=Pi-L

CS-473:
System programming
for
Systems on Chip

Practical work 1

Getting to know the virtual prototype

Version:
1.0

E PFL CS-473 SPSOC Getting to know the virtual prototype

Contents

1 Objectives 1

2 Setting up the Environment 2

3 Hello World and Bouncing Ball Programs 3
3.1 Compilation 3
3.2 Execution/Uploading 4

4 Programming Task 6

page Il of Il Last change: 24/09/2024 Version: 1.0

E PFL CS-473 SPSOC Getting to know the virtual prototype

1 Objectives

In the scope of this practical work, you will:

1. Learn how to setup the development environment, which includes the toolchain and helper soft-
ware.

2. Compile two basic applications that were provided as part of the course resources.

3. Complete a simple programming task, compile, and execute it.

Version: 1.0 Last change: 24/09/2024 page 1 of 6

E PFL CS-473 SPSOC Getting to know the virtual prototype

2 Setting up the Environment

We provide the details of installation for Ubuntu 22.04. For other operating systems, please refer to
following file:

orilk_toolchain/patch/README. txt (located in orlk_toolchain.zip)

If you encounter any problems with the setup, please ask your TA about it. Download the following
files from the Moodle page and place them under the same directory:

orlk_toolchain.zip available under “GNU gcc-cross-compile toolchain for the OpenRISC (un-

zip ..."

convert_or32.zip available under “Convert_or32 utility (unzip ..."

Execute the following commands in the order they are listed:

install the necessary packages

for a reasonably recent Ubuntu version:

sudo apt install build—essential guile —3.0 unzip libgmp—dev libmpfr—dev libmpc—dev
zliblg —dev texinfo

for other OSs/distros, figure out equivalent packages
7|# cd into the directory with the downloaded ZIP files

o|# extract zip files
unzip orlk_toolchain.zip —d
1| unzip convert_or32.zip —d

13|# build the toolchain
pushd orlk_toolchain/patch
15| sudo ./ compile_linux.sh
popd

build the converter utility

10| pushd convert_or32/

gcc —02 —o0 convert_or32 read_elf.c convert_or32.c
21| sudo cp convert_or32 /opt/orlk_toolchain/bin/

popd

before executing the gcc, update the PATH
25| export PATH=/opt/orlk_toolchain/bin /:$PATH

27|# either execute the export command from every newly opened terminal
or add it to .bashrc and re—open a new terminal (for bash)
20|# or add it to .profile, and log out and log in again

To communicate with the board, you need to install a serial terminal. We recommend using cutecom
as it supports sending files and also comes with a functional interface. You can install it on Ubuntu
using:

1| sudo apt install cutecom

page 2 of 6 Last change: 24/09/2024 Version: 1.0

13

E PFL CS-473 SPSOC Getting to know the virtual prototype

3 Hello World and Bouncing Ball Programs

3.1 Compilation

Download the following file from the Moodle page and place them under a directory:

virtualPrototype.zip available under “The complete source code (Verilog) of the Virtual
Prototype...".

Execute the following commands in the order they are listed:

extract the source code
unzip virtualPrototype.zip —d

make sure that the toolchain is in the PATH
export PATH=/opt/orlk_toolchain/bin /:$PATH

so that you can call orlk—elf—gcc (C compiler)
and convert_or32 (conversion utiity)

cd virtualPrototype/programms

build the hello world example

pushd helloWorld

make mem1300 # creates a hello.mem file
popd

build the bouncing box example

pushd bouncingBall

make mem1300 # creates a bounce.mem file
popd

Please read the makefile file to understand how it works. Later in this practical work, you are supposed
to create your own program based on a similar arrangement. You are supposed to use .cmemn files to
flash your program. This file can be found in the directory build-release.

Version: 1.0 Last change: 24/09/2024 page 3 of 6

E PFL CS-473 SPSOC Getting to know the virtual prototype

3.2 Execution/Uploading

Serial port access Make sure that the user can access the serial port. For example, on Ubuntu, the

user must belong to the dialout group for serial port access. You can check if your user belongs to
the dialout group by listing groups using:

1| groups # make sure that dialout is listed!

If the user needs to be added to the dialout group, execute the following command:

1| sudo usermod —a —G dialout $USER

After the user is added, please log out and log in again. For other operating systems, check out the
documentation on serial port access.

Connecting the board Make the following connections:

Power connection of the Gecko board, connect the USB cable to your computer which will
supply power and provide the serial port connection. Hint: on Linux, you can use 1susb and 1s
/dev/ttyUSB* commands to check if the device is recognized.

HDMI connection between the Gecko board and the HDMI-grabber.

Note that you have all the necessary cables in the box.

Uploading using CuteCom Open CuteCom and select the USB port corresponding to the device.
On Linux, it is of the form /dev/ttyUSB1. Make sure that the serial port parameters are as shown in
the screenshot below. You can click on the Settings button to reveal the configuration.

> g CuteCom - Default v.a®
Sessions Help

Baudrate 115200 ~ | Data Bits 8 ~ Display Ctrl characters

Flow Control None ~ | Parity None | [+ ShowTimestamp

Open Mode Read/Write | Stop Bits 1 ~ | Logfile: /janberg/cutecom.log | ... Append

Open Device: | /dev/ttyUSB0 v

Input: LF ~ | Char delay: 0ms - Plain ~

Clear Hex output Logging to: /home/janberg/cutecom.log

Device: /dev/ttyUSBO Connection: 115200 @ 8-N-1

To verify that that everything is in order, send *h to the device (type your command and simply press
enter). The device responds with the help text:

page 4 of 6 Last change: 24/09/2024 Version: 1.0

=PrL

CS-473 SPSOC

Getting to know the virtual prototype

C5-473 System programming for systems on chip
Openrisc based virtual Prototype.

Known R5232 commands:

$ Start the program loaded in target

*p Set programming mode (default)

*v Set verification mode

*iShow info on program in target

*t Toggle target between SDRam (default), soft-Bios and Flash
*m Perform simple SDRam memcheck

*s Check SPI-flash chip

*& Erase SPI-Flash chip

*f Store program loaded in SDRAM to SPI-Flash

*c Compare program loaded in SDRAM with SPI-Flash
*h This helpscreen

Clear Hex output Logging to: /home/janberg/cutecom.log

Device: /dev/ttyUSBO Connection: 115200 @ 8-N-1

= e CuteCom - Default v o~ 0
Sessions Help
Close Device:
*h
Input: LF ~ | Char delay: 0ms ™ sendfile... | | Plain ~

To flash the program, send *p to the device and click on the Send File button. Choose the .cmem
file that you want to execute. Be careful, if you send the raw .ELF file (which might not have an
extension), upload fails. You can start the flashed program by sending $ to the device. To flash another
program, restart the device by pressing the reset button.

Version: 1.0

Last change: 24/09/2024

page 5 of 6

17

19

23

=PrL

4 Programming

CS-473 SPSOC Getting to know the virtual prototype

Task

Implement the following function in C:

/%%
* Converts a given unsigned int number to string for the given base.
*
* Qnote requires (1) bufsz > 1 and (2) base > 1.
* @note appends NUL character at the end of the output.
* @note writes buf[0] = 0 in case of failure.
*
* Q@return int 0 in case of overflow or invalid argument, or number of
* written characters in case of success. (excluding NUL)
*/
unsigned int utoa(

/*% number to convert x/

unsigned int number,

/%% output buffer x/

char xbuf,

/%% size of the output buffer x/

unsigned int bufsz,

/** base (also the length of digits) =/

unsigned int base,

/x*% digits in the base x/

const char xdigits
)

Use the function you implemented to print numbers from 0 to 100 (inclusive) in vigesimal system (i.e.,

base-20):

const char xvigesimal_digits

"0123456789ABCDEFGHIJ" ;

Compile and upload your code.

page 6 of 6

Last change: 24/09/2024 Version: 1.0

	Objectives
	Setting up the Environment
	Hello World and Bouncing Ball Programs
	Compilation
	Execution/Uploading

	Programming Task

