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Last week we have seen that our system cannot calculate Sobel in real time.

ﬁ

74.25MHz

We can accelerate the system by moving parts of the software to hardware.

Ways to do this are custom instructions, accelerators, stream processing, ...

We will visit all these methods later on. But all have something in common: they often need

memory for temporal storage.
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In digital technology nodes (ASIC and FPGA) Dr. Theo Kluter
we only find SSRAM’s. Of course they are not
build-up with flipflops as shown here.

SSRAM 16x8

Typical for on-chip SSRAM’s is that they have Memories
uni-directional data-buses, hence dataIn and | ysage of memories

dataOut. Ping-pong buffer
LIFO-buffer

The signal address selects the memory cell FIFO-buffer
and the signal writeEnable indicates if the Testbench
cell should be written.

address l

There are two distinct behaviors in case of a
write:

Write before read: The value written to
H Dt aone the memory cell is also available on the
output.

dataIn| 00p
clock| Uy
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In digital technology nodes (ASIC and FPGA) Dr. Theo Kluter
we only find SSRAM’s. Of course they are not
ssra 1610 build-up with flipflops as shown here.

Typical for on-chip SSRAM’s is that they have Memories
uni-directional data-buses, hence dataIn and | ysage of memories

address m-—‘

dataOut. Ping-pong buffer
LIFO-buffer

The signal address selects the memory cell FIFO-buffer

and the signal writeEnable indicates if the Testbench

cell should be written.

There are two distinct behaviors in case of a
write:

dataIn| 00p
clock| Y

Write before read: The value written to
the memory cell is also available on the
output.

Read before write: The value in the
memory cell prior to the write operation
is available on the output.

o o 00>dataout
"
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A typical SSRAM write operation is given by:
ssa 1650 cock [T LI LI LI 1L

writeEnabl DMX
— address XA X XA
Al . _ , dataln DAY Y(DATY Viemories
address [0000—4 i :ﬂ— iR writeEnable I \ Usage of memories
Ping-pong buffer
[ﬂoa D“OC D““& LIFO-buffer
Imi :ﬂ_ - memoryCellAQ Y DAO FIFO-buffer
00 L 00 memoryCellA1 X DA1 Testbench
—D )—-> —D . . . .
Jﬂﬂ J = A typical SSRAM read operation is given by
: M . M o (note the delay):
> —p >
e ook LI LI LI LI LI L
st address XA X X ALY
memoryCellAO DAO
memoryCellA1 DA1
Bl 00 >dataout
dataOut XDAO)Y  XDA1Y
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SSRAM’s can be found in different configurations, namely:

single-ported

address
writeEnable
dataln dataOut =

This is the smallest
memory and arguably
most used.

semi-dual-ported

addressA
writeEnable
dataln dataOutA

addressB dataOutB

Here we have two
read-ports, but we can
only write on the A-port.

And we can easily describe them in Verilog.

true-dual-ported

addressA
writeEnableA
datalnA dataOutA [

—>

addressB dataOutB s
3 writeEnableB

datalnB

—

Here we have two
complete ports that
access the same
memory array.
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module singlePortSSRAM # ( parameter bitwidth = 8,

parameter nrOfEntries 512,
parameter readAfterWrite = 0 )

( input wire clock, Memories

writeEnable, Usage of memories
input wire [$clog2 (nrOfEntries)-1 : 0] address, Ping-pong bufier
input wire [bitwidth-1 : O] dataln, LIEO-buffer
output reg [bitwidth-1 : 0] dataOut) ; FIFO-buffer
Testbench

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always @ (posedge clock)

begin
if (readAfterWrite != 0) dataOut = memoryContent [address];
if (writeEnable == 1’bl) memoryContent [address] = dataln;
if (readAfterWrite == 0) dataOut = memoryContent [address];
end
endmodule
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module semiDualPortSSRAM # ( parameter bitwidth = 8,

parameter nrOfEntries 512,
parameter readAfterWrite = 0 )
( input wire clockA, clockB,
writeEnable,
input wire [$clog2 (nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] dataln,
output reg [bitwidth-1 : 0] dataOutA, dataOutB);

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];

always (@ (posedge clockAd)

begin
if (readAfterWrite != 0) dataOutA = memoryContent [addressA];
if (writeEnable == 1’bl) memoryContent [addressA] = dataln;
if (readAfterWrite == 0) dataOutA = memoryContent[addressA];
end

always (@ (posedge clockB)

dataOutB = memoryContent [addressB];

endmodule
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module dualPortSSRAM #( parameter bitwidth = 8§, design
parameter nrOfEntries = 512,
parameter readAfterWrite = 0 ) Dr. Theo Kluter
( input wire clockA, clockB,
writeEnableA, writeEnableBRB,
input wire [$clog2 (nrOfEntries)-1 : 0] addressA, addressB,
input wire [bitwidth-1 : 0] datalInA, datalnB, Memories
output reg [bitwidth-1 : 0] dataOutA, dataOutB); Usage of memories
Ping-pong buffer
reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0]; LIFO-buffer
FIFO-buffer
always (@ (posedge clockA) Testbench
begin
if (readAfterWrite != 0) dataOutA = memoryContent [addressA];
if (writeEnableA == 1’'bl) memoryContent [addressA] = datalnh;
if (readAfterWrite == 0) dataOutA = memoryContent[addressA];
end
always ( (posedge clockB)
begin
if (readAfterWrite != 0) dataOutB = memoryContent[addressB];
if (writeEnableB == 1’bl) memoryContent [addressB] = datalnB;
if (readAfterWrite == 0) dataOutB = memoryContent [addressB];
end

endmodule

Rev.1.0 - 29



In ASIC-design the size of the SSRAM’s is dependent on the memory-generator and the area you

have available.

In FPGA-design it is more restricted, as the memories are already implemented. You can only use

what you have:

Table 1-1. Resources for the Cyclone IV E Device Family

© o ) N o =) ) T =L
w ] ] o & W i Y] o
Resources = Q Q Q Q Q Q Q )
o o o o o o o - =
(11} (TN} [ TN B B B (TN} w
Logic elements (LEs) 6,272 10,320 15,408 22,320 | 28,848 | 39,600 | 55,856 | 75,408 | 114,480
(E}?bti’tz‘;ded memory 270 | 414 | 504 | 594 | 594 | 1134 | 2340 | 2745 | 3,888
Embedded 18 x 18 15 23 56 66 66 116 154 200 266
multipliers
General-purpose PLLs 2 2 4 4 4 4 4 4 4
Global Clock Networks 10 10 20 20 20 20 20 20 20
User 1/0 Banks 8 8 8 8 8 8 8 8 8
Maximum user /0 (7 179 179 343 153 532 532 374 426 528

Note to Table 1-1:

(1) The user 1/0s count from pin-out files includes all general purpose 1/0, dedicated clock pins, and dual purpose configuration pins. Transceiver

pins and dedicated configuration pins are not included in the pin count.
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For the FPGA we are using, following are the permissible nrOfEntries x bitwidth design
configurations: Dr. Theo Kluter
8192 x 1 bit
4092 x 2 bit
2048 x 4 Dbit Memories
1024 x 8 bitorl1l024 x 9 bit Usage of memories
512 x 16 bitor512 x 18 bit Ping-pong buffer
256 x 32 bit 0Or256 x 36 bit LIFO-buffer
FIFO-buffer
Other configurations are possible by using partially/multiple of these SSRAM’s. Testbench

By using the earlier seen Verilog descriptions, the synthesis tool will map to these SSRAM’s.

Warning: If your design uses more SSRAM memory bits as available on your FPGA, the synthesis
tool will implement parts of the memory bits as flipflops and multiplexers. This will:

Explode the size of your design (often it cannot be mapped any more on the FPGA).
Have a severe impact on the critical path of your design (read the speed you can operate your
design).

For small memories, most FPGA’s provide also the so-called LUT-RAM’s. These have most of the
timea 16 x 1 bit configuration in a single-port or semi dual-port architecture.

Note: the FPGA on our platform does not support LUT-RAM’s.
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writeEnabl

address m——‘

dataIn| O ;

cloc!

]

V= o
°
©

]

LUT-RAM 16x1

V= o
©

b o D o B
—> an'd an'd
X X X
0 0 0
D @ D Q D o
—p > -
X B X

X [ 0>dataout

The LUT-RAM'’s have the same synchronous
write as the SSRAM’s:
clock

address XA X X A1Y
dataln XDAO)Y  XDA1Y

writeEnable /_\ /_\

memoryCellAO X DAO

memoryCellA1 X DA1

However, they provide an asynchronous read:

clock

address XA X ALY
memoryCellAQ DAO
memoryCellA1 DA1

dataOut XDAO)Y  YDA1Y

Also LUT-RAMs can be easily described in
Verilog:
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module singlePortLUTRAM # ( parameter bitwidth = 8,

parameter nrOfEntries 32)
( input wire clock,
writeEnable,
input wire [$clog2 (nrOfEntries)-1 : 0] address,
input wire [bitwidth-1 : 0] dataln,
output wire [bitwidth-1 : 0] datalOut) ;

reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0];
assign dataOut = memoryContent [address];

always ( (posedge clock)
if (writeEnable == 1’bl) memoryContent [address] = dataln;

endmodule

cPiL

Embedded system
design

Dr. Theo Kluter

Memories

Usage of memories
Ping-pong buffer
LIFO-buffer
FIFO-buffer

Testbench

Rev.1.0 - 2.13



cPiL

Embedded system
design

Dr. Theo Kluter

module semiDualPortLUTRAM # ( parameter bitwidth = 8§,

parameter nrOfEntries 32)
( input wire clock, Memories
writeEnable, _
input wire [$clog2 (nrOfEntries)-1 : 0] addressA, addressB, U§@em”mmmms
input wire [bitwidth-1 : 0] dataln, E%‘;ff”
. . . -purter
output wire [bitwidth-1 : 0] dataOutA, dataOutB); FIFO-buffer
reg [bitwidth-1 : 0] memoryContent [nrOfEntries-1 : 0]; Testbench
assign dataOutA = memoryContent [addressA];
assign dataOutB = memoryContent [addressB];
always ( (posedge clock)
if (writeEnable == 1’bl) memoryContent [addressA] = dataln;

endmodule
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We now have seen the on-chip memory architectures.
We also have seen how to instantiate them in Verilog.

Memories

We are now going to concentrate on how to use them, namely: Usage of memories

. _ Ping-pong buffer
Ping-Pong buffers. LIFO-buffer

Last-in First-out (L”:O) buffers. FIFO-buffer
First-in First-out (FIFO) buffers.

Each of these buffers are used for particular data-accesses in our system.

Testbench

Before starting with the buffers, some definitions:

Producer: a producer is an entity that generates data.

Consumer: a consumer is an entity that reads the data and does something with it.
Push: a push is a write of a datum by a producer.

Pop: a pop is a read of a datum by a consumer.
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In ping-pong buffers the producer writes it’s
data in one memory, whilst the consumer

Dr. Theo Kluter

ssraM1 reads from the other memory. The moment
ushAddress 00n RAM 64 x 8 i i
’ both are done, the memories are switched.
A Typical applications for these kind of buffers Memories
B [ 00>popData are: Usage of memories
1.5 i:ij z ) Ping-pong buffer
push [8> TF 1200 00 00 a0 a0 0~ Data-transfer calculation overlap. HFO-buffer
[——1e[00 00 00 00 00 00 ——. FIFO-buffer
— f224]00 00 00 00 00 Goj o] The access pattern of the producer on .
pusnate 3% the data is different from the consumer. festbeneh
SSRAM2 . .
popadaress [T R The push/pop frequency is different,
T~ hence the producer/consumer have
sroal 8 - other timely accesses.
- 68[d0 00 00 00 00 .. The consumer needs to access certain
switch [0 e e o on g6 o] data multiple times, whilst the producer
1 aakoatootonlookiool -+ only provides it once.
= Of course, this only works if the consumer can

consume the data in the time-slot that the
producer requires to produce one block of
data!
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The ping-pong buffers are arguably the most versatile kind of buffers. Memories
But how to determine the size of them? Usage of memories
Ping-pong buffer
What about the inferred delay, as the consumer always performs the calculations when already one LIFO-buffer
set of data is provided by the producer. Otherwise formulated: the consumer always lacks one FIFO-buffer
time-slot behind. Testbench

What is the influence on area, performance, and power consumption?
Does it make sense.....
All questions for which there is no simple answer, as it depends the requirements and trade-offs.
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reset@ N CTR7 .
s by Dempty In LIFO buffers, the last value pushed is the emorios
1 ¥ T fuil first that is popped. This can easily be realized ! f _
T to use an up/down counter that generates the e
g address for the SSRAM. LIFO-buffer
0 . . . FIFO-buffer
g Typical applications for LIFO-buffers are: S

push [© el Data reordering.
pushnii?i% o Droppata Temporal storage of values (think of the

pop—°D-|_-D-| stack).

2. :.306/00 00 00 00 00 00
-.,1,:0c[00 00 00 00 00 00
{5 12|00 00 00 00 00 00
JJ—18[00 00 00 00 00 00
‘ﬁle 00 00 00 00 00 00
2400 00 00 00 00 00
- 21,32a|00 00 00 00 00 00

In practice, the LIFO-buffers are not often
used, more appropriate are the FIFO-buffers.

RS S |
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In a FIFO-buffer we transform the SSRAM into
a circular buffer.

At the beginning the FIFO is empty. Hence the
push-pointer equals the pop-pointer.

When the producer pushes a datum, the
push-pointer will increment.

When the consumer does not pop, at a certain
moment the producer filled the FIFO. The
FIFO is full.

The consumer makes again place by poping.

Of course in normal circumstances the
producer and consumer have both actions,
such that the state of the FIFO changes
continuously.

And the FIFO can even become empty again.
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FIFO-buffers are arguably the most used buffers in hardware.

Memories
Typical applications of FIFO-buffers are: Usage of memories
. . . . Ping-pong buffer
Timely access pattern buffering (e.g. the producer generates the data in another timely o
manner as the consumer can handle them). FIFO-buffer
Save clock-boundary crossings. Testbench

As you can imagine, we would like to have a generic description of a FIFO-buffer, something we
are going to do in today’s practical work.

But there is one part that is missing, how to test?
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We begin with our design. We call this the Device Under Test (DUT).

The first component of a testbench is the input stimuli generator, which provides the various test
vectors.

Then we have to ensure correct “output values” of the DUT. This is done by the Output reaction
checker.

The Input stimuli generator and the Output reaction checker form the test-harnas.

Whereas the DUT only uses synthesizable Verilog descriptions, the test-harnas uses
non-synthesizable Verilog descriptions.

The test-harnas is described in a new module, where the DUT is used as a component. This
module is called the testbench.
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Let’s take a FIFO as example for how to make a testbench. The FIFO is defined by:

module fifo # (parameter nrOfEntries = 16,

parameter bitWidth = 32)

(input wire clock,
reset,
push,
Pop,

input wire [bitWidth-1:0] pushData,

output wire full,
empty,

output wire [bitWidth-1:0] popDbata);
endmodule
We have 2 parameters, and several connections.
Note that we require a clock and a reset.
We can now build-up our basic testbench:
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testbench

/+ set the time—units for simulation x/
‘timescale 1lps/lps

module fifoTestbench;

reg reset, clock;

initial
begin
reset = 1'bl;
clock = 1'Db0; /* set the initial values =/
repeat (4) #5 clock = ~clock; /x generate 2 clock periods x/
reset = 1'b0; /* de—activate the reset =*/
forever #5 clock = ~clock; /* generate a clock with a period of 10 time-units x/
end

reg s_push, s_pop;

wire s_full, s_empty; /x define the signals for the DUT x/
reg [7:0] s_pushData;

wire [7:0] s_popData;

fifo #(.nrOfEntries(32), /% instantiate the DUT as component =/
.bitWidth(8)) DUT
(.clock(clock),
.reset (reset),
.push (s_push),
.pop (s_pop) ,
.pushData (s_pushDhata),
.full (s_full),
.empty (s_empty),
.popData (s_popData)) ;

initial
begin
Sdumpfile("fifoSignals.vcd"); /* define the name of the .vcd file that can be viewed by GTKWAVE */
$dumpvars (1,DUT) ; /+ dump all signals inside the DUT-component in the .vecd file «/
end

endmodule
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Next we have to create the input stimuli generator, there are various ways to do this, namely: Bl

A finite state machine that generates the required input values. Dr. Theo Kluter
An initial block that generates the stimuli.
A model/files that contain the various values.

Memories

This time we will restrict ourselves to an initial block, like:

Usage of memories

. tial Ping-pong buffer
initia LIFO-buffer

begin FIFO-buffer
s_push = 1’'b0;
s_pop = 1'b0;
s_pushData = 8’d0;
@ (negedge reset); /+* wait for the reset period to end */
repeat (2) @ (negedge clock); /+* wait for 2 clock cycles =*/
s_push = 1’'bl;
repeat (32) @ (negedge clock) s_pushData = s_pushData + 8’dl;

Testbench

s_push 1"b0;

s_pop = 1'bl;

repeat (32) @ (negedge clock); /* wait for 32 clock cycles =/

s_pop = 1'b0;

Sfinish; /* finish the simulation =*/
end

The checker we leave for the moment and just look at the wave-files.
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