Notes

EPFL
Lecture 2 A

Dr. Theo Kluter

Embedded system design

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-bufer

Testbench

CS476 - ESD
February 29, 2024

Dr. Theo Kiluter
EPFL

Rev10 - 21

Notes
Acceleration EPFL
Embedded system
15FPS (640x480) ~o Dr. Theo Kluter
o (WE
s T —
controller
Usage of memories
| P pong buter
LFO bufer
FIFObuter
Instruction Testbench
cache 74.25MHz
OpenRISC processor j
» Last week we have seen that our system cannot calculate Sobel in real time.
» We can accelerate the system by moving parts of the software to hardware.
» Ways to do this are custom instructions, accelerators, stream processing, ...
»  We will visit all these methods later on. But all have something in common: they often need
memory for temporal storage.
Rout0 - 22
Notes

Synchronous Static Random Access Memories (SSRAM’s) EPFL
Embedded system
sign
» Indigital technology nodes (ASIC and FPGA) Dr. Theo Kluter

we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

» Typical for on-chip SSRAM's is that they have  |iemaies ]
uni-directional data-buses, hence dataTnand | ysage of memories

dataOut. Ping-pong buffer
. Lot
» The signal address selects the memory cell FIFO-bufer
and the signal writeEnable indicates if the Testbench

cell should be written.

» There are two distinct behaviors in case of a
write:

»  Write before read: The value written to
the memory cell is also available on the
output.

Rev10 - 23



Notes

EPFL

Embedded system
design

In digital technology nodes (ASIC and FPGA) Dr. Theo Kluter
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

Typical for on-chip SSRAM's is that they have Memories
uni-directional data-buses, hence dataInand | ysage of memories
dataOut. Pingpong buter

o buter
The signal address selects the memory cell d
and the signal writeEnable indicates if the
cell should be written.

There are two distinct behaviors in case of a
write:

Write before read: The value written to
the memory cell is also available on the
output.

Read before write: The value in the
memory cell prior to the write operation
is available on the output.

Notes

cPrL
Embedded system

Dr. Theo Kluter
A typical SSRAM write operation is given by:
cock LU
address
dataln Memeries
witegnave [ \__ [ \_____ Usage of memories

memoryCellA0 DA

memoryCellA1 XAt

A typical SSRAM read operation is given by
(note the delay):
Ny B py

memoryCellAQ DAY

memoryCellA DAT

dataOut (oA0)—_)(oAT)

Notes

EPFL
o

Dr. Theo Kluter

SSRAM's can be found in different configurations, namely:

true-dual-ported

Memories

semi-dual-ported - Usage of memories
single-ported ——————— = o Ping-pong buffer
—
—+
This is the smallest
memory and arguably Here we have two Here we have two
most used. read-ports, but we can complete ports that
only write on the A-port. access the same

memory array.
And we can easily describe them in Verilog.



Single ported SSRAM

module singlePortSSRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0 )

( input wire clock,
writeEnable,
input wire [$clog2(nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataln,
output reg [bitwidth-1 : 0] dataout) ;
reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];
always @ (posedge clock)
begin
if (readAfterWrite != 0) dataOut = memoryContent [address];
if (writeEnable == 1’bl) memoryContent[address] = dataln;
if (readAfterWrite 0) dataOut = memoryContent [address];
end
endmodule
Semi dual-ported SSRAM
module semiDualPortSSRAM #( parameter bitwidth = §,
parameter nrOfEntries = 512,
parameter readAfteririte = 0 )
( input wire clocka, clockB,
writeEnable,
input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : dataln,
output reg [bitwidth-1 : 0] dataOutd, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @ (posedge clockA)
i)

begin
if (readAfterWrite != 0) dataOutA = memoryContent [addressAl;
if (writeEnable == 1’bl) memoryContent [addressA] = dataln;
if (readAfterWrite == 0) dataOutA = memoryContent [addressA];

end

always @ (posedge clockB)
dataOutB = memoryContent [addressB];

endmodule

Dual-ported SSRAM

module dualPortSSRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 512,
parameter readAfterWrite = 0 )
( input wire clockA, clockB,
writeEnableA, writeEnableB,
input wire [$clog2(nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataIna, datalnB,
output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @ (posedge clockh)
begin
if (readAfterWrite != 0) dataOutA = memoryContent [addressA];
if (writeEnableA 1’bl) memoryContent [addressA] = datalnA;
if (readAfterWrite 0) dataOutA = memoryContent [addressA];
end

always @ (posedge clockB)
begin

if (readAfterWrite !

if (writeEnableB

if (readAfterWrite =:
end

0) dataOutB = memoryContent [addressB];
1'bl) memoryContent [addressB] = datalnB;
0) dataOutB = memoryContent [addressB];

endmodule

cPrL

Embedded system
design

Dr. Theo Kluter

Usage of memories
Ping-pong bufler
UFO-hufer
FIFO-bufer

Testbench

Rev.10 - 27

cPrL

Dr. Theo Kluter

Usage of memories.
Ping-pong buffer
LIFO-buffer
FIFO-tuffer

Testbench

Rev10 - 28

cPrL

Embedded system

Dr. Theo Kluter

Usage of memories
Ping.pong buffer
LFO-buffer
FIFObuffer

Testbench

Rev10 - 28

Notes

Notes

Notes




In ASIC-design the size of the SSRAM’s is dependent on the memory-generator and the area you

have available.

In FPGA-design it is more restricted, as the memories are already implemented. You can only use

what you have:

Table 1-1. Resources for the Cyclone IV E Device Family

. e w0 & 2 2 0 0 ]
w b & ] 4] = i3 & =
Resources g e g ] = =] e e =]
& & a & s ) s = s
] & ] & ] [+ ] &
Logic elements (LEs) 6,272 | 10320 | 15408 | 22,320 | 28,848 | 39,600 | 55856 | 75408 | 114,480
m’t‘;‘;d“ memory | oz0 | 414 | so4 | 54 | se4 | 1134 | 2340 | 2745 | 3888
Embedded 1 x 18 15 23 | s6 | 66 | 66 | 116 | 154 | 200 | 266
multipliers
General-purpose PLLs 2 2 4 4 4 4 4 4 4
Global Clock Networks 10 10 20 20 20 20 20 20 20
User I/0 Banks 8 8 8 8 8 8 8 8 8
Maximum user /0 (V) 179 179 343 153 532 532 374 426 528

Note to Table 1-1:

(1) The user I/0s count from pin-out files includes all general purpose I/0, dedicated clock pins, and dual purpose configuration pins. Transceiver
pins and dedicated configuration pins are not included in the pin count.

For the FPGA we are using, following are the permissible nrOfEntries x bitwidth

configurations:
8192 x 1
4092 x 2
2048 x 4
1024 x 8
512 x 16
256 x 32

bit
bit
bit

bit or1024 x 9 bit
bitor512 x 18 bit
bit Or256 x 36 bit

Other configurations are possible by using partially/multiple of these SSRAM’s.
By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.
Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:

Explode the size of your design (often it cannot be mapped any more on the FPGA).

Have a severe impact on the critical path of your design (read the speed you can operate your

design).

For small memories, most FPGA'’s provide also the so-called LUT-RAM’s. These have most of the
timea 16 x 1 bit configuration in a single-port or semi dual-port architecture.

Note: the FPGA on our platform does not support LUT-RAM’s.

The LUT-RAM'’s have the same synchronous
write as the SSRAM'’s:
clock
asdross A0 YRIXT
dataln
witeEnable T\ \

memoryCellA0 X DAO
memoryCellat X_DAt

However, they provide an asynchronous read:

clock

address (0 (A1 X

memoryCellAQ

memoryCollAt

dataOut (DAOY DAt

Also LUT-RAMs can be easily described in
Verilog:

EPFL
Embedded system

design

Dr. Theo Kluter

Memories

Usage of memories

Ping pong buffer

cPrL
Embedded system

Dr. Theo Kluter

Memories

Usage of memories

EPFL
o

Dr. Theo Kluter

Memories

Pingpong bufler

LIFO bufer

FIFO-buffer

Tes

ench

Notes

Notes

Notes



Single ported LUT-RAM

module singlePortLUTRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 32)

( input wire clock,
writeEnable,
input wire [$clog2(nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataln,
output wire [bitwidth-1 : 0] dataOut) ;
reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];
assign dataOut = memoryContent [address];
always @ (posedge clock)
if (writeEnable == 1’bl) memoryContent [address] = dataln;
endmodule
Semi dual-ported LUT-RAM
module semiDualPortLUTRAM #( parameter bitwidth = 8,
parameter nrOfEntries = 32)
( input wire clock,
writeEnable,
input wire [$clog2(nrOfEntries)-1 : 0] addressh, addressB,
input wire [bitwidth-1 : 0] dataln,
output wire [bitwidth-1 : 0] dataOutd, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

assign dataOutA = memoryContent [addressh];
assign dataOutB = memoryContent [addressB];

always @ (posedge clock)
if (writeEnable == 1’bl) memoryContent [addressA] = dataln;

endmodule

But how to use those memories?

» We now have seen the on-chip memory architectures.
» We also have seen how to instantiate them in Verilog.
» We are now going to concentrate on how to use them, namely:

» Ping-Pong buffers.
» Last-in First-out (LIFO) buffers.
»  First-in First-out (FIFO) buffers.

» Each of these buffers are used for particular data-accesses in our system.
» Before starting with the buffers, some definitions:
» Producer: a producer is an entity that generates data.
Consumer: a consumer is an entity that reads the data and does something with it.

»
» Push: a push is a write of a datum by a producer.
» Pop: apop is a read of a datum by a consumer.

cPrL

Embedded system
design

Dr. Theo Kluter

Usage of memories
Ping-pong bufler
UFO-hufer
FIFO-bufer

Testbench

Rev.10 - 213

cPrL

Embedded system

Dr. Theo Kluter

Usage of memories.
Ping-pong buffer
LIFO-buffer
FIFO-tuffer

Testbench

Rev10 - 214

cPrL

Embedded system

Dr. Theo Kluter

Memories

Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev10 - 215

Notes

Notes

Notes




pushaddress

pusn [

pusnpata (10>

popaddress

clock 8-

I H D eoposea

In ping-pong buffers the producer writes it's
data in one memory, whilst the consumer

reads from the other memory. The moment
both are done, the memories are switched.

Typical applications for these kind of buffers
are:

Data-transfer calculation overlap.

The access pattern of the producer on
the data is different from the consumer.
The push/pop frequency is different,
hence the producer/consumer have
other timely accesses.

The consumer needs to access certain
data multiple times, whilst the producer
only provides it once.

Of course, this only works if the consumer can
consume the data in the time-slot that the
producer requires to produce one block of
data!

The ping-pong buffers are arguably the most versatile kind of buffers.

But how to determine the size of them?

What about the inferred delay, as the consumer always performs the calculations when already one
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one

time-slot behind.

What is the influence on area, performance, and power consumption?

Does it make sense

All questions for which there is no simple answer, as it depends the requirements and trade-offs.

reset (B~

el

pushoats L5

pop (D—]

In LIFO buffers, the last value pushed is the
first that is popped. This can easily be realized
to use an up/down counter that generates the
address for the SSRAM.

Typical applications for LIFO-buffers are:

Data reordering.
Temporal storage of values (think of the
stack).

In practice, the LIFO-buffers are not often
used, more appropriate are the FIFO-buffers.

Notes

EPFL
Embedded system

design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer
O-buffer

Notes

EPFL
Embedded system

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer
1FO-bufer

FIFO

Testbench

Notes

EPFL
o

Dr. Theo Kluter

Memories

Usage of memories
Ping pong buffer
LIFO-buffer
FIFO-buffer

Testbench



In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

And the FIFO can even become empty again.

FIFO-buffers are arguably the most used buffers in hardware.
Typical applications of FIFO-buffers are:

Timely access pattern buffering (e.g. the producer generates the data in another timely
manner as the consumer can handle them).
Save clock-boundary crossings.

As you can imagine, we would like to have a generic description of a FIFO-buffer, something we
are going to do in today’s practical work.

But there is one part that is missing, how to test?

We begin with our design. We call this the Device Under Test (DUT).

The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

The Input stimuli generator and the Output reaction checker form the test-harnas.

Whereas the DUT only uses synthesizable Verilog descriptions, the test-harnas uses
non-synthesizable Verilog descriptions.

The test-harnas is described in a new module, where the DUT is used as a component. This
module is called the testbench.

Notes

EPFL

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories

Notes
EPFL
=
Embedded system
Dr. Theo Kluter
Memories
Usage of memories
FiFObufler
Testbench
Notes

EPFL
o

Dr. Theo Kluter

Memories

Usage of memories

g buter

Testbench



Our device under test

» Let's take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo #(parameter nrOfEntries = 16,
parameter bitWidth = 32)

(input wire clock,

reset,
push,
Pop,
input wire [bitWidth-1:0] pushbData,
output wire full,
Ty,

el
output wire [bitWidth-1:0] popData);
endmodule

» We have 2 parameters, and several connections.

» Note that we require a clock and a reset.
» We can now build-up our basic testbench:

testbench

/+ set the time-units for simulation +/
‘timescale 1ps/1ps

module fifoTestbench;

req reset, clock;

initial
begin
reset = 1'b1;
clock = 17b0; /+ set the initial values +/

clock = ~clock; /« generate 2 clock periods +/
/+ de-activate the reset s/

repeat (4) #5
0;
/+ generate a clock with a period of 10 time-units +/

reset = 1/
forever 45 clock = ~clock;
end

reg s_push, s_pop;
wire s_full, s_empty; /+ define the signals for the DUT +/
reg [7:0] s_pushData;
wire [7:0) s_popbata;
fifo #(.nrOfEntries(32), /+ instantiate the DUT as component +/
~bitWidth(8)) DUT
(.clock (clock) ,
.reset (reset),
-push (s_push) ,
-pop(s_pop)
-pushbata (s_pushbatal ,
Lfull(s_full),
~empty (s_empty) ,
-popData (s_popData) )

initial
begin

Sdumpfile ("fifoSignals.vcd®); /v define the name of the .vcd file that can be viewed by GTKNAVE =/

Sdumpvars (1,DUT) ; dump all signals inside the DUT-component in the .ved file +/

end

endmodule

testbench

» Next we have to create the input stimuli generator, there are various ways to do this, namely:

» Afinite state machine that generates the required input values.
» Aninitial block that generates the stimuli.
» A modelffiles that contain the various values.
> .
» This time we will restrict ourselves to an initial block, like:

initial

begin
s_push = 17b0;
s_pop = 1'b0;
s_pushData = 8/d0;
@ (negedge reset);
repeat (2) @(negedge clock);
s_push = 1'b1;
repeat (32) @(negedge clock) s_pushData = s_pushData + 8'dl;
s_push = 17b0;
s_pop = 1’bl;
repeat (32) @(negedge clock);
s_pop = 1’b0;
$finish;

end

/+ wait for 2 clock cycles */

/+ wait for 32 clock cycles #/

/+ finish the simulation x/

» The checker we leave for the moment and just look at the wave-files.

Notes

cPrL

Embedded system

design
Dr. Theo Kluter

Memories

Usage of memories

Ping-pong buffer
LIFO-buffer

FIFO-bufer

Rev.10 - 222

/* wait for the reset period to end */

Notes

cPrL

Embedded system

Dr. Theo Kluter

Memories

Usage of memories.

Ping-pong buffer
LIFO-buffer

FIFO-tuffer

Rev10 - 223

Notes

cPrL

Embedded system

Dr. Theo Kluter

Memories

Usage of memories

Ping-pong buffer
LIFO-buffer

FIFO-buffer

Rev.10 - 224




	Memories
	Usage of memories
	Ping-pong buffer
	LIFO-buffer
	FIFO-buffer

	Testbench

