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Once we finished our architectural choices, we have to get the system running at the required
frequency.

We have to go into a phase which is called timing closure.

To fully understand the timing closure we have first to go into some details of the final ASIC to be
able to understand what is going on.
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All our designs we design synchronously using the Register Transfer Level (RTL) methodology.

Hence all our circuits look like the simplified circuit above, where all flipflops are connected to the
same clock source (throughout our chip).

We know that due to transistor capacitance’s all gates have a gate delay that causes hazards.
The longest combinational path hence represents the critical path.
The one thing that we did not consider yet is the question: What happens with the clock line?
Just putting a wire over the whole chip probably will not work as:

1. The clock line would have a big capacitive load.

2. The RTL-design method assumes that the rising edge of the clock arrives at all flipflops at the

same time.
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Let’s look into the first point: reducing the big capacitive load:

Using a binary tree of inverters will reduce the load on each output, however, what is the result of
this operation?

We will introduce at the flipflop levels a clock-skew due to the fact that not all inverters have the
same delay and line-length-mismatches.

We also will have a jitter.
Note that we can also have a negative skew that reduces the influence of the jitter.
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Reducing jitter and skew
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Clock insertion point

» One of the methods is to make a clock tree in form of a H-tree.

» However, we still have a clock-uncertainty of approx. 2 - tskew + Hitter-
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Remember: a real flipflop has a setup and hold time in which the D-input needs to be kept stable
(otherwise the flipflop goes into meta stable state).

So which kind of situation we now can have in the real-world taking into account the clock tree:

1. The path is too fast (race-condition).
2. The path is too slow (frequency cannot be met).
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Putting it all together gives us the above timing diagram.
Let’s take as example a shift-register, there are now two situation that can happen:

1. The output of flipflop ¢ changes before the setup-time of flipflop B, hence we have a
functional error as the data is too early available!

2. The output of flipflop ¢ changes during fpgtapie Of flipflop B which goes in meta stable state
(Note that this situation will always happen independent of the clock frequency!).

This problem can be solved by inserting a delay between the flipflops ¢ and B. Fortunately this is
done for us by the synthesis and/or P&R-tools.

Rev.1.0 - 47



cPiL

Embedded system
logic Dr. Theo Kluter
tDstable B —ii _>\/
S
I Introduction

tlclock to_output

A T\ /

/ Clock Trees
B
Timing closure
z Fined-grain paralyzing
Pipelining
> > » setup Multi-cycling
t tcritical_path,max t Conclusion

uncertainty uncertainty

The other situation is shown above (hence t, ciock = Iciock to_outout + teritical,max + tsetup + tuncertainty)-

We know that during the critical path time we may have hazards on the D-input of flipflop c, and
that the correct value is available after ftica path-

Note that the synthesizer and/or P&R-tool might insert in front of the combinational logic some
inverters to prevent flipflop ¢ from going into meta stable state due to tpsiape Violation caused by

hazards!
Timing is not met when there exists at least one combinational logic path with a

Lcritical _path > leritical _path,max -
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Timing closure is the process of getting all fitica paths < eritical_path, max-
But that’s not all, we have two more timings that need attention, namely:

1. The latest arrival of an external input signal (f5;) to the flipflop with respect to the positive

clock edge.
2. The latest arrival of the signal from a flipflop to the edge of the package (t5,) with respect to

the positive clock edge.
These two numbers depend on the chips connected to this one and are in general more difficult to
determine. N
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The later aspect is “easily” solved by not using any combinational logic between the input(s) and
the fist flipflop(s) and no combinational logic between the last flipflop(s) and the output(s).

This has the advantage that you do not have any hazards outside of your chip (good thing!).
However, this is not always possible, in this case more advanced methods are required like:

1. Usage of a PLL/DLL to synchronize the attached chip with yours (think of DDR memory).
2. Adding extra delays in some of the outputs to meet external timings.

Note: even your internal delays due to the clock-tree may impose problems.....
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The on-chip aspect has some methods that you can use, but be aware, the synthesis tool might be
more “intelligent” than you are (compare the compiler for a programming language).
These methods are more for things that the synthesizer does not know about (for example what
does your program do):

Fined-grain paralyzing.

Multi-cycling.

Pipelining.
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As example we take a 4-bit carry-ripple adder (CRA).
Assume that this adder is in the critical path.

The critical path from this adder goes from Ccin through the
and- and or-gates up to Cout/s3.

So what can we do to speed-up this circuit, there are basically
three methods:

Trading-off bigger area/energy consumption against
speed.

Trading-off speed against area/energy consumption.
Trading-off latency against speed.

cPiL

Embedded system
design

Dr. Theo Kluter

Introduction
Clock Trees

Timing closure
Fined-grain paralyzing
Pipelining
Multi-cycling

Conclusion

Rev.1.0 - 4.12



B3
A3

B2
A2

Bl
Al

BO
A0

Cin

)

[

0> cout

7

: 0DSZ

[

I

[

In this method we cut the circuit
(critical path) in 2 (or more) parts.

The above part is duplicated and
calculates the two answers
depending the result of the carry.

Finally the real carry selects the
correct result.

We now have a carry select adder
(CSA) that is almost twice as fast.
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In this method we divide the critical
path in 2 (or more) parts and place

a row of flipflops between the parts.

The advantage is that we can do a
calculation each cycle.

However, we introduce a latency.
This could cause problems in case
of a feed-back loop.
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In this method we calculate at each
cycle one bit.

Of course this has an impact on the
performance, as now the addition
takes 4 cycles instead of a single
cycle.

But think of the alternative, slowing
down all the other functions as we
need to reduce the maximum
frequency of the CPU.

Very often we perform a radix-N
multi-cycle operation where at each
cycle N-bits are determined.

Of course, when 2 and B are
guaranteed to be constant between
start and done, we can replace
the input shift-registers by a
multiplexer.
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We have seen the details that determine the maximum speed with which we can safely operate a
circuit.

Clock Trees

Timing closure

We also have visited three methods how to speed-up a critical path. ;pfgg paralyzng
Each of these methods makes a trade-off between area, energy consumption, complexity and Multreyeling
speed. Conclusion

It depends on the requirements which of these methods can be applied to a given hot-spot.

Rev.1.0 - 4.16



	Introduction
	Clock Trees
	Timing closure
	Fined-grain paralyzing
	Pipelining
	Multi-cycling

	Conclusion

