Lecture 6

Embedded system design

CS476 - ESD
April 16, 2024

Dr. Theo Kluter
EPFL

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232
SPI

Now that we have seen most of the interior of
an embedded system we are going to look into
the peripherals.

Many peripherals are based on serial
protocols, like 1°C, 12S, RS232, CAN,

To be able to convert parallel data to serial and
vice versa, a shift register is used.

Note that shifting to the left or shifting to the
right is basically the same circuit!

In this lecture we are going to visit some of
these protocols.

cPiL

Embedded system

SerialIn@

SerialMode[00

design
*' , Dr. Theo Kluter
L VMUX DsQ
o) L(_@parallelOut
-~ P
*-I\l Introduction
MUX D S Q [repm—
(o) RS-232
-
— SPI

7

Clock@

SerialMode:

00
01
10

MUX DsQ
(0]
¢ . P
“\l ’
- Do —I_®Seria10ut
(0]
I—>1\)
: OQSerialclock

Function:

Keep current value
Load parallel data
shift Data

Rev.1.0 - 6.2

Arguably the “oldest” serial protocol is the RS-232 introduced by the Electronic Industries
Association (EIA) in 1960.

It is an asynchronous point-to-point protocol that still is very “active” today. Note that it was the
“enabler” for the internet as we know it today.

RS-232 is also know as Universal Asynchronous Receiver/Transmitter (UART).
Although the protocol dates from 1960, the latest “update” dates from 2012.

It is a “proven protocol” that can be even found in current server systems as “backup” interface in
case something went wrong.

And you are using it each time for uploading your program to the VP. So how does it work....
The original interface was:

Signal: | Function:

TxD Transmit Data

RxD Receive Data

DTR The slave is ready to receive, initiate, or continue a call
DCD The slave is detecting a carrier from the remote device
DSR The slave is ready to receive and send data

RI The slave detected an incoming call

RTS The slave is ready to receive data

CTS The master is ready to send data

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232
SPI

Rev.1.0 - 6.3

Although most of the signals are “obsolete”, even most interfaces found nowadays provide them for
back-ward compatibility.

However, most of the time we only use the TxD and RxD signals. These are cross-connected
between the two devices allowing for full-duplex communication.

The RS-232 sends the information by frames:

1000 0|0|1 0|0

+3to +15V
= S | =
0 -:?-\ O
TLjJoj~ v o = wljo|l~ E|Q
Bl = = = =]l=l= g|28
SBto-15V]| |m|m @™ m @ @m|m]|lm al|d Idle

source: Opencircuits

There are 8 data-bits shown above, however, the protocol allows for 5 to 9 data bits.
The parity-bit is optional and can be odd, even, mark(1), or space(0).
The frame is ended by one or two stop bit(s).

The speed of the communication is defined by the baudrate. Basically this measures the bits
transferred per second.

Note that the voltage levels are nowadays also be allowed to be GND and vcc.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232
SPI

Rev.1.0 - 6.4

https://opencircuit.shop/blog/rs232-protocol-de-gids-voor-beginners

cPiL

Embedded system
design

Dr. Theo Kluter

Although the RS-232 is so wide spread, it is relatively slow.
Let’s take a baudrate of 115200 baud and a frame as depicted below:

Introduction
1 0 0 0 O 1,00
0 RS-232
+3to +15V SPI
— =
= =
o i o
Elo]l v o =+ wlo|l~ E]la
Jl=lz =2 =2 = =212l =18
Sto-15V| || @© @© @ o|@d|d a|® Idle

source: Opencircuits
As the frame consist of 11 bits (containing one data byte), we can transfer a maximum of:

118200 o, 10472.7228 ~ 10.51B)es

Hence we require more performing protocols.

Rev.1.0 - 6.5

https://opencircuit.shop/blog/rs232-protocol-de-gids-voor-beginners

cPiL

Embedded system

design
The arguably “simplest” serial interface to implement is the Serial Peripheral Interface (SPI). or. Theo Kluter
The SPI is a synchronous serial communication interface specification.
Developed by Motorola in the mid 1980s and nowadays a de facto standard. roduction
The SPI has following signals: RS-232

scLK: Serial CLocK (output from the master). -

SCLK

SCLK

MOSI: Master Out Slave In (data output from the master).

SPI MOSI MOSI SPI i
Master miso miso slave MISO: Master In Slave Out (data input to the master).
SS O—=J SS

ss: Slave Select (often active-low). Output(s) from the master
to select the slave to communicate with.

Signal/pin names as well as their timing constraints vary among manufacturers. Always check the

device data sheet!

Most slave devices have tri-state outputs, i.e., their MI SO output becomes high impedance if their

Ss input is not active. This allows that in a multiple-slave system all MI SO signals can be connected

together.

Rev.1.0 - 6.6

A SPI configuration with independent slaves:

SPI
Master

SCLK
MOSI
MISO
SS0
SS1
SS2

SCLK
MOSI
MISO
SS

SPI
slave

Daisy-chained SPI configuration with
cooperative slaves:

This configuration requires one dedicated sS
line per slave.

SCLK

SPI MOSI
Master MISO
SS

SCLK
MOSI
MISO
SS

SPI
slave

All slaves need to use the same SPI mode,
need to use the same data word length, and
need to send out during second/third group of
clock pulses an exact copy of the data
received during first/second group of clock

pulses.

SCLK
MOSI
MISO
SS

SPI
slave

SCLK
MOSI
MISO
SS

SPI
slave

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232
SPI

Rev.1.0 - 6.7

The SPI-protocol defines four modes of operation. The slave device(s) define which mode to use
(see the datasheets of the slave device(s)). Hence it is well possible that a master device requires
in a multiple-slave configuration to “talk” in different modi to the different slave.

Furthermore, the slave device(s) determine the maximum sCcLK-frequency that can be used during
the communication (see the datasheets of the slave device(s)). In case of a daisy-chain, the
slowest device restricts the communication speed.

The four SPI-modi are defined by the polarity and phase of the clock (note: a communication is
started/ended by the ss signal (in the timing diagram below the low-active Cs-signal):

SPI Mode: | CPOL | CPHA
0 0 0
1 0 1
2 1 0
3 1 1

SCLKcpor=o L NSNSV L
SCLKcpoL=1 | WSS\

CS —
CPHA=0:
MOSI e s a3 2 1 oYz

MISO zI 7 X6 X5 Y23 X2 1Yoz

MOSI I e s a2 oz

MISO ZI 7 X e X s a3z 1 Yoz

source: wikipedia

cpoL: Clock POLarity

Ccp0L=0: clock idles at 0, each cycle is a pulse of 1
with a leading rising and a trailing falling edge.
CpOL=1: clock idles at 1, each cycle is a pulse of 0
with a leading falling and a trailing rising edge.

CPHA: Clock PHAse

CPHA=0: Data on the MOS1I/MIsO is clocked out on
the second clock-edge, and data on the
MISO/MOST is clocked in on the first clock-edge.
CPHA=1: Data on the MOSI/MISO is clocked out on
the first clock-edge, and data on the MISO/MOST is
clocked in on the second clock-edge.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232

SPI

Rev.1.0 - 6.8

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

Very simple and efficient for single master/single slave applications (e.g., digital audio, DSP,
telecommunication channels) due to its full- duplex capability and high achievable clock speeds
compared to UART.

Widely used in embedded systems to interconnect components on PCBs and inside FPGAs due to
considerable savings in board estate / routing resources.

Microcontrollers and Systems on Chips (SoCs) typically contain SPI controller(s) to communicate
with attached peripherals such as:

ADCs, DACs, audio codecs.

Sensors: temperature, pressure, distance, sound, touch.

Transceivers for other communication standards (Ethernet, USB, CAN, etc.).
Memories: EEPROM, Flash, SD cards

Displays/cameras: for configuration and sometimes even pixel data.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232
SPI

Rev.1.0 - 6.9

Although the SPl-interface is relatively “fast”, it only transports 1-bit each clock cycle. Especially for
devices as Flash and SD-cards, this might be limiting as most of the time we only "read" their
contents. This has lead to some extension to the SPI-protocol (note: not all slaves support these
modes, you always have to consult the datasheets!).

Note that these extensions need to be activated in the slave device; all slave devices start out with
the “standard” SPI-configuration!

These extensions are:

Dual SPI: In this case the MOST and MISO wires are transformed to a bi-directional
communication channel. This allows to read or write 2 bits each clock cycle, doubling the
data-throughput.

Quad SPI: In this case we require two more connection (often the reset and write-protect
signal). Here the MOST, MISO, and the two extra signals are used as bi-directional
communication channel. This allows to read or write 4 bits each clock cycle. This is used for
example with SD-cards and the SPI-Flash that is on your GECKOA4.

Octal SPI: |1 think that you get the idea. It requires six more connections that are not used in
“normal” SPI-mode.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
RS-232

SPI

Rev.1.0 - 6.10

	Introduction
	RS-232
	SPI

