
Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.1

Lecture 4

Embedded system design

Timing closure

CS476 - ESD
March 11, 2024

Dr. Theo Kluter
EPFL

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.2

Introduction

custom instruction interface

OpenRISC1000 ISA−based

5−stage pipelined architecture

(or1420)

graphics

controller

VGA text and

RS232

UART

8 kByte (max)

BIOS

Read Only Memory
Controller

SDRAMcamera

interface

bus

arbiter Simple 32−bit based bus architecture

Instruction cache

Scratch pad

memory

4 kByte

SPI−flash interface

▶ Once we finished our architectural choices, we have to get the system running at the required
frequency.

▶ We have to go into a phase which is called timing closure.

▶ To fully understand the timing closure we have first to go into some details of the final ASIC to be
able to understand what is going on.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.3

Remember: RTL design

tclock_to_output

tcritical_path

D QD Q D Q

tclock_to_output tclock_to_output

tcritical_path

logic
combin.transition

logic

▶ All our designs we design synchronously using the Register Transfer Level (RTL) methodology.

▶ Hence all our circuits look like the simplified circuit above, where all flipflops are connected to the
same clock source (throughout our chip).

▶ We know that due to transistor capacitance’s all gates have a gate delay that causes hazards.

▶ The longest combinational path hence represents the critical path.

▶ The one thing that we did not consider yet is the question: What happens with the clock line?

▶ Just putting a wire over the whole chip probably will not work as:

1. The clock line would have a big capacitive load.
2. The RTL-design method assumes that the rising edge of the clock arrives at all flipflops at the

same time.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.4

Avoiding big capacitive load

tskew
tjitter

tjitter
tskew

A

B

A

t

A

t

C

B

C

▶ Let’s look into the first point: reducing the big capacitive load:

▶ Using a binary tree of inverters will reduce the load on each output, however, what is the result of
this operation?

▶ We will introduce at the flipflop levels a clock-skew due to the fact that not all inverters have the
same delay and line-length-mismatches.

▶ We also will have a jitter.

▶ Note that we can also have a negative skew that reduces the influence of the jitter.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.5

Reducing jitter and skew

Clock insertion point

Inverters

▶ One of the methods is to make a clock tree in form of a H-tree.

▶ However, we still have a clock-uncertainty of approx. 2 · tskew + tjitter .

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.6

Remember: Setup and hold

tclock_to_output

tsetup thold
tclock_to_output

D Q

t

Q

D

clock

clock
t

D

Q

▶ Remember: a real flipflop has a setup and hold time in which the D-input needs to be kept stable
(otherwise the flipflop goes into meta stable state).

▶ So which kind of situation we now can have in the real-world taking into account the clock tree:

1. The path is too fast (race-condition).
2. The path is too slow (frequency cannot be met).

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.7

Race condition

thold

tsetup

t
clock_to_output

D Q

t
clock_to_output

D Q

B

A

C

t

tuncertainty

C BtDstable

▶ Putting it all together gives us the above timing diagram.

▶ Let’s take as example a shift-register, there are now two situation that can happen:

1. The output of flipflop C changes before the setup-time of flipflop B, hence we have a
functional error as the data is too early available!

2. The output of flipflop C changes during tDstable of flipflop B which goes in meta stable state
(Note that this situation will always happen independent of the clock frequency!).

▶ This problem can be solved by inserting a delay between the flipflops C and B. Fortunately this is
done for us by the synthesis and/or P&R-tools.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.8

Timing not met

thold

tsetup

tuncertainty tuncertainty

t
clock_to_output

t
clock_to_output

tcritical

B

A

C

B C

t

Combin.
logic

D Q D Q

tcritical_path,max

tDstable

▶ The other situation is shown above (hence tp,clock = tclock_to_output + tcritical,max + tsetup + tuncertainty).

▶ We know that during the critical path time we may have hazards on the D-input of flipflop C, and
that the correct value is available after tcritical_path.

▶ Note that the synthesizer and/or P&R-tool might insert in front of the combinational logic some
inverters to prevent flipflop C from going into meta stable state due to tDstable violation caused by
hazards!

▶ Timing is not met when there exists at least one combinational logic path with a
tcritical_path > tcritical_path,max .

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.9

Timing closure

thold

tsetup

tuncertainty tuncertainty

t
clock_to_output

t
clock_to_output

tcritical

tlai tlao

B

A

C

B C

t

Combin.
logic

D Q D Q

tcritical_path,max

off−chip off−chip

▶ Timing closure is the process of getting all tcritical_paths < tcritical_path,max .

▶ But that’s not all, we have two more timings that need attention, namely:

1. The latest arrival of an external input signal (tlai) to the flipflop with respect to the positive
clock edge.

2. The latest arrival of the signal from a flipflop to the edge of the package (tlao) with respect to
the positive clock edge.

▶ These two numbers depend on the chips connected to this one and are in general more difficult to
determine.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.10

Timing closure off-chip

thold

tsetup

tuncertainty tuncertainty

t
clock_to_output

t
clock_to_output

tcritical

tlai tlao

B

A

C

B C

t

Combin.
logic

D Q D Q

tcritical_path,max

off−chip off−chip

logic
combinational

Avoid any

▶ The later aspect is “easily” solved by not using any combinational logic between the input(s) and
the fist flipflop(s) and no combinational logic between the last flipflop(s) and the output(s).

▶ This has the advantage that you do not have any hazards outside of your chip (good thing!).

▶ However, this is not always possible, in this case more advanced methods are required like:

1. Usage of a PLL/DLL to synchronize the attached chip with yours (think of DDR memory).
2. Adding extra delays in some of the outputs to meet external timings.

▶ Note: even your internal delays due to the clock-tree may impose problems.....

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.11

Timing closure on-chip

thold

tsetup

tuncertainty tuncertainty

t
clock_to_output

t
clock_to_output

tcritical

tlai tlao

B

A

C

B C

t

Combin.
logic

D Q D Q

tcritical_path,max

off−chip off−chip

▶ The on-chip aspect has some methods that you can use, but be aware, the synthesis tool might be
more “intelligent” than you are (compare the compiler for a programming language).

▶ These methods are more for things that the synthesizer does not know about (for example what
does your program do):

▶ Fined-grain paralyzing.
▶ Multi-cycling.
▶ Pipelining.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.12

Speeding-up your circuit

b0 S0b0A0
b0B0

b0B1
b0 S1b0A1

b0B2
b0A2 b0 S2

b0B3
b0 S3b0A3

b0Cin

b0 Cout

▶ As example we take a 4-bit carry-ripple adder (CRA).

▶ Assume that this adder is in the critical path.

▶ The critical path from this adder goes from Cin through the
and- and or-gates up to Cout/S3.

▶ So what can we do to speed-up this circuit, there are basically
three methods:

▶ Trading-off bigger area/energy consumption against
speed.

▶ Trading-off speed against area/energy consumption.
▶ Trading-off latency against speed.

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.13

Fined-grain paralyzing

b0 S0b0A0
b0B0

b0B1
b0 S1b0A1

b0B2
b0A2 b0 S2

b0B3
b0 S3b0A3

b0Cin

b0 Cout

▶ In this method we cut the circuit
(critical path) in 2 (or more) parts.

▶ The above part is duplicated and
calculates the two answers
depending the result of the carry.

▶ Finally the real carry selects the
correct result.

▶ We now have a carry select adder
(CSA) that is almost twice as fast. b0A0

b0A1
b0B1

b0Cin

b0B0

b0A2

b0A3

b0B2

b0B3

0 1

0
MUX

0
MUX

0
MUX b0 S2

b0 S3

b0 Cout

b0 S0

b0 S1

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.14

Pipelining

b0 S0b0A0
b0B0

b0B1
b0 S1b0A1

b0B2
b0A2 b0 S2

b0B3
b0 S3b0A3

b0Cin

b0 Cout

▶ In this method we divide the critical
path in 2 (or more) parts and place
a row of flipflops between the parts.

▶ The advantage is that we can do a
calculation each cycle.

▶ However, we introduce a latency.
This could cause problems in case
of a feed-back loop.

b0Cin

b0A1

b0B0
b0A0

b0B1

b0B3

b0A3

b0B2

b0A2

b0clock

0

R

SD Q

0

R

SD Q

b0 S3

b0 S2

b0 S1

0

R

SD Q

0

R

SD Q

b0 Cout

0

R

SD Q

0

R

SD Q

0

R

SD Q

b0 S0

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.15

Multi-cycling

b0 S0b0A0
b0B0

b0B1
b0 S1b0A1

b0B2
b0A2 b0 S2

b0B3
b0 S3b0A3

b0Cin

b0 Cout
▶ In this method we calculate at each

cycle one bit.

▶ Of course this has an impact on the
performance, as now the addition
takes 4 cycles instead of a single
cycle.

▶ But think of the alternative, slowing
down all the other functions as we
need to reduce the maximum
frequency of the CPU.

▶ Very often we perform a radix-N
multi-cycle operation where at each
cycle N-bits are determined.

▶ Of course, when A and B are
guaranteed to be constant between
start and done, we can replace
the input shift-registers by a
multiplexer.

0
MUX

0
MUX

0
MUX

b0Cin
b0start

b0B0

b0clock

b0A0

0
MUX

0

R

SD Q

0

R

SD Q

0

R

SD Q
0
MUX

b0B2

b0B1

b0B3

0

R

SD Q
0
MUX

0

R

SD Qb0A3

b0A1
0
MUX

b0A2

0

R

SD Q

b0 Cout

0
MUX

0

R

SD Q

b0 S3
0

R

SD Q

0

R

SD Q

0
MUX

0

R

SD Q

b0 S0

0
MUX

b0 S1
0
MUX

0

R

SD Q

b0 S2
0
MUX

0

R

SD Q

0

R

SD Q

0

R

SD Q b0 done

Embedded system
design

Dr. Theo Kluter

Introduction

Clock Trees

Timing closure
Fined-grain paralyzing

Pipelining

Multi-cycling

Conclusion

Rev. 1.0 – 4.16

Conclusion

▶ We have seen the details that determine the maximum speed with which we can safely operate a
circuit.

▶ We also have visited three methods how to speed-up a critical path.

▶ Each of these methods makes a trade-off between area, energy consumption, complexity and
speed.

▶ It depends on the requirements which of these methods can be applied to a given hot-spot.

	Introduction
	Clock Trees
	Timing closure
	Fined-grain paralyzing
	Pipelining
	Multi-cycling

	Conclusion

