
Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.1

Lecture 3

Embedded system design

Custom instructions

CS476 - ESD
March 10, 2024

Dr. Theo Kluter
EPFL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.2

Acceleration

Camera

interface

SDRAM

controller

SDRAM

Instruction

cache

controller

VGA

OpenRISC processor

74.25MHz

15FPS (640x480)

▶ In the first week we have seen that our system cannot calculate Sobel in real time.

▶ Last week we saw on-chip memories and their usage.

▶ We are now going to look into the details how we can add hardware to aid the software.

▶ And we will start off with the custom instructions (CI’s).

▶ To understand the concept of custom instructions we have to dive a bit into the architecture of the
µC.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.3

Arithmetic Logic Unit

>
=
<

c in

c out

c in

c out

0

MUX

00000000

00000000

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

b01000 Cflags

0

1

2

h00000000 Rd

3

h00000000Cimm

b0Ccsel

b0Cminus

b000Copp

h00000000Rb

0
MUX

h00000000Ra

h00000000 Mdata

h00000000 Maddress

4-0

3
1

4

▶ The Arithmetic Logic Unit (ALU) is the heart of the µC.

▶ It receives two data (Ra, Rb) from the register-file and produces one result (Rd) to the register-file.

▶ The operation done is selected by the control signals (Cimm, Ccsel, Cminus, Copp), that are set
depending the instruction.

▶ Note that only one operation can be selected, although all operations are performed.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.4

Arithmetic Logic Unit

▶ Assume you have following c-program:

result = (((rgb565 & 0xF800) >> 8) * 5) >> 4;

▶ This would result in following four operations on the ALU:

l.andi r5,r5,0xF800 # rgb565 & 0xF800
l.sri r5,r5,8 # (rgb565 & 0xF800) >> 8
l.muli r5,r5,5 # ((rgb565 & 0xF800) >> 8) * 5
l.sri r5,r5,4 # (((rgb565 & 0xF800) >> 8) * 5) >> 4

▶ However, doing the same thing in hardware is way simpler:

h0000rgb565
10-0

15-11

0 2-0

7-3

is just wiring
(rgb565&0xF800)»8

7-0

9-8

1-0

9-2

0

0
c in

c out

0

9-0

10

3-0

10-4 b0000000 result

a*5 = (a + a«2)
only a 10-bit adder!

b»4, again
just wiring!

▶ And this can be executed in a single cycle, a speed-up of 4x!

▶ This is the basic idea behind the custom instruction (there are of course other applications for it).

▶ Let’s first look into the hardware details.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.5

Custom instruction hardware interface

▶ The minimal set of signals that the µC provides us with to create custom instruction hardware is
(note: input/output is from the perspective of the µC):

Name: Direction: #bits: Function:
ciStart output 1 Indicates an active custom instruction.
ciN output 8 The custom instruction identifier code.
ciDataA output 32 The value of register A (Ra) going into the ALU/CI.
ciDataB output 32 The value of register B (Rb) going into the ALU/CI.
ciResult input 32 The result value to be written to the register file (Rd).
ciDone input 1 The signal indicating that the CI performed it’s operation.

▶ The ciDone signal is a very important signal. If the µC activates a custom instruction by the
ciStart signal it will wait (stall) till an activation of the ciDone. If the ciDone is not activated your
system will DEADLOCK!

▶ The signal ciN indicates which custom instruction is activated. As this signal is 8-bit wide we can
implement up to 256 custom instructions.

▶ So how to combine these different custom instructions in hardware...

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.6

Custom instruction hardware architecture

h00ciN
h00000000ciDataA
h00000000ciDataB

b0ciStart
b0 ciDone

h00000000 ciResult

ciStart

ciN

ciDataA

ciDataB

ciDone

ciResult

ci

CI_ID_0x0A

ciStart

ciN

ciDataA

ciDataB

ciDone

ciResult

ci

CI_ID_0x00

ciStart

ciN

ciDataA

ciDataB

clock

reset

ciDone

ciResult

ciSync

CI_ID_0x17

b0clock
b0reset

▶ We can implement multiple custom
instructions. Why not "multiplexing" the
ciDone and the ciResult signals by using
the ciN signal?

▶ Very simple: multiplexers have more logic as
simple or-gates (or and-gates, the
alternative)...

▶ This poses, however, some restrictions that we
have to take into account when designing a
custom instruction module....

▶ Let’s look into the timing requirements of our
custom instruction hardware.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.7

Custom instruction hardware architecture

clock

ciStart

ciN 0x15 0x17 0x17

ciDataA Ra Ra Ra

ciDataB Rb Rb Rb

ciDone

ciResult 0 Rd 0 Rd 0

incorrect id single cycle multi cycle

u
C

C
I

▶ Assume that the custom instruction hardware has the custom instruction identifier 0x17.

▶ When the ciN does not correspond to the custom instruction identifier no done is generated.

▶ Otherwise we can have a single-cycle, or a multi-cycle response.

▶ Note that in case of a multi-cycle response the µC is stalled!

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.8

Custom instruction software interface

▶ Now that we have seen how to make the hardware part of a custom instruction, we also want to
use it.

▶ Of course the compiler has no knowledge nor support for these instructions.

▶ We have to activate them with an assembly instruction:

uint32_t result, regA, regB;

asm volatile ("l.nios_rrr %[rd],%[ra],%[rb],0x17":[rd]"=r"(result):
[ra]"r"(regA),[rb]"r"(regB));

Note: The 0x17 is the custom instruction identifier of the custom instruction you want to activate.

▶ There are variations, like:

▶ A custom instruction with only inputs:

asm volatile ("l.nios_rrr r0,%[ra],%[rb],0x1A"::[ra]"r"(regA),[rb]"r"(regB));

▶ A custom instruction with only an output:

asm volatile ("l.nios_rrr %[rd],r0,r0,0x72":[rd]"=r"(result));

▶ ...

▶ Note the usage of the register r0!

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.9

Custom instruction usage

▶ The question is now: How to use custom instructions?

▶ Let’s take a design example (important: this is not the grayscale conversion used in our system!):

void rgbToGrayscale(int width,
int height,
const uint32_t *rgb_source,
uint32_t *grayscale_destination) {

int loop;
uint32_t temp, grayscale;

for (loop = 0; loop < width*height; loop++) {
temp = rgb_source[loop] & 0x3F; // red value
grayscale = temp*77;
temp = (rgb_source[loop] >> 8) & 0x3F; // green value
grayscale += temp*151;
temp = (rgb_source[loop] >> 16) & 0x3F; // blue value
grayscale += temp*28;
grayscale &= 0xFF00;
grayscale_destination[loop] = (grayscale << 8) | grayscale | (grayscale >> 8);

}
}

▶ We can look at the Data Flow Graph (DFG) of this function:

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.10

Custom instruction usage (DFG)

Software load of

RGB−value

Shifting and Masking

has no cost in

hardware (just wiring)

Fixed coefficient

multiplication of 8x6 bits

and addition can be

performed in less than

1 CPU clock cycle in

hardware

has no cost in

hardware (just wiring)

Shifting and formatting

Software store of

grayscale−value

10010111
b

b
b

00011100 0100110

+

+

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

▶ And all this can execute in 1 CPU-cycle (of course without the load,store, and loop; they are still
required)!

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.11

Profiling

▶ But how to know the influence of these hardware enhancements?

▶ We can just insert counters in our program that counts the number of function calls, execution time,
etc.

▶ We call this process Profiling

▶ And the insertion of these counters can be automated.

▶ A classic example of this automatic insertion is gprof of the GNU-tool-chain.

▶ Some more advanced profiling tools are valgrind and kcachegrind.

▶ However:

▶ These tools gives us just information on execution time, not if the limitations are due to
software or hardware hot spots.

▶ Many of these tools are only available for “know architectures”, maybe not for the system you
are targeting.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.12

Profiling

Profiling has it’s limitations, from a software point:

▶ We require representative data-sets to profile as:

1. A given data-set might not trigger some parts of the code resulting in improper profiling
information.

2. A given data-set might be a corner case only banging on one function, resulting in improper
profiling information.

3. In general: garbage-in results in garbage-out.

▶ Profiling should be performed on the target hardware, as compilers optimize differently for different
targets. Profiling on a desktop gives other results as profiling on for example an ARM system.

▶ The program should behave properly, e.g. the extensive use of function pointers might render the
profiling tool useless.

Profiling has it’s limitations, from a hardware point:

▶ If profiling is done on another architecture the results can be bogus as it does not represent the
dynamic behavior of the target system.

▶ Modeling of all parameters in the virtual prototype has to been done correctly, otherwise the real
SOC can behave completely different.

Notes

Notes

Notes

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
https://valgrind.org/
https://kcachegrind.github.io/html/Home.html

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.13

Profiling

Which information we require to have?

▶ On fixed systems we are only interested in the number of cpu-cycles burned, as we cannot change
the underlying architecture.

▶ This is very often accomplished by using performance counters. Performance counters are
hardware counters that count clock-cycles (your I3/I5/i/ for example has such counters build in).

▶ In SOC design we have the liberty to modify the architecture and the software.

▶ Hence here we are often also interested in more hardware specific parameters as:

▶ Bus occupation
▶ Cpu stall cycles
▶ Cache hit/miss ratio
▶ Cache trashing latency’s
▶ ...

▶ Also this can be accomplished with performance (hardware) counters.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.14

Profiling

Limitation of performance counters

▶ Of course performance counters are limited by the number of bits they have (hence the “time” they
can measure).

▶ Furthermore they take silicon area, this is one of the reasons (when time allows):

▶ To tape out a chip with the performance counters.
▶ To suppress the production chip the performance counters (by using

performance_empty.v).

▶ To be able to profile hardware aspects, the hardware needs to be observable (as in our case where
everything is available in Verilog).

▶ In many cases this is not the case as some parts are provided as IP-cores (for example an
ARM-System), in this case the performance counters can use “models”.

▶ The sets of models known are:

▶ Worst case.
▶ Typical case.
▶ Best case.

▶ These models are often derived from previous taped-out chips.

Notes

Notes

Notes

	Custom Instructions
	Profiling

