
CS473-System programming for SOC’s

Dr. Theo Kluter

19.12.2023

Name: Sciper:

Room: Place nr.:

Important: Your way to come to your solution needs to be clearly visible!

Question: Points Score

1 7

2 7

3 5

4 11

Total 30

1

CS473:semester exam Name: _______________________

Question 1:Theoretical questions .(7 points)
(a)(1point) I read from a memory location the value 0x22110000. However, I expect the value 0x00001122.

What is the problem that I forgot about?

(b)(2points) In an computer architecture we can have a data-coherence problem. Explain what this problem
is and how it can occur in a single-cpu architecture.

ties.kluter@epfl.ch 2/10 autumn semester 2023

CS473:semester exam Name: _______________________

(c)(2points) An embedded system can use caches and scratchpad memories. Explain the difference between
the two.

Given is the block-diagram of an embedded system below:

Data
master

Instruction
master

Periph. 1SDRAM

Instruction
cache

Data
cache

CPU

Bus system

(d)(2points) Give two different scenarios in which this system acts as a Harvard-computer architecture (you
may draw in the figure).

ties.kluter@epfl.ch 3/10 autumn semester 2023

CS473:semester exam Name: _______________________

Question 2:Number formats . (7 points)
In digital signal processing, we use very often Finite Impulse Response (FIR) filters. The algorithm
of a FIR-filter is given by:

y[n] = b0x[n] + b1x[n− 1] + ...+ bNx[n−N] =
N∑

i=0

bix[n− i]

In this formula bi are the filter coefficients, and x[n − i] the samples coming from a sensor. We
now that the samples coming from the sensor have the range −4.0 ≤ x[n] ≤ 4.0. Furthermore,
with a good FIR-filter design, also the resulting values for y[n] must be in the same range, hence:
−4.0 ≤ y[n] ≤ 4.0. As a result, the filter coefficients bi must be in the range: −1.0 < bi < 1.0. The
general function that calculates the result of the FIR-filter is given by:

typedef struct SensorInfo {

uint32_t writePointer;

uint32_t readPointer;

float sensorData[256];

} sensorInfoT;

float firFilter(float *coefficients, sensorInfoT *samples, unsigned int length) {

float result = 0.0;

for (unsigned int i = 0; i < length; i++)

result += samples->sensorData[(samples->readPointer - i) & 0xFF] * coefficients[i];

return result;

}

As you might imagine, this function is a critical function that needs to be optimized. Important in
this algorithm is that we keep as much precision as we can. The CPU on which this algorithm is
running has registers of 32-bits.

(a)(2points) We are going to transform this algorithm to a fixed-point implementation. Remember: we note
the fixed-point format with Qx.y, where x is the number of bits before the decimal point, and y

is the number of bits after the decimal point. What would be the best fixed-point representation
for sensorData[i], coefficients[i], result, and the return value y[n] of the function to keep
the maximum on precision (note: (1) they do not have to be the same, and (2) we base the
fixed-point version of x[n], y[n], and bi on 32-bit)?

ties.kluter@epfl.ch 4/10 autumn semester 2023

CS473:semester exam Name: _______________________

The fixed-point version is not precise enough for our filter. Hence, we decide to implement our
own floating point version, with following definition:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

exponentmantissa
sign

where:

• 0.0 ≤ mantissa < 1.0 fixed point. Bit 30 is always 1 except for the value 0, where the
mantissa is 0 and the exponent and sign can be anything.

• The exponent is excess-124.

The filter is rewritten as:

typedef myFloat uint32_t;

typedef struct SensorInfo {

uint32_t writePointer;

uint32_t readPointer;

myFloat sensorData[256];

} sensorInfoT;

myFloat firFilter(myFloat *coefficients, sensorInfoT *samples, unsigned int length) {

myFloat result = 0;

for (unsigned int i = 0; i < length; i++)

result = myAdd(result ,

myMult(samples->sensorData[(samples->readPointer - i) & 0xFF], coefficients[i]));

return result;

}

(b)(2points) The above function calls two support function myAdd() and myMult(). This is a bad idea, better
would be to in-line these two functions in the function firFilter, why (explain your answer)?

ties.kluter@epfl.ch 5/10 autumn semester 2023

CS473:semester exam Name: _______________________

(c)(3points) Write the function myMult() that performs the multiplication. Hint: (1) as bit 30 is always 1,
we only have to normalize if after the multiplication bit 31 is 1. (2) Underflow and overflow
conditions can be ignored.

myFloat myMult(myFloat a, myFloat b) {

ties.kluter@epfl.ch 6/10 autumn semester 2023

CS473:semester exam Name: _______________________

Question 3:Hot-spot-detection . (5 points)
We profiled a program and got following results:

• function 1 : 12365 cycles

• function 2 : 865312 cycles

• function 3 : 71392 cycles

• main : 1123 cycles

• run-time : 950192 cycles

With some simple rewrite we can speed-up function 3 by a factor of 8. As a result of this rewrite,
function 2 reduces in execution time by 2%.

(a)(1point) How many cycles do the functions 2 and 3 execute after the rewrite?

• function 2 :

• function 3 :

(b)(2points) What is the total speed-up of the execution of this program due to the rewrite (explain your
answer)?

(c)(2points) Name two reasons why function 2 is reduced in execution time due to only a rewrite of function 3:

ties.kluter@epfl.ch 7/10 autumn semester 2023

CS473:semester exam Name: _______________________

Question 4:Back-on-the-envelop . (11 points)
We are given an embedded system with a CPU running at 50MHz. We want to attach a sensor to
this system that generates an interrupt each time a new value is available. We are going to determine
what the maximum sample rate of this sensor can be such that our system is still running. We start
of with the assumption that our embedded system is ideal, meaning that we always have a hit in the
instruction and data-caches.
It takes 3 CPU-cycles between the generation of an IRQ and the execution of the interrupt service
routine. The interrupt service routine is given below:

sensorServiceRoutine: #located at address 0x000000C8

l.addi r1,r1,-16

l.sw 0x00(r1),r2

l.sw 0x04(r1),r3

l.sw 0x08(r1),r4

l.sw 0x0C(r1),r5

l.movhi r2,hi(sensorBase)

l.ori r2,r2,lo(sensorBase)

l.sw 4(r2),r0 #clear the interrupt

l.lwz r4,8(r2) #read the sensor data

l.movhi r3,hi(sensorDataStruct)

l.ori r3,r3,lo(sensorDataStruct)

l.lwz r2,0(r3) #get the offset in our buffer (writePointer)

l.slli r5,r2,2

l.addi r5,r5,r3

l.addi r5,r5,8 #r5 is the pointer to the buffer location

l.addi r2,r2,1

l.andi r2,r2,0xFF #determine the next writePointer

l.sw 0(r3),r2 #and update the structure

l.sw 0(r5),r4 #save the sensor data in our buffer (sensorData)

l.lwz r2,0x00(r1)

l.lwz r3,0x04(r1)

l.lwz r4,0x08(r1)

l.lwz r5,0x0C(r1)

l.rfe

l.addi r1,r1,16

The sensor data structure is given by:

typedef struct SensorInfo {

uint32_t writePointer;

uint32_t readPointer;

uint32_t sensorData[256];

} sensorInfoT;

sensorInfoT sensorDataStruct;

The sensor is mapped in the uncacheable region. It takes 15 CPU-cycles to read from or to write to the
sensor. The moment the main program sees a difference between sensorDataStruct.readPointer

and sensorDataStruct.writePointer, it will process the sensor data. The processing of the sensor
data takes 1000 CPU-cycles, this includes one poll on the difference of sensorDataStruct.readPointer
and sensorDataStruct.writePointer.
Our system has a direct mapped instruction cache of 1kByte with a cache-line size of 32 bytes.
Furthermore it has a 2-way set associative data cache of 1kByte with a cache-line size of 32 bytes.
Finally the system has a scratch-pad memory on the data side of 2 kBytes. The stack is located in
the scratch-pad memory.

ties.kluter@epfl.ch 8/10 autumn semester 2023

CS473:semester exam Name: _______________________

(a)(3points) Under the assumption that we only have hits in the data- and instruction cache, how much
cycles does it take between the generation of an interrupt and the return to the main program
(explain your answer)?

(b)(2points) Under the assumption that we only have hits in the data- and instruction cache, what would be
the maximum sample-rate that our system can handle (explain your answer)?

(c)(1point) How many cache-lines are occupied by the sensorServiceRoutine in the instruction cache?

ties.kluter@epfl.ch 9/10 autumn semester 2023

CS473:semester exam Name: _______________________

The program is stored in an external SDRAM. This SDRAM has a data-bus of 16 bits. The
SDRAM is used in burst-mode. This SDRAM is connected by a controller to our bus-architecture
that is 32-bit based. You can assume that we never hit the refresh-period of the SDRAM, and
that our bus-architecture has 0-cycles access-time and latency. Furthermore, the SDRAM is
running at the same clock as the CPU (hence 50MHz). A typical burst access for a burst-size
of 5 is given by (where PRC is the pre-charge command):

(d)(2points) How many CPU-cycles does it take to load one instruction-cache line (explain your answer)?

(e)(3points) In the worst-case situation, the interrupt service routine aliases with our main program (hence
they occupy the same cache-lines in the instruction cache). Given this situation, how much
cycles are added to the execution of the interrupt service routine and the main program, and
what would be the new maximum sample rate (explain your answer)?

ties.kluter@epfl.ch 10/10 autumn semester 2023

