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Introduction
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▶ Once we finished our architectural choices, we have to get the system running at the required
frequency.

▶ We have to go into a phase which is called timing closure.

▶ To fully understand the timing closure we have first to go into some details of the final ASIC to be
able to understand what is going on.
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Remember: RTL design

tclock_to_output

tcritical_path

D QD Q D Q

tclock_to_output tclock_to_output
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logic
combin.transition
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▶ All our designs we design synchronously using the Register Transfer Level (RTL) methodology.

▶ Hence all our circuits look like the simplified circuit above, where all flipflops are connected to the
same clock source (throughout our chip).

▶ We know that due to transistor capacitance’s all gates have a gate delay that causes hazards.

▶ The longest combinational path hence represents the critical path.

▶ The one thing that we did not consider yet is the question: What happens with the clock line?

▶ Just putting a wire over the whole chip probably will not work as:

1. The clock line would have a big capacitive load.
2. The RTL-design method assumes that the rising edge of the clock arrives at all flipflops at the

same time.
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Avoiding big capacitive load
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▶ Let’s look into the first point: reducing the big capacitive load:

▶ Using a binary tree of inverters will reduce the load on each output, however, what is the result of
this operation?

▶ We will introduce at the flipflop levels a clock-skew due to the fact that not all inverters have the
same delay and line-length-mismatches.

▶ We also will have a jitter.

▶ Note that we can also have a negative skew that reduces the influence of the jitter.
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Reducing jitter and skew

Clock insertion point

Inverters

▶ One of the methods is to make a clock tree in form of a H-tree.

▶ However, we still have a clock-uncertainty of approx. 2 · tskew + tjitter .
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Remember: Setup and hold
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▶ Remember: a real flipflop has a setup and hold time in which the D-input needs to be kept stable
(otherwise the flipflop goes into meta stable state).

▶ So which kind of situation we now can have in the real-world taking into account the clock tree:

1. The path is too fast (race-condition).
2. The path is too slow (frequency cannot be met).
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Race condition
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▶ Putting it all together gives us the above timing diagram.

▶ Let’s take as example a shift-register, there are now two situation that can happen:

1. The output of flipflop C changes before the setup-time of flipflop B, hence we have a
functional error as the data is too early available!

2. The output of flipflop C changes during tDstable of flipflop B which goes in meta stable state
(Note that this situation will always happen independent of the clock frequency!).

▶ This problem can be solved by inserting a delay between the flipflops C and B. Fortunately this is
done for us by the synthesis and/or P&R-tools.
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Timing not met

thold

tsetup

tuncertainty tuncertainty

t
clock_to_output

t
clock_to_output

tcritical

B

A

C

B C

t

Combin.
logic

D Q D Q

tcritical_path,max

tDstable

▶ The other situation is shown above (hence tp,clock = tclock_to_output + tcritical,max + tsetup + tuncertainty ).

▶ We know that during the critical path time we may have hazards on the D-input of flipflop C, and
that the correct value is available after tcritical_path.

▶ Note that the synthesizer and/or P&R-tool might insert in front of the combinational logic some
inverters to prevent flipflop C from going into meta stable state due to tDstable violation caused by
hazards!

▶ Timing is not met when there exists at least one combinational logic path with a
tcritical_path > tcritical_path,max .
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Timing closure
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▶ Timing closure is the process of getting all tcritical_paths < tcritical_path,max .

▶ But that’s not all, we have two more timings that need attention, namely:

1. The latest arrival of an external input signal (tlai ) to the flipflop with respect to the positive
clock edge.

2. The latest arrival of the signal from a flipflop to the edge of the package (tlao) with respect to
the positive clock edge.

▶ These two numbers depend on the chips connected to this one and are in general more difficult to
determine.
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Timing closure off-chip

thold

tsetup

tuncertainty tuncertainty

t
clock_to_output

t
clock_to_output

tcritical

tlai tlao

B

A

C

B C

t

Combin.
logic

D Q D Q

tcritical_path,max

off−chip off−chip

logic
combinational

Avoid any

▶ The later aspect is “easily” solved by not using any combinational logic between the input(s) and
the fist flipflop(s) and no combinational logic between the last flipflop(s) and the output(s).

▶ This has the advantage that you do not have any hazards outside of your chip (good thing!).

▶ However, this is not always possible, in this case more advanced methods are required like:

1. Usage of a PLL/DLL to synchronize the attached chip with yours (think of DDR memory).
2. Adding extra delays in some of the outputs to meet external timings.

▶ Note: even your internal delays due to the clock-tree may impose problems.....
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Timing closure on-chip
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▶ The on-chip aspect has some methods that you can use, but be aware, the synthesis tool might be
more “intelligent” than you are (compare the compiler for a programming language).

▶ These methods are more for things that the synthesizer does not know about (for example what
does your program do):

▶ Fined-grain paralyzing.
▶ Multi-cycling.
▶ Pipelining.
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Speeding-up your circuit

b0 S0b0A0
b0B0

b0B1
b0 S1b0A1
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b0 S3b0A3

b0Cin

b0 Cout

▶ As example we take a 4-bit carry-ripple adder (CRA).

▶ Assume that this adder is in the critical path.

▶ The critical path from this adder goes from Cin through the
and- and or-gates up to Cout/S3.

▶ So what can we do to speed-up this circuit, there are basically
three methods:

▶ Trading-off bigger area/energy consumption against
speed.

▶ Trading-off speed against area/energy consumption.
▶ Trading-off latency against speed.



Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.13

Fined-grain paralyzing
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▶ In this method we cut the circuit
(critical path) in 2 (or more) parts.

▶ The above part is duplicated and
calculates the two answers
depending the result of the carry.

▶ Finally the real carry selects the
correct result.

▶ We now have a carry select adder
(CSA) that is almost twice as fast. b0A0
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Pipelining
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▶ In this method we divide the critical
path in 2 (or more) parts and place
a row of flipflops between the parts.

▶ The advantage is that we can do a
calculation each cycle.

▶ However, we introduce a latency.
This could cause problems in case
of a feed-back loop.
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Multi-cycling
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▶ In this method we calculate at each

cycle one bit.

▶ Of course this has an impact on the
performance, as now the addition
takes 4 cycles instead of a single
cycle.

▶ But think of the alternative, slowing
down all the other functions as we
need to reduce the maximum
frequency of the CPU.

▶ Very often we perform a radix-N
multi-cycle operation where at each
cycle N-bits are determined.

▶ Of course, when A and B are
guaranteed to be constant between
start and done, we can replace
the input shift-registers by a
multiplexer.
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Conclusion

▶ We have seen the details that determine the maximum speed with which we can safely operate a
circuit.

▶ We also have visited three methods how to speed-up a critical path.

▶ Each of these methods makes a trade-off between area, energy consumption, complexity and
speed.

▶ It depends on the requirements which of these methods can be applied to a given hot-spot.
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