
Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.1

Lecture 3

Embedded system design

Custom instructions

CS476 - ESD
March 10, 2024

Dr. Theo Kluter
EPFL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.2

Acceleration

Camera

interface

SDRAM

controller

SDRAM

Instruction

cache

controller

VGA

OpenRISC processor

74.25MHz

15FPS (640x480)

▶ In the first week we have seen that our system cannot calculate Sobel in real time.

▶ Last week we saw on-chip memories and their usage.

▶ We are now going to look into the details how we can add hardware to aid the software.

▶ And we will start off with the custom instructions (CI’s).

▶ To understand the concept of custom instructions we have to dive a bit into the architecture of the
µC.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.3

Arithmetic Logic Unit

>
=
<

c in

c out

c in

c out

0

MUX

00000000

00000000

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

b01000 Cflags

0

1

2

h00000000 Rd

3

h00000000Cimm

b0Ccsel

b0Cminus

b000Copp

h00000000Rb

0
MUX

h00000000Ra

h00000000 Mdata

h00000000 Maddress

4-0

3
1

4

▶ The Arithmetic Logic Unit (ALU) is the heart of the µC.

▶ It receives two data (Ra, Rb) from the register-file and produces one result (Rd) to the register-file.

▶ The operation done is selected by the control signals (Cimm, Ccsel, Cminus, Copp), that are set
depending the instruction.

▶ Note that only one operation can be selected, although all operations are performed.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.4

Arithmetic Logic Unit

▶ Assume you have following c-program:

result = (((rgb565 & 0xF800) >> 8) * 5) >> 4;

▶ This would result in following four operations on the ALU:

l.andi r5,r5,0xF800 # rgb565 & 0xF800
l.sri r5,r5,8 # (rgb565 & 0xF800) >> 8
l.muli r5,r5,5 # ((rgb565 & 0xF800) >> 8) * 5
l.sri r5,r5,4 # (((rgb565 & 0xF800) >> 8) * 5) >> 4

▶ However, doing the same thing in hardware is way simpler:

h0000rgb565
10-0

15-11

0 2-0

7-3

is just wiring
(rgb565&0xF800)»8

7-0

9-8

1-0

9-2

0

0
c in

c out

0

9-0

10

3-0

10-4 b0000000 result

a*5 = (a + a«2)
only a 10-bit adder!

b»4, again
just wiring!

▶ And this can be executed in a single cycle, a speed-up of 4x!

▶ This is the basic idea behind the custom instruction (there are of course other applications for it).

▶ Let’s first look into the hardware details.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.5

Custom instruction hardware interface

▶ The minimal set of signals that the µC provides us with to create custom instruction hardware is
(note: input/output is from the perspective of the µC):

Name: Direction: #bits: Function:
ciStart output 1 Indicates an active custom instruction.
ciN output 8 The custom instruction identifier code.
ciDataA output 32 The value of register A (Ra) going into the ALU/CI.
ciDataB output 32 The value of register B (Rb) going into the ALU/CI.
ciResult input 32 The result value to be written to the register file (Rd).
ciDone input 1 The signal indicating that the CI performed it’s operation.

▶ The ciDone signal is a very important signal. If the µC activates a custom instruction by the
ciStart signal it will wait (stall) till an activation of the ciDone. If the ciDone is not activated your
system will DEADLOCK!

▶ The signal ciN indicates which custom instruction is activated. As this signal is 8-bit wide we can
implement up to 256 custom instructions.

▶ So how to combine these different custom instructions in hardware...

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.6

Custom instruction hardware architecture

h00ciN
h00000000ciDataA
h00000000ciDataB

b0ciStart
b0 ciDone

h00000000 ciResult

ciStart

ciN

ciDataA

ciDataB

ciDone

ciResult

ci

CI_ID_0x0A

ciStart

ciN

ciDataA

ciDataB

ciDone

ciResult

ci

CI_ID_0x00

ciStart

ciN

ciDataA

ciDataB

clock

reset

ciDone

ciResult

ciSync

CI_ID_0x17

b0clock
b0reset

▶ We can implement multiple custom
instructions. Why not "multiplexing" the
ciDone and the ciResult signals by using
the ciN signal?

▶ Very simple: multiplexers have more logic as
simple or-gates (or and-gates, the
alternative)...

▶ This poses, however, some restrictions that we
have to take into account when designing a
custom instruction module....

▶ Let’s look into the timing requirements of our
custom instruction hardware.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.7

Custom instruction hardware architecture

clock

ciStart

ciN 0x15 0x17 0x17

ciDataA Ra Ra Ra

ciDataB Rb Rb Rb

ciDone

ciResult 0 Rd 0 Rd 0

incorrect id single cycle multi cycle

u
C

C
I

▶ Assume that the custom instruction hardware has the custom instruction identifier 0x17.

▶ When the ciN does not correspond to the custom instruction identifier no done is generated.

▶ Otherwise we can have a single-cycle, or a multi-cycle response.

▶ Note that in case of a multi-cycle response the µC is stalled!

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.8

Custom instruction software interface

▶ Now that we have seen how to make the hardware part of a custom instruction, we also want to
use it.

▶ Of course the compiler has no knowledge nor support for these instructions.

▶ We have to activate them with an assembly instruction:

uint32_t result, regA, regB;

asm volatile ("l.nios_rrr %[rd],%[ra],%[rb],0x17":[rd]"=r"(result):
[ra]"r"(regA),[rb]"r"(regB));

Note: The 0x17 is the custom instruction identifier of the custom instruction you want to activate.

▶ There are variations, like:

▶ A custom instruction with only inputs:

asm volatile ("l.nios_rrr r0,%[ra],%[rb],0x1A"::[ra]"r"(regA),[rb]"r"(regB));

▶ A custom instruction with only an output:

asm volatile ("l.nios_rrr %[rd],r0,r0,0x72":[rd]"=r"(result));

▶ ...

▶ Note the usage of the register r0!

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.9

Custom instruction usage

▶ The question is now: How to use custom instructions?

▶ Let’s take a design example (important: this is not the grayscale conversion used in our system!):

void rgbToGrayscale(int width,
int height,
const uint32_t *rgb_source,
uint32_t *grayscale_destination) {

int loop;
uint32_t temp, grayscale;

for (loop = 0; loop < width*height; loop++) {
temp = rgb_source[loop] & 0x3F; // red value
grayscale = temp*77;
temp = (rgb_source[loop] >> 8) & 0x3F; // green value
grayscale += temp*151;
temp = (rgb_source[loop] >> 16) & 0x3F; // blue value
grayscale += temp*28;
grayscale &= 0xFF00;
grayscale_destination[loop] = (grayscale << 8) | grayscale | (grayscale >> 8);

}
}

▶ We can look at the Data Flow Graph (DFG) of this function:

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.10

Custom instruction usage (DFG)

Software load of

RGB−value

Shifting and Masking

has no cost in

hardware (just wiring)

Fixed coefficient

multiplication of 8x6 bits

and addition can be

performed in less than

1 CPU clock cycle in

hardware

has no cost in

hardware (just wiring)

Shifting and formatting

Software store of

grayscale−value

10010111
b

b
b

00011100 0100110

+

+

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

▶ And all this can execute in 1 CPU-cycle (of course without the load,store, and loop; they are still
required)!

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.11

Profiling

▶ But how to know the influence of these hardware enhancements?

▶ We can just insert counters in our program that counts the number of function calls, execution time,
etc.

▶ We call this process Profiling

▶ And the insertion of these counters can be automated.

▶ A classic example of this automatic insertion is gprof of the GNU-tool-chain.

▶ Some more advanced profiling tools are valgrind and kcachegrind.

▶ However:

▶ These tools gives us just information on execution time, not if the limitations are due to
software or hardware hot spots.

▶ Many of these tools are only available for “know architectures”, maybe not for the system you
are targeting.

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
https://valgrind.org/
https://kcachegrind.github.io/html/Home.html

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.12

Profiling

Profiling has it’s limitations, from a software point:

▶ We require representative data-sets to profile as:

1. A given data-set might not trigger some parts of the code resulting in improper profiling
information.

2. A given data-set might be a corner case only banging on one function, resulting in improper
profiling information.

3. In general: garbage-in results in garbage-out.

▶ Profiling should be performed on the target hardware, as compilers optimize differently for different
targets. Profiling on a desktop gives other results as profiling on for example an ARM system.

▶ The program should behave properly, e.g. the extensive use of function pointers might render the
profiling tool useless.

Profiling has it’s limitations, from a hardware point:

▶ If profiling is done on another architecture the results can be bogus as it does not represent the
dynamic behavior of the target system.

▶ Modeling of all parameters in the virtual prototype has to been done correctly, otherwise the real
SOC can behave completely different.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.13

Profiling

Which information we require to have?

▶ On fixed systems we are only interested in the number of cpu-cycles burned, as we cannot change
the underlying architecture.

▶ This is very often accomplished by using performance counters. Performance counters are
hardware counters that count clock-cycles (your I3/I5/i/ for example has such counters build in).

▶ In SOC design we have the liberty to modify the architecture and the software.

▶ Hence here we are often also interested in more hardware specific parameters as:

▶ Bus occupation
▶ Cpu stall cycles
▶ Cache hit/miss ratio
▶ Cache trashing latency’s
▶ ...

▶ Also this can be accomplished with performance (hardware) counters.

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev. 1.0 – 3.14

Profiling

Limitation of performance counters

▶ Of course performance counters are limited by the number of bits they have (hence the “time” they
can measure).

▶ Furthermore they take silicon area, this is one of the reasons (when time allows):

▶ To tape out a chip with the performance counters.
▶ To suppress the production chip the performance counters (by using

performance_empty.v).

▶ To be able to profile hardware aspects, the hardware needs to be observable (as in our case where
everything is available in Verilog).

▶ In many cases this is not the case as some parts are provided as IP-cores (for example an
ARM-System), in this case the performance counters can use “models”.

▶ The sets of models known are:

▶ Worst case.
▶ Typical case.
▶ Best case.

▶ These models are often derived from previous taped-out chips.

	Custom Instructions
	Profiling

