Lecture 3

Embedded system design

CS476 - ESD
March 10, 2024

Dr. Theo Kluter
EPFL

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

- 3.1

cPiL

Embedded system

15FPS (640x480)) design

Dr. Theo Kluter

SDRAM

SDRAM

controller Custom Instructions

Profiling
Instruction x
cache 74.25MHz
A//
OpenRISC processor

In the first week we have seen that our system cannot calculate Sobel in real time.

Last week we saw on-chip memories and their usage.
We are now going to look into the details how we can add hardware to aid the software.

And we will start off with the custom instructions (CI’s).

To understand the concept of custom instructions we have to dive a bit into the architecture of the
uC.

Rev.1.0 - 3.2

cPiL

Embedded system

design
Dr. Theo Kluter
Ra
o — '| | [oms0no0ma
Rb | 00000000y I : L [B
” D' — Custom Instructions
OOOOOOOO—I e
.j_ — & Profiling
Q— 15]

00000000 >Mdata
: 000000005>Maddress

ﬁ [— | > g
i) — = >
¢ = LT ooooooooJ-/ =

Cimm |00000000
Ccsel QQ'_

LLLL LU LU]
Cminus @ DORRERRER Ll FREPPIIIIINE
Copp (666> I—‘- Ccflags

The Arithmetic Logic Unit (ALU) is the heart of the uC.

It receives two data (Ra, Rb) from the register-file and produces one result (Rd) to the register-file.

The operation done is selected by the control signals (Cimm, Ccsel, Cminus, Copp), that are set
depending the instruction.

Note that only one operation can be selected, although all operations are performed.

Rev.1.0 - 3.3

cPiL

) Embedded system
Assume you have following c-program: design

Dr. Theo Klut
result = (((rgb565 & 0xF800) >> 8) % 5) >> 4; r. Theo Kluter

This would result in following four operations on the ALU:

.andi r5,r5,0xF800
.sri «r5,r5,8
.muli r5,r5,5
.sri «r5,r5,4

rgb565 & O0xF800 Custom Instructions
(rgb565 & 0xF800) >> 8 Profiling
((rgb565 & 0xF800) >> 8) % 5

(((rgbb565 & 0xF800) >> 8) = 5) >> 4

= e
H= = o e

However, doing the same thing in hardware is way simpler:

(rgb565&0xF800) »8 a*5 = (a + a«2) b»4, again
is just wiring only a 10-bit adder! just wiring!

=
rgb565 | 0000g>J“’“
340
Jg§4 0000000 >result

And this can be executed in a single cycle, a speed-up of 4x!
This is the basic idea behind the custom instruction (there are of course other applications for it).
Let’s first look into the hardware details.

Rev.1.0 - 34

cPiL

Embedded system
design

Dr. Theo Kluter
The minimal set of signals that the ©C provides us with to create custom instruction hardware is

(note: input/output is from the perspective of the uC):

Name: Direction: | #bits: | Function:

cistart output 1 Indicates an active custom instruction. SHsloninsietons
ciN output 8 The custom instruction identifier code. Profiing
ciDataA output 32 The value of register A (Ra) going into the ALU/CI.

ciDataB output 32 The value of register B (Rb) going into the ALU/CI.

ciResult input 32 The result value to be written to the register file (Rd).

ciDone input 1 The signal indicating that the CI performed it's operation.

The ciDone signal is a very important signal. If the .C activates a custom instruction by the
ciStart signal it will wait (stall) till an activation of the ciDone. If the ciDone is not activated your
system will DEADLOCK!

The signal ciN indicates which custom instruction is activated. As this signal is 8-bit wide we can
implement up to 256 custom instructions.

So how to combine these different custom instructions in hardware...

Rev.1.0 - 35

CI_ID 0x00
ciStaryg © cistart iDone .
ciN— ciN ciResult WCIDODE
ciDataA| 00000000 L ciDataA
ciDataB[00000000, =it ciDataB
CI_ID 0xO0A
Pp~i ciStart Done
m ciResult D" 00000000 >ciResult
[_ ciDataA
[ciDataB
CI _ID 0x17
= CciSte Done
iN R 1t [—
iDat
ciDataB
clock@—— clock
reset®—— reset

We can implement multiple custom
instructions. Why not "multiplexing" the
ciDone and the ciResult signals by using
the ciN signal?

Very simple: multiplexers have more logic as
simple or-gates (or and-gates, the
alternative)...

This poses, however, some restrictions that we
have to take into account when designing a
custom instruction module....

Let’s look into the timing requirements of our
custom instruction hardware.

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev.1.0 - 3.6

S I /A A I O

[ciStart _/_\ // /—\ // /—\
5 ciN X0x15) // Xox17X / X0x17)
~| ciDataA X Ra X // X Ra X / X Ra X
| ciDataB X Rb X // X Rb X / X Rb X
_ [ciDone // /_\ // / \
° | ciResult 7 = i YRa Y 0
incorrect id single cycle multi cycle

Assume that the custom instruction hardware has the custom instruction identifier 0x17.

When the ciN does not correspond to the custom instruction identifier no done is generated.

Otherwise we can have a single-cycle, or a multi-cycle response.

Note that in case of a multi-cycle response the n.C is stalled!

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev.1.0 - 3.7

Now that we have seen how to make the hardware part of a custom instruction, we also want to

use it.

Of course the compiler has no knowledge nor support for these instructions.
We have to activate them with an assembly instruction:

uint32_t result, regA, regB;

%

asm volatile ("l.nios_rrr $([r
[

dl, sl
[ra]"r" (regA), [rb]"r" (regB));

Note: The 0x17 is the custom instruction identifier of the custom instruction you want to activate.

There are variations, like:
A custom instruction with only inputs:

asm volatile ("l.nios_rrr r0,%[ral,%s[rb],0x1A"::[ra]"r" (regh), [rb]"r" (regB)

A custom instruction with only an output:

asm volatile ("l.nios_rrr $[rd],r0,r0,0x72":[rd]"=r" (result)

Note the usage of the register r0!

ral,%[rb],0x17": [rd]"=r" (result) :
(

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev.1.0 - 3.8

The question is now: How to use custom instructions?
Let’s take a design example (important: this is not the grayscale conversion used in our system!):

void rgbToGrayscale(int width,
int height,
const uint32_t *rgb_source,
uint32_t *grayscale_destination) {
int loop;
uint32_t temp, grayscale;

for (loop = 0; loop < widthxheight; loop++) {
temp = rgb_source[loop] & O0x3F;
grayscale = tempx77;

temp = (rgb_source[loop] >> 8) & 0x3F;
grayscale += tempx151;
temp = (rgb_source[loop] >> 16) & O0x3F;

grayscale += temp=*28;
grayscale &= 0xFF00;

grayscale_destination[loop] = (grayscale << 8) | grayscale | (grayscale >> 8);

We can look at the Data Flow Graph (DFG) of this function:

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev.1.0 - 3.9

[CITTIIITT
v e
Software load of rgb_sourcloop_3 rgb_sourdoop_3

RGB-value
00011100,

10010111,

Shifting and Masking
has no cost in
hardware (just wiring)

(%)
¥4
rgb_sourdoop 3 /S —————
1) 7
s

Fixed coefficient
multiplication of 8x6 bits L 1
and additoncanbe ~ \[Ed [E&I \\ EB / = teeps |\ =mm) ki——
performed in less than
1 CPU clock cycle in
hardware

Shifting and formatting
has no cost in
hardware (just wiring)

mgrayscale_@

wrlS 16
]
Software store of VLG, Jgrayscale 5 vis

grayscale-value \
19
grayscale_destination grayscale_destination|00p737

And all this can execute in 1 CPU-cycle (of course without the load,store, and loop; they are still

required)!

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev.1.0 - 3.10

cPiL

Embedded system
design

Dr. Theo Kluter
But how to know the influence of these hardware enhancements?

We can just insert counters in our program that counts the number of function calls, execution time,
etc. Custom Instructions

We call this process Profiling —
And the insertion of these counters can be automated.

A classic example of this automatic insertion is gprof of the GNU-tool-chain.

Some more advanced profiling tools are valgrind and kcachegrind.

However:

These tools gives us just information on execution time, not if the limitations are due to
software or hardware hot spots.

Many of these tools are only available for “know architectures”, maybe not for the system you
are targeting.

Rev.1.0 - 3.11

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
https://valgrind.org/
https://kcachegrind.github.io/html/Home.html

cPiL

Embedded system
design

Profiling has it’s limitations, from a software point:

Dr. Theo Kluter

We require representative data-sets to profile as:

1. A given data-set might not trigger some parts of the code resulting in improper profiling
information.

2. A given data-set might be a corner case only banging on one function, resulting in improper Profiling
profiling information.

3. In general: garbage-in results in garbage-out.

Custom Instructions

Profiling should be performed on the target hardware, as compilers optimize differently for different
targets. Profiling on a desktop gives other results as profiling on for example an ARM system.

The program should behave properly, e.g. the extensive use of function pointers might render the
profiling tool useless.

Profiling has it’s limitations, from a hardware point:

If profiling is done on another architecture the results can be bogus as it does not represent the
dynamic behavior of the target system.

Modeling of all parameters in the virtual prototype has to been done correctly, otherwise the real
SOC can behave completely different.

Rev.1.0 - 3.12

Which information we require to have?

On fixed systems we are only interested in the number of cpu-cycles burned, as we cannot change
the underlying architecture.

This is very often accomplished by using performance counters. Performance counters are
hardware counters that count clock-cycles (your 13/15/i/ for example has such counters build in).

In SOC design we have the liberty to modify the architecture and the software.
Hence here we are often also interested in more hardware specific parameters as:

Bus occupation

Cpu stall cycles

Cache hit/miss ratio
Cache trashing latency’s

Also this can be accomplished with performance (hardware) counters.

cPiL

Embedded system
design

Dr. Theo Kluter

Custom Instructions

Profiling

Rev.1.0 - 3.13

cPiL

Embedded system
design

Limitation of performance counters Dr. Theo Kluter

Of course performance counters are limited by the number of bits they have (hence the “time” they
can measure).

Custom Instructions
Furthermore they take silicon area, this is one of the reasons (when time allows): Profiing
To tape out a chip with the performance counters.
To suppress the production chip the performance counters (by using

performance_empty.v).

To be able to profile hardware aspects, the hardware needs to be observable (as in our case where
everything is available in Verilog).

In many cases this is not the case as some parts are provided as IP-cores (for example an
ARM-System), in this case the performance counters can use “models”.

The sets of models known are:

Worst case.
Typical case.
Best case.

These models are often derived from previous taped-out chips.

Rev.1.0 - 3.14

	Custom Instructions
	Profiling

