Lecture 5

Embedded system design

CS476 - ESD
April 8, 2024

Dr. Theo Kluter
EPFL

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures

- 5.1

cPiL

Embedded system

design
I custom instruction interface Dr. Theo Kluter
| LI SPI-flash interface
Introduction
AR OpenRISC1000 ISA-based e ot
graphics 5-stage pipelined architecture 4 kByte us architectures
controller (Or1 420) Scratch pad Basics
Advanced
memory
. DMA
Instruction cache |
bus
arbiter Simple 32-bit based bus architecture
i |]
8 kBétltce)(Smax) camera SDRAM
i f
Read Only Memory interface Controller

We have already seen a lot of parts of our embedded system.
This week we are going to dive into the bus system.

Rev.1.0 - 52

cPiL

Embedded system

design
Dr. Theo Kluter
Let’s start out with the basic idea of a bus system. _
Introduction
We need to exchange information from (a) master device(s) to (a) slave device(s). Bus architectures
. . . Basic:
this information consists of: pp—

The memory address of the access. DMA
The type of access (read or write).

The data (to/from the master).

Some handshake signals.

There are many different ways how we can set-up this transfer of information, let’s start with the
bus realized in our system, a transaction based multi-master burst-enabled shared bus system.

Rev.1.0 - 53

Simple bus architectures E PFL

Embedded system
design

Dr. Theo Kluter
| request | | Bus-In | | Bus-out | request | | Bus-In | | Bus—out
]

__

T

Bus-In Bus-out Bus-In Bus-out Bus-In Bus-out gg)tZs

Introduction

Bus architectures

Advanced

DMA

» The block diagram of the applied bus-system is shown above.
This bus is working with a 74.25MHz clock.

» Note the OR-gates (sometime realize with AND-gates), this is typical for on-chip buses, as we do
not apply tri-state (bi-directional) buses as:

» They are slow (iri-state capacitance, etc.)
» They may cause short circuits if improper used.

Rev.1.0 - 54

cPiL

So which signals are defined in our bus? Embedded system

address_data : 32-bit channel that transports the address or data. desian
byte_enables : 4-bit channel that indicates in a single transfer which bytes are valid. Dr. Theo Kluter
burst_size : 8-bit channel that indicates the number of words to transfer (value+1).

read_n_write : 1-bit channel indicates a read (when 1) or write transaction (when 0).

begin_transaction : 1-bit channel that indicates the beginning of a transaction. reduation

end_transaction : 1-bit channel that indicates the end of a transaction.

data_valid : 1-bit channel that indicates a valid datum on the address _data lines. S
busy : 1-bit channel that indicates that the receiver cannot process yet the datum. Advanced
error : 1-bit channel that indicates a bus error. DMA

All signals (50-bits) are active-high and should be forced to 0 when not in use (due to the or-gates).

Bus architectures

Channel: _master _ slave
Bus-in Bus-out Bus-in Bus-out
address_data required | required required | required
byte enables X required required X
burst_size X required required X
read_n_write X required required X
begin_transaction X required required X
end_transaction required | required required | required
data_valid required | required required | required
busy required | optional required | optional
error required X X optional

Rev.1.0 - 55

Arbiter

Master

Slave

olk /AL R /I R /A S /A I /A I /A I I I I /I D O I I
error I I I I I I I
granted /\ I/ f/—_f I I I/ [\ I [\
request / \ I/ 1 \ // // // // / \ // / \
address_data 0 XAddr)Data)]/ o i ojf i o_J Data o
byte_enables 0 I o I Ji J_o I o J 0
burst_size i I i I q i I
read_n_write // // // // // // //
begin_transaction /_\ // // // /_\ // // // /_\ // /_\
end_transaction [J I I I [/ J [[\
data_valid [I I [I / \ I [T\
busy I I I I I I I
address_data I Ji I Ji q I Ji
end_transaction // // // // // // //
data_valid // // // // // // //
busy I I I I I I / \ I
error I I I I I I I [\

explanation shortest write transaction X general write transaction X busy extended write transaction X error in write transaction

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

At the beginning of the transaction (yellow) all information is provided.
In case of an “error” the master must end the transaction.

Note: The minimal time of a transaction is 5 clock-cycles.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures

Basics
Advanced

DMA

Rev.1.0 - 5.6

I
3 granted /_\
request __/—\
address_data
byte_enables 0)%(0
-~ burst_size 0 0
% read_n_write
= begin_transaction /_\
end_transaction /____\
data_valid / / \ [\ [\
busy
address_data 0
end_transaction
§ data_valid
busy [\ [\
error

explanation busy wait (1) _)__burst busywait(5) _ J____ NOP NOP__ Yburst}(end) IDLE

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

of these signals).
Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics
Advanced

DMA

Rev.1.0 - 57

Arbiter

Master

Slave

clk
error

granted

address_data
byte_enables
burst_size
read_n_write
begin_transaction
end_transaction
data_valid

busy

address_data
end_transaction
data_valid

busy

error

/ARy ARy ARy ARy A RERy AR RNy AR RN N RN
I I I I I I I
/\ I 7\ f I I I [\ I [\
request / \ I/ H \ // // // // / \ // / \
0 i off i Ji J o Ji Ji 0
0 I off I Ji J o i Ji 0
Ji i Ji i Jo i i
/\ I I 7 __J I I /\ I [\
/\ I I Lr—__f I I /\ I [\
I I I I I I I [\
I I I I I I I
I I I I/ I I / \ I
0 I Ji i Ji I o YO Data X Ji 0
[I I I f/_J [
[J I I f__f I / \ I
I I I I I I I
I I I I I I I [\
shortest read transaction X general read transaction X busy extended read transaction error in read transaction

explanation

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version

of these signals).

In case of an “error” the master must end the transaction. Otherwise the slave ends the transaction.
Note: The minimal time of a transaction is 5 clock-cycles.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures

Basics
Advanced

DMA

Rev.1.0 - 5.8

cPiL

Embedded system
design

Dr. Theo Kluter

Arbiter

granted / \

request / \

address_data 0 Add 0

Introduction

byte_enables 0

burst_size 0 Bus architectures

d it A
read_n_write Basics

1 J00E

Master

begin_transaction Advanced

end_transaction

DMA

data_valid

busy /—\ /—\

address_data 0 Datf (DaXDatd)7fDatd Dats X777 7ADa6) 7777/ \Dat7) 0
end_transaction /_\

data_valid / __/ \ /_\ /_\

busy

Slave

error

explanation busy wait (1) _)__burst busywait(5) _ J____ NOP NOP__ Yburst}(end) IDLE

The signals above are the signals seen at the Bus-out ports (the Bus-in ports see the or-ed version
of these signals).

Note: the minimal time of a transaction is 3+NrOfWords clock-cycles.

Rev.1.0 - 5.9

cPiL

Embedded system

design
L T T N I N I Y N N I I I O O O I O O
3 error I\ Dr. Theo Kluter
g granted /—\
request _/—\
address_data 0 0
byte_enables 0)%(0 Introduction
s burst_size 0 0 Bus architectures
& read_n_write)
= begin_transaction /—\ izslac:ced
end_transaction /—\
data_valid DMA
busy /—\ /—\
address_data 0 Datt XDatoXDat3}77fData Dats K7777777777Dat6} 0
end_transaction
§ data_valid / _/ \ /—\
busy
error
explanation busy wait (1))_ burst NOP)burst{___ busywait(5)) NOP IDLE

In case an error is detected the master must end the transaction.

If the slave sees an end of transaction before the burst/single read is finished it must end the
ongoing transaction and release the bus.

Rev.1.0 - 5.10

Crossbar architectures

» s this the only bus architecture, of course not, this is the one we started out with (the most simple
one).

» We will visit some more advanced architecture, the first one is the cross-bar (sometimes referred to
as point-to-point):

Crossbar&manager

Bus-In Bus-out request Bus-In request || request || request |

Bus-In Bus-out Bus-In Bus-out Bus-In Bus-out Bus-In

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures

Basics

DMA

Rev.1.0 - 5.11

Ring architectures

» The next one is the ring architecture.
» This architecture is sometimes also called streaming interface or network-on-chip (NOC).

ﬁ

Bus-out Bus-In

ﬁ

Bus-out Bus-In

ﬁ

Bus-out Bus-In

Bus-In Bus-out

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures

Basics

DMA

Rev.1.0 - 5.12

There exists a lot of different on-chip bus-systems that apply one or multiple of the shown
topologies, some well known are:

Arm’s AMBA bus that has all of the above topologies.

IBM’s CoreConnect bus that is a bus-architecture.

Altera/Intels Avalon bus that is a special version of a cross-bar architecture.

Open Source Hardware’s Wishbone bus that allows for all of the above architectures.

Now that we know how to transfer information let us look into some constructs that are often

voidx memset (voidx dest, register int val, register size_t len);
void* memmove (voidx sl1, const wvoidx s2, size_t n);
voidx memcpy (voidx dst0, const voidx srcO, size_t length);

used:

cPiL

Embedded system

design

Dr. Theo Kluter

Introduction

Bus architectures

Basics

Advanced

DMA

Rev.1.0 - 5.13

https://developer.arm.com/architectures/system-architectures/amba/specifications?_ga=2.9154486.2005361263.1582973182-33701517.1575803538
https://web.archive.org/web/20090129183058/http://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf

I custom instruction interface

IJ LI SPI-flash interface
I I

4 kByte
Scratch pad
memory

VGA text and OpenRISC1000 ISA-based
graphics 5-stage pipelined architecture
controller (or1420)

Instruction cache |
bus I
arbiter Simple 32-bit based bus architecture
8 kByte (max)
BIOS camera SDRAM
Read Only Memory interface Controller

These constructs execute very inefficient on a CPU...

void*x memset (voidx dest,
void* memmove (voidx s1,
voidx memcpy (voidx dstO,

register int val, register size_t len);

const wvoidx s2, size_t n);
const voidx srcO, size_t length);

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics

Advanced

DMA

Rev.1.0 - 5.14

cPiL

Embedded system
design

Dr. Theo Kluter

Arguably one of the reasons to accelerate such operations let to the invention of the Direct Memory Introduction
Access (DMA). Bus architectures
Basics
A DMA-controller is a host that is connected to the bus. Advanced
DMA

There are basically two types of DMA-controllers:

General purpose DMA-controllers.
Build-in peripheral DMA-controller.

We start with the general purpose DMA-controller.

Rev.1.0 - 5.15

Direct Memory Access (DMA)

| request | | Bus-in || Bus-out| request | | Bus-in || Bus-out
]

__

T

Bus-In Bus-out Bus-In Bus-out Bus-In Bus-out

» The general purpose DMA-controller basically has two phases of transfer:

1. Transfer the data from the source device to an internal buffer.
2. Transfer the data from the internal buffer to the destination device.

Both transfers are done in a programmable burst-size for efficiency (remember the SDRAM).

» Note: In case of a cross-bar where the source and destination are not the same slaves, or NOC
bus-architecture, both phases can be performed in parallel (timely-shifted).

» The build-in peripheral DMA-controller only has a single phase, either a transfer to a destination
device, or a transfer from a source device.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction

Bus architectures
Basics
Advanced

Rev.1.0 — 5.16

cPiL

Embedded system

design
Dr. Theo Kluter
To be able to use the DMA-controller, it has to be set up by the CPU.
The minimal information the DMA-controller needs to have/provide is: ntroduction
The source Address. Bus architectures

The destination Address. ijj‘::ced
The amount of data to transfer.

The mode of operation.

The amount of data already transferred.

The status of the controller.

The interrupt control (later more on this).

DMA

This information can either be provided in special purpose registers of the CPU, or

as a register map in the memory region (hence the DMA-controller is both a master and a slave
device).

Rev.1.0 - 5.17

cPiL

Embedded system

design
Dr. Theo Kluter
A DMA-controller supports different modes of operations:
Single address to single address: In this case both the source- and destination address are Introduction
kep’[constant. BBuslarchitectures
Single address to memory block: In this case the source address is kept constant, and the v
destination address is auto-incremented. S

Memory block to single address: In this case the source address is auto-incremented, and
the destination address is kept constant.

Memory block to memory block: In this case both the source- and destination address are
auto-incremented.

Depending on the source and destination device one of these modi might be required.
But how does the CPU know when the operation is completed?

Rev.1.0 - 5.18

cPiL

Embedded system

design
Dr. Theo Kluter
As the DMA-controller provides (a) status register(s), the CPU can know the status of the
DMA-transfer.
By reading this register over and over again, it can see if the transfer has finished. Introduction
We call this method polling. BBL;SSi:‘SrCh”eCWeS
Of course this method is very inefficient as: Advanced

DMA
Each request (poll) consumes energy.

The CPU reads often exactly the same datum (busy).
The CPU is busy with waiting instead of doing some "real work", defeating partially the
purpose of a DMA-controller.

A solution to this might be to poll with lower frequency, however, this could lead to:

Loosing data, as the next DMA-transfer is not started fast enough.
Loosing performance, as the DMA-controller is ready directly after a poll.

Rev.1.0 - 5.19

cPiL

Embedded system

design
A better method is the interrupt driven approach. or. Theo Kuter
In this case the DMA-controller is programmed by the CPU to raise an interrupt (IRQ) the moment
there is an error and/or the transfer has finished.
Introduction

An interrupt-service routine can then handle the next transfer.

Bus architectures

Also this method can have some draw-backs, as: Basics

Advanced

1. We have an interrupt latency (the time it takes between the IRQ and the CPU starts the e
interrupt-service routine).

2. We have an interrupt-service-routine latency (the number of cycles the CPU requires to take
the exception, run the interrupt-service routine, and return to the interrupted program).

3. We have the IRQ-repetition rate (the frequency the IRQ’s come in).

What can happen is:

The CPU is only handling IRQ’s, hence not doing anything any more on the main program.
IRQ’s are "missed" as the CPU is still in an interrupt-service-routine when the next IRQ
comes in.

The latency’s are longer than the time it takes to copy the data by the CPU, hence we "loose".

Rev.1.0 - 5.20

	Introduction
	Bus architectures
	Basics
	Advanced

	DMA

