
Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.1

Lecture 2

Embedded system design

Memories

CS476 - ESD
February 29, 2024

Dr. Theo Kluter
EPFL

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.2

Acceleration

Camera

interface

SDRAM

controller

SDRAM

Instruction

cache

controller

VGA

OpenRISC processor

74.25MHz

15FPS (640x480)

▶ Last week we have seen that our system cannot calculate Sobel in real time.

▶ We can accelerate the system by moving parts of the software to hardware.

▶ Ways to do this are custom instructions, accelerators, stream processing, ...

▶ We will visit all these methods later on. But all have something in common: they often need
memory for temporal storage.

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.3

Synchronous Static Random Access Memories (SSRAM’s)

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

0

D Q

R

WE1

h00dataIn

b0writeEnable

b0clock

b0000address

0

DMX

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

SSRAM 16x8

00

D Q

R

WE

00

D Q

R

WE

0

MUX

00

D Q

R

WE

h00 dataOut

▶ In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

▶ Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.

▶ The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.

▶ There are two distinct behaviors in case of a
write:

▶ Write before read : The value written to
the memory cell is also available on the
output.

▶ Read before write: The value in the
memory cell prior to the write operation
is available on the output.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.4

Synchronous Static Random Access Memories (SSRAM’s)

00

D Q

R

WE

00

D Q

R

WE

0

MUX

SSRAM 16x8

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

0

DMXb0writeEnable

00

D Q

R

WE

b0clock

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

h00dataIn

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

b0000address

h00 dataOut

00

D Q

R

WE1

▶ In digital technology nodes (ASIC and FPGA)
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

▶ Typical for on-chip SSRAM’s is that they have
uni-directional data-buses, hence dataIn and
dataOut.

▶ The signal address selects the memory cell
and the signal writeEnable indicates if the
cell should be written.

▶ There are two distinct behaviors in case of a
write:

▶ Write before read : The value written to
the memory cell is also available on the
output.

▶ Read before write: The value in the
memory cell prior to the write operation
is available on the output.

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.5

Synchronous Static Random Access Memories (SSRAM’s)

00

D Q

R

WE

00

D Q

R

WE

0

MUX

SSRAM 16x8

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

0

DMXb0writeEnable

00

D Q

R

WE

b0clock

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

h00dataIn

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

00

D Q

R

WE

b0000address

h00 dataOut

00

D Q

R

WE1

▶ A typical SSRAM write operation is given by:
clock

address A0 A1

dataIn DA0 DA1

writeEnable

memoryCellA0 DA0

memoryCellA1 DA1

▶ A typical SSRAM read operation is given by
(note the delay):

clock

address A0 A1

memoryCellA0 DA0

memoryCellA1 DA1

dataOut DA0 DA1

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.6

Synchronous Static Random Access Memories (SSRAM’s)

▶ SSRAM’s can be found in different configurations, namely:

▶ single-ported

writeEnable

dataIn dataOut

address

▶ This is the smallest
memory and arguably
most used.

▶ semi-dual-ported

writeEnable

dataIn dataOutA

dataOutB

addressA

addressB

▶ Here we have two
read-ports, but we can
only write on the A-port.

▶ true-dual-ported

dataOutA

dataOutB

dataInB

writeEnableB

dataInA

writeEnableA

addressA

addressB

▶ Here we have two
complete ports that
access the same
memory array.

▶ And we can easily describe them in Verilog.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.7

Single ported SSRAM

module singlePortSSRAM #(parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0)

(input wire clock,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataIn,
output reg [bitwidth-1 : 0] dataOut);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @(posedge clock)
begin
if (readAfterWrite != 0) dataOut = memoryContent[address];
if (writeEnable == 1’b1) memoryContent[address] = dataIn;
if (readAfterWrite == 0) dataOut = memoryContent[address];

end

endmodule

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.8

Semi dual-ported SSRAM

module semiDualPortSSRAM #(parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0)

(input wire clockA, clockB,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataIn,
output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @(posedge clockA)
begin
if (readAfterWrite != 0) dataOutA = memoryContent[addressA];
if (writeEnable == 1’b1) memoryContent[addressA] = dataIn;
if (readAfterWrite == 0) dataOutA = memoryContent[addressA];

end

always @(posedge clockB)
dataOutB = memoryContent[addressB];

endmodule

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.9

Dual-ported SSRAM

module dualPortSSRAM #(parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0)

(input wire clockA, clockB,
writeEnableA, writeEnableB,

input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataInA, dataInB,
output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @(posedge clockA)
begin
if (readAfterWrite != 0) dataOutA = memoryContent[addressA];
if (writeEnableA == 1’b1) memoryContent[addressA] = dataInA;
if (readAfterWrite == 0) dataOutA = memoryContent[addressA];

end

always @(posedge clockB)
begin
if (readAfterWrite != 0) dataOutB = memoryContent[addressB];
if (writeEnableB == 1’b1) memoryContent[addressB] = dataInB;
if (readAfterWrite == 0) dataOutB = memoryContent[addressB];

end

endmodule

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.10

SSRAM’s in ASIC and FPGA

▶ In ASIC-design the size of the SSRAM’s is dependent on the memory-generator and the area you
have available.

▶ In FPGA-design it is more restricted, as the memories are already implemented. You can only use
what you have:

Chapter 1: Cyclone IV FPGA Device Family Overview 1–3
Device Resources

March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1

■ Up to 532 user I/Os

■ LVDS interfaces up to 840 Mbps transmitter (Tx), 875 Mbps Rx

■ Support for DDR2 SDRAM interfaces up to 200 MHz

■ Support for QDRII SRAM and DDR SDRAM up to 167 MHz

■ Up to eight phase-locked loops (PLLs) per device

■ Offered in commercial and industrial temperature grades

Device Resources
Table 1–1 lists Cyclone IV E device resources.

Table 1–1. Resources for the Cyclone IV E Device Family

Resources

EP
4C

E6

EP
4C

E1
0

EP
4C

E1
5

EP
4C

E2
2

EP
4C

E3
0

EP
4C

E4
0

EP
4C

E5
5

EP
4C

E7
5

EP
4C

E1
15

Logic elements (LEs) 6,272 10,320 15,408 22,320 28,848 39,600 55,856 75,408 114,480

Embedded memory
(Kbits) 270 414 504 594 594 1,134 2,340 2,745 3,888

Embedded 18 × 18
multipliers 15 23 56 66 66 116 154 200 266

General-purpose PLLs 2 2 4 4 4 4 4 4 4

Global Clock Networks 10 10 20 20 20 20 20 20 20

User I/O Banks 8 8 8 8 8 8 8 8 8

Maximum user I/O (1) 179 179 343 153 532 532 374 426 528

Note to Table 1–1:

(1) The user I/Os count from pin-out files includes all general purpose I/O, dedicated clock pins, and dual purpose configuration pins. Transceiver
pins and dedicated configuration pins are not included in the pin count.

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.11

SSRAM’s in ASIC and FPGA

▶ For the FPGA we are using, following are the permissible nrOfEntries x bitwidth
configurations:

▶ 8192 x 1 bit
▶ 4092 x 2 bit
▶ 2048 x 4 bit
▶ 1024 x 8 bit or 1024 x 9 bit
▶ 512 x 16 bit or 512 x 18 bit
▶ 256 x 32 bit or 256 x 36 bit

▶ Other configurations are possible by using partially/multiple of these SSRAM’s.

▶ By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

▶ Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:

▶ Explode the size of your design (often it cannot be mapped any more on the FPGA).
▶ Have a severe impact on the critical path of your design (read the speed you can operate your

design).

▶ For small memories, most FPGA’s provide also the so-called LUT-RAM’s. These have most of the
time a 16 x 1 bit configuration in a single-port or semi dual-port architecture.

▶ Note: the FPGA on our platform does not support LUT-RAM’s.

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.12

LUT-RAM’s

h0 dataOut

b0writeEnable

b0000address

h0dataIn
b0clock

0

MUX

0

DMX

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

0

D Q

R

WE

LUT-RAM 16x1

▶ The LUT-RAM’s have the same synchronous
write as the SSRAM’s:

clock

address A0 A1

dataIn DA0 DA1

writeEnable

memoryCellA0 DA0

memoryCellA1 DA1

▶ However, they provide an asynchronous read:
clock

address A0 A1

memoryCellA0 DA0

memoryCellA1 DA1

dataOut DA0 DA1

▶ Also LUT-RAMs can be easily described in
Verilog:

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.13

Single ported LUT-RAM

module singlePortLUTRAM #(parameter bitwidth = 8,
parameter nrOfEntries = 32)

(input wire clock,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataIn,
output wire [bitwidth-1 : 0] dataOut);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOut = memoryContent[address];

always @(posedge clock)
if (writeEnable == 1’b1) memoryContent[address] = dataIn;

endmodule

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.14

Semi dual-ported LUT-RAM

module semiDualPortLUTRAM #(parameter bitwidth = 8,
parameter nrOfEntries = 32)

(input wire clock,
writeEnable,

input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataIn,
output wire [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOutA = memoryContent[addressA];
assign dataOutB = memoryContent[addressB];

always @(posedge clock)
if (writeEnable == 1’b1) memoryContent[addressA] = dataIn;

endmodule

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.15

But how to use those memories?

▶ We now have seen the on-chip memory architectures.

▶ We also have seen how to instantiate them in Verilog.

▶ We are now going to concentrate on how to use them, namely:

▶ Ping-Pong buffers.
▶ Last-in First-out (LIFO) buffers.
▶ First-in First-out (FIFO) buffers.

▶ Each of these buffers are used for particular data-accesses in our system.

▶ Before starting with the buffers, some definitions:

▶ Producer : a producer is an entity that generates data.
▶ Consumer : a consumer is an entity that reads the data and does something with it.
▶ Push: a push is a write of a datum by a producer.
▶ Pop: a pop is a read of a datum by a consumer.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.16

Ping-pong buffers

SSRAM1

0

5
A
0

63

C1
M2 [Output enable]
M3 [Write enable]

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

RAM 64 x 8

00 00 00 00 00 00 00

06 00 00 00 00 00 00

0c 00 00 00 00 00 00

12 00 00 00 00 00 00

18 00 00 00 00 00 00

1e 00 00 00 00 00 00

24 00 00 00 00 00 00

2a 00 00 00 00 00 00

1

0
MUX

0

R

SD Q

1

SSRAM2

0

5
A
0

63

C1
M2 [Output enable]
M3 [Write enable]

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

RAM 64 x 8

00 00 00 00 00 00 00

06 00 00 00 00 00 00

0c 00 00 00 00 00 00

12 00 00 00 00 00 00

18 00 00 00 00 00 00

1e 00 00 00 00 00 00

24 00 00 00 00 00 00

2a 00 00 00 00 00 00

h00 popData

0
MUX

h00popAddress

h00pushAddress

h00pushData

b0clock

0
MUX

b0push

b0switch

▶ In ping-pong buffers the producer writes it’s
data in one memory, whilst the consumer
reads from the other memory. The moment
both are done, the memories are switched.

▶ Typical applications for these kind of buffers
are:

▶ Data-transfer calculation overlap.
▶ The access pattern of the producer on

the data is different from the consumer.
▶ The push/pop frequency is different,

hence the producer/consumer have
other timely accesses.

▶ The consumer needs to access certain
data multiple times, whilst the producer
only provides it once.

▶ Of course, this only works if the consumer can
consume the data in the time-slot that the
producer requires to produce one block of
data!

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.17

Ping-pong buffers

▶ The ping-pong buffers are arguably the most versatile kind of buffers.

▶ But how to determine the size of them?

▶ What about the inferred delay, as the consumer always performs the calculations when already one
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one
time-slot behind.

▶ What is the influence on area, performance, and power consumption?

▶ Does it make sense.....

▶ All questions for which there is no simple answer, as it depends the requirements and trade-offs.

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.18

Last-in First-out (LIFO) buffers

SSRAM1

0

5
A
0

63

C1
M2 [Output enable]
M3 [Write enable]

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

A,1,2A,1,3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

RAM 64 x 8

00 00 00 00 00 00 00

06 00 00 00 00 00 00

0c 00 00 00 00 00 00

12 00 00 00 00 00 00

18 00 00 00 00 00 00

1e 00 00 00 00 00 00

24 00 00 00 00 00 00

2a 00 00 00 00 00 00

6

5-0
00

h00 popData

b0 full

1
b0clock
h00pushData

0

b0pop

CTR7
R

M2 [count]
M1 [load]

M3 [up]
M4 [down]
G5
2,3,5+/C6
2,4,5-

3CT=0x7F
4CT=0

00

00
1,6D 0

11
1,6D 0

22
1,6D 0

33
1,6D 0

44
1,6D 0

55
1,6D 0

66
1,6D 0

b1 empty

b0push

b0reset

▶ In LIFO buffers, the last value pushed is the
first that is popped. This can easily be realized
to use an up/down counter that generates the
address for the SSRAM.

▶ Typical applications for LIFO-buffers are:

▶ Data reordering.
▶ Temporal storage of values (think of the

stack).

▶ In practice, the LIFO-buffers are not often
used, more appropriate are the FIFO-buffers.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.19

First-in First-out (FIFO) buffers

▶ In a FIFO-buffer we transform the SSRAM into
a circular buffer.

▶ At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

▶ When the producer pushes a datum, the
push-pointer will increment.

▶ When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

▶ The consumer makes again place by poping.

▶ Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

▶ And the FIFO can even become empty again.

0x0
0x1

0
x
2

0
x
3

0
x
5

0
x
4

0x6

0x7

0xF

0xE

0
x
D

0
x
C

0x8

0x9

0
x
A

0
x
B

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.20

First-in First-out (FIFO) buffers

▶ FIFO-buffers are arguably the most used buffers in hardware.

▶ Typical applications of FIFO-buffers are:

▶ Timely access pattern buffering (e.g. the producer generates the data in another timely
manner as the consumer can handle them).

▶ Save clock-boundary crossings.
▶ ...

▶ As you can imagine, we would like to have a generic description of a FIFO-buffer, something we
are going to do in today’s practical work.

▶ But there is one part that is missing, how to test?

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.21

Testing a unit by using a testbench

▶ We begin with our design. We call this the Device Under Test (DUT).

▶ The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

▶ Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

▶ The Input stimuli generator and the Output reaction checker form the test-harnas.

▶ Whereas the DUT only uses synthesizable Verilog descriptions, the test-harnas uses
non-synthesizable Verilog descriptions.

▶ The test-harnas is described in a new module, where the DUT is used as a component. This
module is called the testbench.

Notes

Notes

Notes

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.22

Our device under test

▶ Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,
parameter bitWidth = 32)
(input wire clock,

reset,
push,
pop,

input wire [bitWidth-1:0] pushData,
output wire full,

empty,
output wire [bitWidth-1:0] popData);

endmodule

▶ We have 2 parameters, and several connections.

▶ Note that we require a clock and a reset.

▶ We can now build-up our basic testbench:

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.23

testbench
/* set the time-units for simulation */
‘timescale 1ps/1ps

module fifoTestbench;

reg reset, clock;
initial

begin
reset = 1’b1;
clock = 1’b0; /* set the initial values */
repeat (4) #5 clock = ~clock; /* generate 2 clock periods */
reset = 1’b0; /* de-activate the reset */
forever #5 clock = ~clock; /* generate a clock with a period of 10 time-units */

end

reg s_push, s_pop;
wire s_full, s_empty; /* define the signals for the DUT */
reg [7:0] s_pushData;
wire [7:0] s_popData;

fifo #(.nrOfEntries(32), /* instantiate the DUT as component */
.bitWidth(8)) DUT

(.clock(clock),
.reset(reset),
.push(s_push),
.pop(s_pop),
.pushData(s_pushData),
.full(s_full),
.empty(s_empty),
.popData(s_popData));

initial
begin
$dumpfile("fifoSignals.vcd"); /* define the name of the .vcd file that can be viewed by GTKWAVE */
$dumpvars(1,DUT); /* dump all signals inside the DUT-component in the .vcd file */

end

endmodule

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer

LIFO-buffer

FIFO-buffer

Testbench

Rev. 1.0 – 2.24

testbench

▶ Next we have to create the input stimuli generator, there are various ways to do this, namely:

▶ A finite state machine that generates the required input values.
▶ An initial block that generates the stimuli.
▶ A model/files that contain the various values.
▶ ...

▶ This time we will restrict ourselves to an initial block, like:

initial
begin

s_push = 1’b0;
s_pop = 1’b0;
s_pushData = 8’d0;
@(negedge reset); /* wait for the reset period to end */
repeat(2) @(negedge clock); /* wait for 2 clock cycles */
s_push = 1’b1;
repeat(32) @(negedge clock) s_pushData = s_pushData + 8’d1;
s_push = 1’b0;
s_pop = 1’b1;
repeat(32) @(negedge clock); /* wait for 32 clock cycles */
s_pop = 1’b0;
$finish; /* finish the simulation */

end

▶ The checker we leave for the moment and just look at the wave-files.

Notes

Notes

Notes

	Memories
	Usage of memories
	Ping-pong buffer
	LIFO-buffer
	FIFO-buffer

	Testbench

