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▶ Last week we have seen that our system cannot calculate Sobel in real time.

▶ We can accelerate the system by moving parts of the software to hardware.

▶ Ways to do this are custom instructions, accelerators, stream processing, ...

▶ We will visit all these methods later on. But all have something in common: they often need
memory for temporal storage.
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Synchronous Static Random Access Memories (SSRAM’s)
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▶ In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

▶ Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.

▶ The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.

▶ There are two distinct behaviors in case of a
write:

▶ Write before read : The value written to
the memory cell is also available on the
output.

▶ Read before write: The value in the
memory cell prior to the write operation
is available on the output.

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.4

Synchronous Static Random Access Memories (SSRAM’s)
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▶ In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

▶ Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.

▶ The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.

▶ There are two distinct behaviors in case of a
write:

▶ Write before read : The value written to
the memory cell is also available on the
output.

▶ Read before write: The value in the
memory cell prior to the write operation
is available on the output.
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Synchronous Static Random Access Memories (SSRAM’s)
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▶ A typical SSRAM write operation is given by:
clock

address A0 A1

dataIn DA0 DA1

writeEnable

memoryCellA0 DA0

memoryCellA1 DA1

▶ A typical SSRAM read operation is given by
(note the delay):

clock

address A0 A1

memoryCellA0 DA0

memoryCellA1 DA1

dataOut DA0 DA1
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Synchronous Static Random Access Memories (SSRAM’s)

▶ SSRAM’s can be found in different configurations, namely:

▶ single-ported

writeEnable

dataIn dataOut

address

▶ This is the smallest
memory and arguably
most used.

▶ semi-dual-ported

writeEnable

dataIn dataOutA

dataOutB

addressA

addressB

▶ Here we have two
read-ports, but we can
only write on the A-port.

▶ true-dual-ported

dataOutA

dataOutB

dataInB

writeEnableB

dataInA

writeEnableA

addressA

addressB

▶ Here we have two
complete ports that
access the same
memory array.

▶ And we can easily describe them in Verilog.
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Single ported SSRAM

module singlePortSSRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0 )

( input wire clock,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataIn,
output reg [bitwidth-1 : 0] dataOut);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @(posedge clock)
begin
if (readAfterWrite != 0) dataOut = memoryContent[address];
if (writeEnable == 1’b1) memoryContent[address] = dataIn;
if (readAfterWrite == 0) dataOut = memoryContent[address];

end

endmodule
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Semi dual-ported SSRAM

module semiDualPortSSRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0 )

( input wire clockA, clockB,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataIn,
output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @(posedge clockA)
begin
if (readAfterWrite != 0) dataOutA = memoryContent[addressA];
if (writeEnable == 1’b1) memoryContent[addressA] = dataIn;
if (readAfterWrite == 0) dataOutA = memoryContent[addressA];

end

always @(posedge clockB)
dataOutB = memoryContent[addressB];

endmodule
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Dual-ported SSRAM

module dualPortSSRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0 )

( input wire clockA, clockB,
writeEnableA, writeEnableB,

input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataInA, dataInB,
output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @(posedge clockA)
begin
if (readAfterWrite != 0) dataOutA = memoryContent[addressA];
if (writeEnableA == 1’b1) memoryContent[addressA] = dataInA;
if (readAfterWrite == 0) dataOutA = memoryContent[addressA];

end

always @(posedge clockB)
begin
if (readAfterWrite != 0) dataOutB = memoryContent[addressB];
if (writeEnableB == 1’b1) memoryContent[addressB] = dataInB;
if (readAfterWrite == 0) dataOutB = memoryContent[addressB];

end

endmodule

Notes

Notes

Notes
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SSRAM’s in ASIC and FPGA

▶ In ASIC-design the size of the SSRAM’s is dependent on the memory-generator and the area you
have available.

▶ In FPGA-design it is more restricted, as the memories are already implemented. You can only use
what you have:

Chapter 1: Cyclone IV FPGA Device Family Overview 1–3
Device Resources

March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1

■ Up to 532 user I/Os

■ LVDS interfaces up to 840 Mbps transmitter (Tx), 875 Mbps Rx

■ Support for DDR2 SDRAM interfaces up to 200 MHz

■ Support for QDRII SRAM and DDR SDRAM up to 167 MHz

■ Up to eight phase-locked loops (PLLs) per device

■ Offered in commercial and industrial temperature grades

Device Resources
Table 1–1 lists Cyclone IV E device resources.

Table 1–1. Resources for the Cyclone IV E Device Family

Resources

EP
4C

E6

EP
4C

E1
0

EP
4C

E1
5

EP
4C

E2
2

EP
4C

E3
0

EP
4C

E4
0

EP
4C

E5
5

EP
4C

E7
5

EP
4C

E1
15

Logic elements (LEs) 6,272 10,320 15,408 22,320 28,848 39,600 55,856 75,408 114,480

Embedded memory 
(Kbits) 270 414 504 594 594 1,134 2,340 2,745 3,888

Embedded 18 × 18 
multipliers 15 23 56 66 66 116 154 200 266

General-purpose PLLs 2 2 4 4 4 4 4 4 4

Global Clock Networks 10 10 20 20 20 20 20 20 20

User I/O Banks 8 8 8 8 8 8 8 8 8

Maximum user I/O (1) 179 179 343 153 532 532 374 426 528

Note to Table 1–1:

(1) The user I/Os count from pin-out files includes all general purpose I/O, dedicated clock pins, and dual purpose configuration pins. Transceiver 
pins and dedicated configuration pins are not included in the pin count.
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SSRAM’s in ASIC and FPGA

▶ For the FPGA we are using, following are the permissible nrOfEntries x bitwidth
configurations:

▶ 8192 x 1 bit
▶ 4092 x 2 bit
▶ 2048 x 4 bit
▶ 1024 x 8 bit or 1024 x 9 bit
▶ 512 x 16 bit or 512 x 18 bit
▶ 256 x 32 bit or 256 x 36 bit

▶ Other configurations are possible by using partially/multiple of these SSRAM’s.

▶ By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

▶ Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:

▶ Explode the size of your design (often it cannot be mapped any more on the FPGA).
▶ Have a severe impact on the critical path of your design (read the speed you can operate your

design).

▶ For small memories, most FPGA’s provide also the so-called LUT-RAM’s. These have most of the
time a 16 x 1 bit configuration in a single-port or semi dual-port architecture.

▶ Note: the FPGA on our platform does not support LUT-RAM’s.
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LUT-RAM’s
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LUT-RAM 16x1

▶ The LUT-RAM’s have the same synchronous
write as the SSRAM’s:

clock

address A0 A1

dataIn DA0 DA1

writeEnable

memoryCellA0 DA0

memoryCellA1 DA1

▶ However, they provide an asynchronous read:
clock

address A0 A1

memoryCellA0 DA0

memoryCellA1 DA1

dataOut DA0 DA1

▶ Also LUT-RAMs can be easily described in
Verilog:

Notes

Notes

Notes
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Single ported LUT-RAM

module singlePortLUTRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 32)

( input wire clock,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataIn,
output wire [bitwidth-1 : 0] dataOut);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOut = memoryContent[address];

always @(posedge clock)
if (writeEnable == 1’b1) memoryContent[address] = dataIn;

endmodule
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Semi dual-ported LUT-RAM

module semiDualPortLUTRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 32)

( input wire clock,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataIn,
output wire [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOutA = memoryContent[addressA];
assign dataOutB = memoryContent[addressB];

always @(posedge clock)
if (writeEnable == 1’b1) memoryContent[addressA] = dataIn;

endmodule
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But how to use those memories?

▶ We now have seen the on-chip memory architectures.

▶ We also have seen how to instantiate them in Verilog.

▶ We are now going to concentrate on how to use them, namely:

▶ Ping-Pong buffers.
▶ Last-in First-out (LIFO) buffers.
▶ First-in First-out (FIFO) buffers.

▶ Each of these buffers are used for particular data-accesses in our system.

▶ Before starting with the buffers, some definitions:

▶ Producer : a producer is an entity that generates data.
▶ Consumer : a consumer is an entity that reads the data and does something with it.
▶ Push: a push is a write of a datum by a producer.
▶ Pop: a pop is a read of a datum by a consumer.

Notes

Notes

Notes
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Ping-pong buffers

SSRAM1

0

5
A
0

63

C1
M2 [Output enable]
M3 [Write enable]

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

RAM 64 x 8

00 00 00 00 00 00 00

06 00 00 00 00 00 00

0c 00 00 00 00 00 00

12 00 00 00 00 00 00

18 00 00 00 00 00 00

1e 00 00 00 00 00 00

24 00 00 00 00 00 00

2a 00 00 00 00 00 00

1

0
MUX

0

R

SD Q

1

SSRAM2

0

5
A
0

63

C1
M2 [Output enable]
M3 [Write enable]

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

RAM 64 x 8

00 00 00 00 00 00 00

06 00 00 00 00 00 00

0c 00 00 00 00 00 00

12 00 00 00 00 00 00

18 00 00 00 00 00 00

1e 00 00 00 00 00 00

24 00 00 00 00 00 00

2a 00 00 00 00 00 00

h00 popData

0
MUX

h00popAddress

h00pushAddress

h00pushData

b0clock

0
MUX

b0push

b0switch

▶ In ping-pong buffers the producer writes it’s
data in one memory, whilst the consumer
reads from the other memory. The moment
both are done, the memories are switched.

▶ Typical applications for these kind of buffers
are:

▶ Data-transfer calculation overlap.
▶ The access pattern of the producer on

the data is different from the consumer.
▶ The push/pop frequency is different,

hence the producer/consumer have
other timely accesses.

▶ The consumer needs to access certain
data multiple times, whilst the producer
only provides it once.

▶ Of course, this only works if the consumer can
consume the data in the time-slot that the
producer requires to produce one block of
data!
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Ping-pong buffers

▶ The ping-pong buffers are arguably the most versatile kind of buffers.

▶ But how to determine the size of them?

▶ What about the inferred delay, as the consumer always performs the calculations when already one
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one
time-slot behind.

▶ What is the influence on area, performance, and power consumption?

▶ Does it make sense.....

▶ All questions for which there is no simple answer, as it depends the requirements and trade-offs.
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Last-in First-out (LIFO) buffers
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▶ In LIFO buffers, the last value pushed is the
first that is popped. This can easily be realized
to use an up/down counter that generates the
address for the SSRAM.

▶ Typical applications for LIFO-buffers are:

▶ Data reordering.
▶ Temporal storage of values (think of the

stack).

▶ In practice, the LIFO-buffers are not often
used, more appropriate are the FIFO-buffers.

Notes

Notes
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First-in First-out (FIFO) buffers

▶ In a FIFO-buffer we transform the SSRAM into
a circular buffer.

▶ At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

▶ When the producer pushes a datum, the
push-pointer will increment.

▶ When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

▶ The consumer makes again place by poping.

▶ Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

▶ And the FIFO can even become empty again.
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First-in First-out (FIFO) buffers

▶ FIFO-buffers are arguably the most used buffers in hardware.

▶ Typical applications of FIFO-buffers are:

▶ Timely access pattern buffering (e.g. the producer generates the data in another timely
manner as the consumer can handle them).

▶ Save clock-boundary crossings.
▶ ...

▶ As you can imagine, we would like to have a generic description of a FIFO-buffer, something we
are going to do in today’s practical work.

▶ But there is one part that is missing, how to test?
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Testing a unit by using a testbench

▶ We begin with our design. We call this the Device Under Test (DUT).

▶ The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

▶ Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

▶ The Input stimuli generator and the Output reaction checker form the test-harnas.

▶ Whereas the DUT only uses synthesizable Verilog descriptions, the test-harnas uses
non-synthesizable Verilog descriptions.

▶ The test-harnas is described in a new module, where the DUT is used as a component. This
module is called the testbench.

Notes

Notes

Notes



Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.22

Our device under test

▶ Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,
parameter bitWidth = 32)
(input wire clock,

reset,
push,
pop,

input wire [bitWidth-1:0] pushData,
output wire full,

empty,
output wire [bitWidth-1:0] popData);

endmodule

▶ We have 2 parameters, and several connections.

▶ Note that we require a clock and a reset.

▶ We can now build-up our basic testbench:
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testbench
/* set the time-units for simulation */
‘timescale 1ps/1ps

module fifoTestbench;

reg reset, clock;
initial

begin
reset = 1’b1;
clock = 1’b0; /* set the initial values */
repeat (4) #5 clock = ~clock; /* generate 2 clock periods */
reset = 1’b0; /* de-activate the reset */
forever #5 clock = ~clock; /* generate a clock with a period of 10 time-units */

end

reg s_push, s_pop;
wire s_full, s_empty; /* define the signals for the DUT */
reg [7:0] s_pushData;
wire [7:0] s_popData;

fifo #(.nrOfEntries(32), /* instantiate the DUT as component */
.bitWidth(8)) DUT

(.clock(clock),
.reset(reset),
.push(s_push),
.pop(s_pop),
.pushData(s_pushData),
.full(s_full),
.empty(s_empty),
.popData(s_popData));

initial
begin
$dumpfile("fifoSignals.vcd"); /* define the name of the .vcd file that can be viewed by GTKWAVE */
$dumpvars(1,DUT); /* dump all signals inside the DUT-component in the .vcd file */

end

endmodule
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▶ Next we have to create the input stimuli generator, there are various ways to do this, namely:

▶ A finite state machine that generates the required input values.
▶ An initial block that generates the stimuli.
▶ A model/files that contain the various values.
▶ ...

▶ This time we will restrict ourselves to an initial block, like:

initial
begin

s_push = 1’b0;
s_pop = 1’b0;
s_pushData = 8’d0;
@(negedge reset); /* wait for the reset period to end */
repeat(2) @(negedge clock); /* wait for 2 clock cycles */
s_push = 1’b1;
repeat(32) @(negedge clock) s_pushData = s_pushData + 8’d1;
s_push = 1’b0;
s_pop = 1’b1;
repeat(32) @(negedge clock); /* wait for 32 clock cycles */
s_pop = 1’b0;
$finish; /* finish the simulation */

end

▶ The checker we leave for the moment and just look at the wave-files.
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