the last flipflop(s) and the output(s).

» This has the advantage that you do not have any hazards outside of your chip (good thingl).
» However, this is not always possible, in this case more advanced methods are required like:

1. Usage of a PLL/DLL to synchronize the attached chip with yours (think of DDR memory).
2. Adding extra delays in some of the outputs to meet external timings.

» Note: even your internal delays due to the clock-tree may impose problems.....

Timing closure on-chip

Combin.
logic
B T—

t

critical t

| / V

t
clock_to_output clock_to_output

:]
!

tuncertainty Leritical_path,max t

Ft tsetwp

uncertainty

» The on-chip aspect has some methods that you can use, but be aware, the synthesis tool might be
more “intelligent” than you are (compare the compiler for a programming language).

» These methods are more for things that the synthesizer does not know about (for example what
does your program do):

» Fined-grain paralyzing.
» Multi-cycling.
» Pipelining.

Speeding-up your circuit

- Deone
a3 —Dss
» As example we take a 4-bit carry-ripple adder (CRA).
= D— s » Assume that this adder is in the critical path.
» The critical path from this adder goes from cin through the
and- and or-gates up to Cout/s3.
o » So what can we do to speed-up this circuit, there are basically
» D— o three methods:
» Trading-off bigger area/energy consumption against
speed.
» Trading-off speed against area/energy consumption.

:gj@);-@n » Trading-off latency against speed.
e

cPrL

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Fined-grain paralyzing
Pipoliing
Muti-cycing

Conclusion

Rev.10 - 410

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Clock Trees

Fined-grain paralyzing
Pipslining
Mulicycling

Conclusion

Rev10 - 411

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Clock Trees

Fined-grain paralyzing
Pipolining
Muti-cycing

Conclusion

Rev10 - 412

Notes

Notes

Notes

In this method we cut the circuit
(critical path) in 2 (or more) parts.

The above part is duplicated and
calculates the two answers
depending the result of the carry.

Finally the real carry selects the
correct result.

We now have a carry select adder
(CSA) that is almost twice as fast.

In this method we divide the critical
path in 2 (or more) parts and place
a row of flipflops between the parts.

The advantage is that we can do a
calculation each cycle.

However, we introduce a latency.
This could cause problems in case
of a feed-back loop.

In this method we calculate at each
cycle one bit.

Of course this has an impact on the
performance, as now the addition
takes 4 cycles instead of a single
cycle.

But think of the alternative, slowing
down all the other functions as we
need to reduce the maximum
frequency of the CPU.

Very often we perform a radix-N
multi-cycle operation where at each
cycle N-bits are determined.

Of course, when A and B are
guaranteed to be constant between
start and done, we can replace
the input shift-registers by a
multiplexer.

Notes

cPrL

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing
Pipolining
Muti-cycing

Conclusion

Rev.10 - 413

Notes

cPrL

Embedded system

Dr. Theo Kluter

Introduction
Clock Trees

Timing closure
Fined-grain paralyzing
Ppeining

Muli-cycing

Conclusion

Rev.10 - 414

Notes

cPrL

Embedded system

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure

Fined-grain paralyzing

Pipeining
Mulicycling

Conclusion

Rov10 - 415

Notes

Conclusion =PFL

Embedded system
design
Dr. Theo Kluter
Introduction
» We have seen the details that determine the maximum speed with which we can safely operate a Clock Trees
circuit. Timing closure.
» We also have visited three methods how to speed-up a critical path. [
» Each of these methods makes a trade-off between area, energy consumption, complexity and Mot eveing
speed. | Conclusion |

» It depends on the requirements which of these methods can be applied to a given hot-spot.

Rev.10 - 416

Notes

Notes

	Introduction
	Clock Trees
	Timing closure
	Fined-grain paralyzing
	Pipelining
	Multi-cycling

	Conclusion

